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ABSTRACT 

 

 

 

 

Marine geoid is crucial for orthometric height determination. The airborne and 

shipborne surveys have been used for geoid and gravity surveys in marine areas, but 

they could only cover a limited coverage area due to the high cost and time constraints. 

Over the last 30 years, satellite altimeter has become an important tool for global geoid 

and gravity field recovery, with nearly 60% of the Earth’s surface in relation to the 

height of the ocean could be covered. This enables researchers to replace the 

conventional marine geoid models, and surveys can be conducted faster with a larger 

coverage area at a reduced cost. This study presents an attempt to model marine geoid 

from multi-mission satellite altimetry data using Least Squares Stokes Modification 

Approach with Additive Corrections. Six altimetry data were used to derive the mean 

sea surface which was processed in the Radar Altimeter Database System. The gravity 

anomaly was computed using Gravity Software, and planar Fast Fourier 

Transformation method was applied. The evaluation, selection, blunder detection, 

combination and re-gridding of the altimetry-derived gravity anomalies and Global 

Geopotential Model data were demonstrated. The cross validation approach was 

employed in the cleaning and quality control of the data with the combination of the 

Kriging interpolation method. Marine geoid was computed based on the Least Squares 

Stokes Modification Approach with Additive Corrections. The optimal condition 

modification parameters of 4° spherical cap, 0.4 mGal terrestrial gravity data error and 

0.1° correlation length were applied. Then, the additive corrections based on 

Downward Continuation, Atmospheric Effects and Ellipsoidal Corrections were 

combined with the estimated geoid to provide a precise marine geoid over the 

Malaysian seas. Three selected levelling observations at tide gauge stations at Geting, 

Cendering and Pelabuhan Klang were used to verify the accuracy of the computed 

marine geoid model. The derived mean sea surface represents -0.4945m mean error 

and 2.2592m root mean square error values after being evaluated with the mean sea 

surface of Denmark Technical University 13. The gravity anomaly data from tapering 

window width with block 300 from hhawtimr4 assessments denotes the optimum gravity 

anomaly results with root mean square error value, 17.8329mGal. The accuracy of 

marine geoid model corresponds to the standard deviation, 0.098m and the root mean 

squared error value, 0.177m.  The findings suggest that the marine geoid model can be 

utilized for the orthometric height determination in marine areas. The by-product of 

this research, the Malaysian Marine Geoid Calculator (MyMG) could assist users in 

extracting marine geoid in Malaysian seas. 

 

. 



vii 
 

ABSTRAK 

 

 

 

 

Geoid marin adalah penting dalam menentukan ketinggian ortometrik. 

Pengukuran melalui udara dan kapal telah digunakan untuk menjalankan pengukuran 

geoid dan graviti di kawasan marin tetapi kaedah ini hanya terhad kepada luas kawasan 

yang tertentu disebabkan oleh kos yang tinggi dan kekangan masa yang terhad. Sejak 

30 tahun yang lalu, altimeter satelit telah menjadi alat yang penting untuk pemulihan 

medan geoid dan graviti global dengan hampir 60% daripada permukaan bumi yang 

berkaitan dengan ketinggian laut boleh dilitupi. Ini membolehkan para penyelidik 

untuk menggantikan model geoid secara konvensional dan pengukuran boleh 

dijalankan dengan cepat dengan kawasan liputan yang luas dan pengurangan kos. 

Kajian ini menjelaskan satu usaha untuk memodelkan geoid marin dari data altimeter 

pelbagai misi dengan menggunakan Least Squares Stokes Modification Approach with 

Additive Corrections. Enam data altimeter digunakan untuk memperoleh purata 

permukaan laut yang diperoses dalam Sistem Pangkalan Data Altimeter Radar. 

