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ABSTRACT 

 

 

 

The area of gait biometrics has received significant interest in the last few 

years, largely due to the unique suitability and reliability of gait pattern as a human 

recognition technique. The advantage of gait over other biometrics is that it can 

perform non-intrusive data acquisition and can be captured from a distance. Current 

gait analysis approach can be divided into model-free and model-based approach. 

The gait data extracted for identification process may be influenced by ambient noise 

conditions, occlusion, changes in backgrounds and illumination when model-free 2D 

silhouette data is considered. In addition, the performance in gait biometric 

recognition is often affected by covariate factors such as walking condition and 

footwear. These are often related to low performance of personal verification and 

identification. While body biometrics constituted of both static and dynamics 

features of gait motion, they can complement one another when used jointly to 

maximise recognition performance. Therefore, this research proposes a model-based 

technique that can overcome the above limitations. The proposed technique covers 

the process of extracting a set of 3D static and dynamic gait features from the 3D 

skeleton data in different covariate factors such as different footwear and walking 

condition. A skeleton model from forty subjects was acquired using Kinect which 

was able to provide human skeleton and 3D joints and the features were extracted 

and categorized into static and dynamic data. Normalization process was performed 

to scale down the features into a specific range of structure, followed by feature 

selection process to select the most significant features to be used in classification. 

The features were classified separately using five classification algorithms for static 

and dynamic features. A new fusion framework is proposed based on score level 

fusion called Quadruple Fusion Framework (QFF) in order to combine the static and 

dynamic features obtained from the classification model. The experimental result of 

static and dynamic fusion achieved the accuracy of 99.5% for footwear covariates 

and 97% for walking condition covariates. The result of the experimental validation 

demonstrated the viability of gait as biometrics in human recognition. 
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ABSTRAK 

 

 

 

Bidang biometrik gaya berjalan telah mendapat perhatian yang ketara sejak 

beberapa tahun lepas, sebahagian besarnya disebabkan oleh kesesuaian yang unik 

dan kebolehpercayaan corak gaya berjalan sebagai teknik pengenalan manusia. 

Kelebihan gaya berjalan berbanding biometrik lain adalah ia boleh melakukan 

rakaman data tanpa diganggu dan boleh dirakam dari jauh. Pendekatan analisis gaya 

berjalan masa kini boleh dibahagikan kepada pendekatan model bebas dan 

berdasarkan model. Data gaya berjalan diekstrak untuk proses pengenalan boleh 

dipengaruhi oleh keadaan bunyi, sekatan gambar, perubahan di latar belakang dan 

pencahayaan apabila bayang model bebas data 2D digunakan. Di samping itu, 

prestasi dalam pengiktirafan biometrik gaya berjalan sering dipengaruhi oleh faktor-

faktor kovariat seperti keadaan berjalan kaki dan kasut. Ini sering dikaitkan dengan 

prestasi rendah untuk pengesahan peribadi dan pengenalan. Biometrik badan 

termasuk kedua-dua pergerakan gaya berjalan berciri statik dan dinamik, dan kedua-

duanya boleh saling melengkapi antara satu sama lain apabila digunakan bersama-

sama untuk memaksimumkan prestasi pengiktirafan. Oleh itu, kajian ini 

mencadangkan teknik berdasarkan model yang boleh mengatasi kelemahan yang 

disebutkan di atas. Teknik yang dicadangkan meliputi proses mengekstrak satu set 

3D ciri gaya berjalan statik dan dinamik daripada data rangka 3D dalam faktor-faktor 

kovariat yang berbeza seperti kasut yang berbeza dan keadaan berjalan kaki. Satu 

model rangka dari empat puluh orang peserta telah diambil dengan menggunakan 

Kinect yang mana ia boleh memberikan rangka manusia dan rangka 3D dan ciri-ciri 

ini telah dirakam dan dikategorikan kepada data statik dan dinamik. Proses 

normalisasi telah dilakukan untuk menuruni ciri-ciri ke dalam julat tertentu struktur, 

diikuti oleh proses pemilihan ciri untuk memilih ciri-ciri yang paling penting untuk 

digunakan dalam pengelasan. Ciri-ciri ini telah dikelaskan secara berasingan dengan 

menggunakan lima algoritma pengelasan untuk ciri-ciri statik dan dinamik. Rangka 

kerja fusion baru adalah dicadangkan berdasarkan gabungan tahap skor dipanggil 

Kerangka Pelakuran Empat-Lipat (QFF) untuk menggabungkan ciri-ciri statik dan 

dinamik yang diambil dari model klasifikasi. Hasil eksperimen pelakuran statik dan 

dinamik mencapai ketepatan 99.5% untuk kovariat kasut dan 97% untuk kovariat 

keadaan berjalan. Hasil pengesahan eksperimen menunjukkan gaya berjalan boleh 

diiktiraf sebagai biometrik yang berdaya maju. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

1 INTRODUCTION 

This chapter begins with a brief introduction on the subject of the research, 

i.e. fusion of static and dynamic features for gait biometric recognition.  Firstly, the 

background of the problem is described and statement of the problem is defined.  

This is then followed by the objectives and scope of this research.  The final section 

contains the significance of this research and the synopsis of this research in thesis 

outline. 

 

 

 

 

1.1 Background of the Problem 

 

 

In recent years, there has been an increase in authentication action in humans’ 

daily lives. Common activities such as cash withdrawal from auto teller machines, 

login into personal computers, unlocking the mobile phones or immigration checks 

while entering a country requires authentication through PIN numbers, passwords or 

identification documents. Despite the simplicity and ease of use, these practises have 

a number of problems and errors. The disadvantages of these practices are that they 

can be stolen, lost, misplaced or forgotten [1]. The lost magnetic cards can be used 

by the unlawful users. The weakness of passwords or PIN codes can be guessed 

easily, hence, giving access to resources such as bank accounts, medical records or 

personal tax records. In terms of immigration checks, many intruders