Anomali graviti dihitung menggunakan perisian Gravity dan kaedah satah 

Transformasi Fourier Cepat digunakan. Penilaian, pemilihan, pengesanan kesilapan, 

gabungan dan pengumpulan semula anomali graviti perolehan altimeter dan data 

Global Geopotential Model telah dijalankan. Pendekatan pengesahan silang digunakan 

dalam pembersihan dan kawalan kualiti data dengan gabungan kaedah interpolasi 

Kriging. Geoid marin dihitung berdasarkan Least Squares Stokes Modification 

Approach with Additive Corrections. Parameter pengubahsuaian keadaan optimum 4° 

lingkungan sfera, 0.4 mGal ralat data daratan gravity dan 0.1° panjang korelasi telah 

digunakan. Kemudian, pembetulan tambahan berdasarkan Kesinambungan Ke Bawah, 

Kesan Atmosfera dan Pembetulan Ellipsoidal digabungkan dengan geoid yang 

dianggarkan untuk memberikan geoid marin yang tepat ke atas laut Malaysia. Tiga 

pemerhatian pengukuran aras yang terpilih di stesen tolok gelombang di  Geting, 

Cendering dan Pelabuhan Klang telah digunakan untuk mengesahkan ketepatan 

ketinggian geoid marin yang dihitung. Purata permukaan laut yang diperoleh mewakili 

-0.4945m purata ralat dan 2.2592m nilai ralat quadrat rata akar selepas dinilai dengan 

purata permukaan laut di Denmark Technical University 13. Data anomali graviti dari 

lebar tirus yang melintang dengan blok 300 dari penilaian hhawtimr4 menandakan 

keputusan anomali graviti optimum dengan nilai ralat quadrat rata akar, 17.8329mGal. 

Ketepatan model geoid marin sepadan dengan sisihan piawai, 0.098m dan nilai ralat 

quadrat rata akar, 0.177m. Dapatan kajian menunjukkan bahawa ketinggian geoid 

marin boleh diambil kira untuk penentuan ketinggian ortometrik di kawasan marin. 

Hasil sampingan kajian ini, Kalkulator Geoid Marin Malaysia (MyMG) dapat 

membantu pengguna dalam menghitung geoid marin di laut Malaysia.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the study 

 

 

 Geodesy has been interpreted by many scholars in accordance to their 

respective interest. For instance, in the case of classical geodesy, Helmert (1880) 

described geodesy as the discipline regards to the measurement and the mapping of 

the Earth’s surface. In referring to this definition, geodesy plays a leading role in the 

determination of the position survey points as well as their variations over time on the 

Earth’s surface.  Lu et al., (2014) described geodesy as studies about the shape and 

size of the Earth as well as its geodynamic phenomena. While Torge and Müller (2012) 

described the tasks of geodesy with respect to Earth surface as follows:  

 

 

“To determine the figure and external gravity field of the Earth, as well as its 

orientation in space, as a function of time, from measurements on and exterior to the 

Earth’s surface.” 

 

 

 Another source to look at when discussing about geodesy and the role of 

geodesists is the reading materials furnished by the International Association of 

Geodesy (IAG). In one of the IAG publications, geodesy is defined as the science of 

the measurement and illustration of the Earth (geometry, physics, temporal variations) 

and other celestial bodies (Drewes, 2016). On the other hand, Panigrahi (2014) in his 

book “Computing in Geographic Information Systems GIS” outlines geodesy as ‘the 

discipline of the techniques and methods for measuring the geometry of the Earth  
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surface precisely’.  

 

The role of geodesy has becoming more widen and its application been 

expanded even into marine with the creation of discipline known as marine geodesy. 

In marine geodesy, the main task initially was to ascertain geodetic control network 

on the surface of the Earth bordered by oceans. Such task plays an important role in 

accomplishing geodesists work to distinguish the position of the sea surface, as well 

as determining marine gravity field, measuring the dynamic ocean topography and 

computing the marine geoid. The task of computing the marine geoid is the topic of 

this research and will be discussed with more detail in this thesis. 

 

Geoid determination is one of the main tasks of geodesy and becoming more 

important when survey works are done with Global Navigation Satellite System 

(GNSS) instruments, the use entrusted to geodesists and areas of responsibility of 

geodesy. After ellipsoid, geoid is the subsequent paramount estimation to the figure of 

the Earth.  

 

 

The term geoid was initially introduced by Listing (1873) to describe the 

mathematical figure of the Earth. There are many ways of defining geoid can be quoted 

from more recent publications. For instance, Banerjee (2011) illustrates geoid as the 

level surface that corresponds with mean sea level (MSL) over the oceans and 

continents. In Jekeli (2016), geoid is interpreted as an equipotential surface of the 

Earth’s gravity field closely approximates with mean sea level. The equipotential 

surface is described as a constant value of the gravity potential on the surface. While 

in Sj𝑜̈berg and Bagherbandi (2017), geoid is defined as the equipotential surface of the 

Earth’s gravity field that best fits to the mean sea level. However, in marine areas, 

MSL can be interpreted as the mean sea surface (MSS) heights.  

 

Conventionally, in marine areas the airborne and shipborne were used for 

measuring and acquiring the gravity data.  Nevertheless, such gravity measurements 

for determining the gravity field information is limited only to the specific study area 

due to time constraint and the high cost required to handle the survey. Thus, a better 
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option of getting comprehensive data especially for the purpose of marine geoid 

determination is required and the available option is by utilizing multi-mission satellite 

altimeter. 

 

 

The satellite-based method provided by the satellite altimetry plays a crucial 

role in offering abundance of geodetic data for marine geodesy applications. Besides 

the amount in quantity the data provided by satellite altimeter are homogeneous and 

economic in nature. The launch of the recent satellite altimetry (i.e., Jason-3 and 

Sentinel-3a) presented a continuous, high-accuracy, high resolution and wide coverage 

of ocean monitoring, viable and easier lasting study. While, the earlier altimetry 

missions provide low accuracy in the true orbit and position of the satellite compared 

to the recent satellite missions.  

 

 

Geoid determination is commonly accomplished with the utilization of 

gravimetric data by combining terrestrial gravity anomalies with gravity data derived 

from Global Geopotential Model (GGM) (Sj𝑜̈berg, 2003). The approach of combining 

terrestrial gravity data with GGM-derived gravity to determine geoid requires the 

computation to be done by applying the modified Stokes’ formula. The Stokes 

modification approach for geoid computation was originally introduced by M.S 

Molodensky as described in his seminal publication (Molodensky et al., 1962). The 

modified Stokes’ formula is proposed with the aim of reducing the truncation error as 

results of using gravity data over a limited area (Sj𝑜̈berg, 2011).  

 

Nowadays, there are various well-known geoid computational methods have 

been developed and proposed by geodetic institutions. For instance, one of the methods 

available is the Least-Squares Stokes Modification Approach (LSMSA) developed at 

the Royal Institute of Technology (KTH), Sweden. Research works on the 

development of LSMSA was led by Professor Lars Sj𝑜̈berg in Geodesy Department at 

KTH. Hence, the geoid computation package using the method of LSMSA is also 

commonly known as the KTH method (Sj𝑜̈berg, 2003). The work to develop LSMSA 

was started way back to 1984 (Sj𝑜̈berg, 1984).   
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This study therefore presents an effort to determine and modelling marine 

geoid over Malaysian seas from multi-mission satellite altimetry data employing the 

method of LSMSA. In the process, the local mean sea surface (MSS) from multi-

mission satellite altimeter starting from year 2005 to 2015 are derived. Then, the 

regional gravity anomaly data is computed covering the Malaysian seas, with the 

combinations of altimetry-derived gravity anomaly and GGM-derived gravity 

anomaly data. Finally, the local marine geoid model is estimated using multi-mission 

satellite altimetry data employing Least-Squares Modification of Stokes with Additive 

Corrections (LSMSA) approach or the KTH method. 

 

 

 

 

1.2 Problem Statement 

 

 

The marine geoid determination is necessary and its importance is for the 

creation of a high-accuracy and high-resolution marine geoid model. Such marine 

geoid model is very much needed will contribute significantly and used by geodesist, 

oceanographer and hydrographer (Sanso and Sideris, 2013). The marine geoid has also 

tremendous applications in offshore engineering works and dynamic applications. The 

applications example is such as bathymetry estimation, oil and mineral explorations, 

tsunami prediction, volcanoes and many more. For the case of Malaysia, the marine 

geoid model needed covers Malaysian region bordered by ocean areas of South China 

Sea, Malacca Straits, Sulu Sea and Celebes Sea. 

 

 

 At present there is already a geoid modeling project undertaken covering 

certain area of Malaysian seas. It is done by the Department of Survey and Mapping 

Malaysia (DSMM) under their special project known as Marine Geodetic 

Infrastructures in Malaysian Waters (MAGIC) project. The DSMM geoid model is 

determined based on terrestrial gravity data obtained from the airborne and shipborne 

techniques. However, the airborne-derived marine geoid conducted by MAGIC project 

(2015) only covered part of Malaysian sea; South China Sea region closer to Sabah 

within 10km. It is understood clearly that the cost to conduct airborne survey is too 

high and very time consuming besides the requirement of special logistic such as 

aircraft and dedicated gravimeter.  
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An alternative method in order to overcome these problems is to determine the 

marine geoid using space-based technique satellite altimeter. In terms of space-borne 

instrumentation only altimeters can measure the high-resolution gravity field from 

space (in the range of 5-100km) (Andersen, 2013). This is due to the satellite indirectly 

measures gravity by measuring the geoid height variations at the sea-surface. This 

means that satellite altimetry provides measurements implicitly at the sea surface 

which is distant nearer to the gravity field data in the Earth Crust accountable for the 

variations of gravity field in the 5-100km wavelength. 

 

 

 In order to achieve the aim of this study the sea surface height data is processed 

based on eleven years of altimetry data starting from 2005 to 2015. For this purpose, 

Radar Altimeter Database System (RADS) developed by geodetic team at the 

Technical University of Delft is used for altimeter data processing (Naeije et al., 2000). 

To obtain high accuracy marine geoid model for the Malaysian seas region, firstly, the 

altimetry data of sea level anomaly (SLA) is verified with tidal data. Next, the mean 

sea surface is derived by averaging the sea surface heights data over eleven years of 

data. Subsequently, the derived mean sea surface is compared with DTU13 Mean Sea 

Surface (MSS) in order to compare the correlation between the regional and global 

mean sea surface.  

 

 

 In the next computation stage, after ready with the derived mean sea surface 

information, the regional gravity anomaly is computed using planar estimation of 

Stokes’ function. This approach is commonly used in the frequency domain with 

spherical or planar Fast Fourier Transform techniques (FFT). In addition, the regional 

gravity anomaly data is crucial for computing the regional marine geoid data. Finally, 

the marine geoid heights are computed using LSMSA. Among the advantages of the 

LSMSA is that gravity reduction can be neglected and the prior geoid model can be 

updated and revised regularly as well.  

 

 

 To summarize, this research is to demonstrate a complete study on marine 

geoid determination and modelling using multi-mission satellite altimeter over 

Malaysian region. As a byproduct of this research, a Malaysian Marine Geoid 

Calculator (MyMG) for Malaysian seas is developed. This software product is limited 
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to the study area and the users are able to determine the geoid heights based on specific 

location.  

 

 

 

 

1.3 Research Questions 

 

 

To address this peculiarity the main research question need to be answered in this study 

is: 

 

 

Is marine geoid over Malaysian sea using multi-mission altimetry data represents good 

accuracy? 

 

 

Hence, the secondary questions are: 

i. What is the accuracy of the derived-mean sea surface (MSS) after compared 

with DTU13 MSS? 

ii. How gravity anomaly can be derived based on tapering window width (TWW) 

examination? 

 

 

 

 

1.4 Research Aim and Objectives 

 
 

The aim of this research is to determine marine geoid over Malaysian seas using 

multi-mission satellite altimeter.  In pursuit of this aim of this research, this study will 

specifically address several objectives as follows: 

 

i. To derive local mean sea surface (MSS) from multi-mission satellite 

altimeter starting from year 2005 to 2015. 

 

ii. To compute gravity anomaly by combining altimetry-derived gravity 

anomaly and GGM-derived gravity anomaly data. 
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iii. To estimate local marine geoid model over Malaysian seas by evaluating the 

accuracy of the derived geoid model with Global Positioning System (GPS) 

levelling observations. 

 

 

 

 

1.5 Research Scope 

 

 

 This research is intended to determine the local marine geoid using multi-

mission satellite altimeter and global gravity field model over Malaysian seas covering 

South China Sea, Sulu Sea, Celebes Sea and Malacca Straits. The altimetry data is 

processed for 11-year period starting 2005 to 2015. The research involves the 

following scope of work: 

 

 

i. Study Area 

The area under study is bounded between latitude from 0˚ up to 14˚ and 

longitude from 95˚ to 126˚ as shown in Figure 1.1. This study area is focused 

for the whole Malaysians sea covering Malacca strait, South China Sea, 

Celebes Sea and Sulu Sea. 

 

 

 
Figure 1.1: The map of the study area 

 

 

 

Malacca 

Straits 

South China Sea 

Sulu Sea 

Celebes Sea 
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ii. Satellite Altimeter Missions Data 

This research involves six types of satellite altimeters; ERS-2, Jason-1, Jason-

2, Envisat, Cryosat and Saral from year 2005 until 2015 (11 years). The data 

are processed by using Radar Altimeter Database System (RADS) for sea level 

anomaly (SLA) and sea surface height (SSH) derivation. The detailed 

descriptions regarding the satellite altimeter data (2005 to 2015) are as shown 

in Table 1.1. 

 

Table 1.1: Satellite altimeter data missions 

Satellite Phase Cycle Time Spends 

ERS-2 A 101-169 1 January 2005 to 4 

July 2011 

Jason-1 A,B and C 110-425 1 January 2005 to 

21 June 2013 

Envisat B and C 6- 113 1 January 2005 to 8 

April 2012 

Jason-2 A 0-276 14 July 2008 to 31 

December 2015 

Cryosat A 4-74 14 July 2010 to 31 

December 2015 

Saral A 1-30 14 March 2013 to 

31 December 2015 

 

 

iii. Tidal Data 

Monthly tidal data are taken from the Permanent Service for Mean Sea Level 

(PSMSL) website; http://www.psmsl.org/data/obtaining/. The tidal data cover 

the period from 2005 to 2015. Table 1.2 displays the list of tidal data adapted 

in World Geodetic System 1984 (WGS84) coordinate system that is involved 

in this study. 

 

 

 

 

 

 

http://www.psmsl.org/data/obtaining/
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Table 1.2: Tide gauge stations involves in this study 

Station Name Latitude  Longitude  

P. Langkawi 6°25'51.60" 99°45'50.40" 

Lumut 4°14'24.00" 100°36'48.00" 

Pelabuhan Klang 3° 2'60.00" 101°21'30.00" 

Tanjung Keling 2°12'54.00" 102° 9'12.00" 

Kukup 1°19'31.00" 103°26'34.00" 

Johor Bharu 1°27'42.00" 103°47'30.00" 

Tanjung Sedili 1°55'54.00" 104° 6'54.00" 

Tanjung Gelang 3°58'30.00" 103°25'48.00" 

Cendering 5°15'54.00" 103°11'12.00" 

Geting 6°13'35.00" 102° 6'24.00" 

Pulau Tioman 2°48'26.00" 104° 8'24.00" 

Bintulu 3°15'44.00" 113° 3'50.00" 

Kota Kinabalu 5°59'0.00" 116° 4'0.00" 

Sandakan  5°48'36.00" 118° 4'2.00" 

Tawau 4°14'0.00" 117°52'60.00" 

 

 

iv. GPS Levelling data 

A total of nine GPS levelling observation data extracted from Mohamed 

(2003) are used in this study. The marine geoid results are verified with GPS 

levelling in order to determine precise geoid for Malaysian seas. Further 

descriptions regarding GPS levelling data are discussed in Section 3.7.1. 

 

 

v. Global Geopotential Model (GGM) 

The GGMs are used for deriving the gravity-related information (i.e., gravity 

anomaly and marine geoid height). Selected GGMs are extracted from 

International Center for Global Gravity Field Models website (ICGEM) -  

http://icgem.gfz-potsdam.de/home. Table 1.3 displays the list of GGMs used 

in this study. 

 

 

 

http://icgem.gfz-potsdam.de/home
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Table 1.3:  The extracted GGMs from ICGEM website 

Model Year Degree 

ITG-GRACE2010s 2010 180 

ITG-GOCE02 2013 240 

GO_CONS_GCF_2_TIMR4 2013 250 

Tongji-GRACE01 2013 160 

ITSG-GRACE2014s 2014 200 

EGM 2008 2008 2190 

 

 

vi. Bathymetry data (GEBCO) 

The bathymetry data from General Bathymetric Chart of the Ocean (GEBCO) 

model is used for the computation of the gravity anomaly from bathymetry 

depth. Besides, the contribution of bathymetry effect is applied for the additive 

corrections computation that will add to the geoid heights determination. 

 

 

vii. Software 

a) Radar Altimeter Database System (RADS) 

RADS is employed in this study in order to extract the sea level 

anomaly (SLA) and sea surface height (SSH) data from multi-mission 

satellite altimeter in daily, monthly and climatology solution. The 

description regarding to RADS framework is further discussed in 

Section 2.4. 

 

b) Global Mapper software 

Global mapper software version 13 is important in order to emphasis 

on terrain layers and 3D data processing for mapping that are able to 

create the high-quality printed maps. Thus, there are the other 

applications that can be applied such as contour generation and 

customized gridding and terrain creation. 

 

 

c) MATLAB Software 

 MATLAB is used for analyzing and handling the large number of 

data that has been extracted from RADS. Besides, this software is also 
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used for computing the local mean sea surface (MSS) and mapping 

purpose such as the mapping of mean sea surface (MSS), estimated 

gravity anomaly and the computed marine geoid over Malaysian seas. 

Moreover, Matlab software is also used for developing Malaysian 

Marine Geoid (MyMG) calculator which will be the byproduct of this 

study. 

  

 

d) GRAVSOFT software 

Geofour program in GRAVSOFT software is employed for the 

computation of residual altimetry-derived gravity anomaly. This 

program is developed for gravity field modeling by planar Fast 

Fourier Transformation (FFT) program with many modes; upward 

continuation, gravity geoid, geoid to gravity and Molondesky’s 

boundary value problem.  

 

 

 

 

1.6 Research Significance 

 
 

The significances of doing this research are: 

i. This study aims to determine the marine geoid over Malaysian seas using 

multi-mission satellite altimeter. From marine geoid information, the 

unified vertical datum over Malaysian seas is particularly crucial for 

offshore engineering works. The marine geoid denoted information related 

to mineral exploration, oceanography and satellite dynamics importance 

for determining the orbits of the satellite (Ssengendo, 2015). 

 

 

ii. The derivation of mean sea surface for Malaysian seas assimilates the 

oceanographic and geophysical studies such as global tide modelling, sea 

level rise study, vertical datum for offshore engineering and the derivation 

of mean dynamic topography (Yahaya et al., 2016). In addition, mean sea 

surface heights is the key of gravity anomaly estimation and marine geoid 

determination. 
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iii. The estimation of gravity anomaly in this study is significantly required for 

the bathymetry estimation over Malaysian seas. Besides, the geodynamical 

phenomena modelling like polar motion, Earth rotation and crustal 

deformation can be predicted using gravity data (Bogusz et al., 2015). 

 

 

 

 

1.7 Research Methodology 

 

 

 The overall methodology of this study is divided into four phases as illustrated 

in Figure 1.2  

 

 

 

 

1.7.1 Phase 1 

 

i. Literature Review 

 This stage concentrated on reviewing the essential topics such as: 

a) Understanding the fundamental and theory of geometrical data of the sea for 

instance sea surface height (SSH), mean sea surface (MSS), gravity anomaly 

and marine geoid.  

b) The principle of satellite altimeter  

c) Altimeter Processing Software: Radar Altimeter Database Software (RADS) 

d) MATLAB programming language 

e) GRAVSOFT software (Geofour program) 

 

 

ii. Data Acquisition 

There are three approaches employed to obtain the data as follows: 
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Figure 1.2: Schematic overview of the research methodology 
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Malaysian Marine Geoid 

(MyMG) Calculator 

PHASE 4 

Data Evaluation & Analysis 

Conclusion & Recommendations 

OBJ 3 

OBJ 2 

OBJ 1 

Data Verification: SLA vs tidal 

SLA (2005-2015) 

Evaluation of the best 

GGMs 
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a) GPS Levelling 

There are nine GPS levelling observations data at tide gauges involve in this 

research; Geting, Lumut, Pelabuhan Klang, Tanjung Keling, Kukup, Johor 

Bharu, Tanjung Gelang and Chendering tide gauge stations. These data are 

used in the computed marine geoid verification. 

 

 

b) Satellite Altimeter 

Six satellite altimeter missions are involved for marine geoid determination; 

ERS-2, Jason-1, Envisat, Jason-2, Cryosat and Saral. In this study, Radar 

Altimeter Database System (RADS) is used for altimeter data processing. The 

sea level anomaly and sea surface height data are derived from RADS 

processing. The details regarding the processing methodology of RADS and 

enhancement are discussed in Section 3.2. 

 

 

c) Global Geopotential Model (GGM) 

GGMs data are used for gravity anomaly estimation and marine geoid 

determination using KTH approach. The evaluations of the selected GGMs must 

be performed in order to select the most suitable GGM for Malaysian region.  

 

iii. Data Processing RADS (Sea Level Anomaly and Sea Surface Height) 

The SSH and SLA data is processed by using RADS with the selected study 

area. By considering the spherical cap of the area, the SSH and SLA data are 

processed with extra 20° further than the study area.  This is important for the 

evaluation of the initial modification parameter as discussed in Section 3.6.1 

later. 
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1.7.2 Phase 2 

 

i. Data Derivation MSS 

Based on the SSH and SLA data, mean sea surface (MSS) height is derived by    

using two derivation approaches. The details description regarding to MSS 

derivation are discussed in Section 3.3. 

 

 

ii. Residual Gravity Anomaly Derivation 

The residual gravity anomaly is derived by using Geofour program in 

GRAVSOFT software. Gravity anomaly is the most significant data used 

in geoid determination. 

 

 

iii. Data Extraction(∆𝒈𝑮𝑮𝑴) 

GGM-derived gravity anomaly(∆𝑔𝐺𝐺𝑀) and GGM-derived geoid(𝑁𝐺𝐺𝑀) is 

extracted from the ICGEM Website. 

 

 

iv. Evaluation of the Best GGM 

Six selected GGM-derived gravity anomaly and GGM-derived geoid 

heights are evaluated with airborne-derived gravity data and airborne-

derived marine geoid model. This is important in order to select the best 

GGMs for gravity anomaly estimation and marine geoid determination 

using KTH method. 

 

 

v. Data combination  

GGM-derived gravity anomaly(∆𝑔𝐺𝐺𝑀) is combined with the residual 

altimetry-derived gravity anomaly in order to obtain the full spectrum of 

gravity anomaly. 

 

 

vi. Computation of gravity anomaly 

From the combination of GGM-derived gravity anomaly and altimetry-

derived residual gravity anomaly, the cross validation and interpolation 

procedure is performed. The cross validation is vital for outlier detection in 
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the data. Afterwards, the remaining data is interpolated using Kriging 

interpolation with the selected grid size and provide the final gravity 

anomaly information. 

 

 

 

 

1.7.3 Phase 3 

 

i. Data verification and Validation 

The altimetry-derived gravity anomaly is evaluated with the airborne-

derived gravity anomaly from Marine Geodetic Infrastructures in 

Malaysian Waters (MAGIC) project. While, the estimated marine geoid is 

evaluated and verified with the GPS levelling observation at tide gauge 

stations.  

 

 

ii. Marine Geoid Estimation (KTH approach) 

The marine geoid is determined by employing LSMSA approach based on 

KTH method. 

 

 

 

 

1.7.4 Phase 4 

 

i. Malaysian Marine Geoid (MyMG) 

Based on the marine geoid estimation by using KTH approach, the 

Malaysian Marine Geoid (MyMG) software is developed. This is 

significant for the Malaysian users to obtain the marine geoid data at their 

specific location. 

 

 

ii. Data Evaluation and Analysis 

The evaluation and analysis are focused on analysing and discussing the 

MSS derivation, gravity anomaly computation and marine geoid 

determination over Malaysian seas. 
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iii. Conclusions and Recommendations 

The conclusions are based on the findings and objective of the study. Hence, 

the suggestions and recommendations of the study are provided. 

 

 

 

 

1.8  Outline of the Thesis 

 

 

 This thesis focussed on the marine geoid determination using multi-mission 

satellite altimeter over the Malaysian seas. The structure of the thesis composed of 

five chapters as follows: 

 

 

 Chapter 1 present the research topic, outlines of the research includes the aim 

and objectives. A general research methodology employed in this study is elaborated 

in this chapter. 

 

 

 Chapter 2 reviews the theory and principle of satellite altimeter in the 

derivation of ocean data. In addition, the fundamental and theory of geodesy is 

discussed with emphasis on the derivation of the mean sea surface, gravity anomaly 

estimation and marine geoid determination.  

 

 

 Chapter 3 discussed on how to derive mean sea surface, from multi-mission 

satellite altimeter employing Radar Altimeter Database System (RADS). The RADS 

processing methodology intensely for Malaysian seas are thoroughly discussed in this 

chapter. Moreover, this chapter discussed the gravity anomaly estimation and 

verification. The details corresponding to cross-validation are described in detail in 

this chapter which is significant for outlier detection. The marine geoid estimation is 

described particularly by using KTH approach with the additive corrections. 

 

 

 Chapter 4 discusses the final results of the mean sea surface derivation, gravity 

anomaly estimation and marine geoid determination over Malaysian seas. The results 

are then validated in order to assess the accuracy of the outcomes. 
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 Chapter 5 outlines the findings and conclusions of this study. Then, the 

recommendations and suggestions for further studies are provided. 
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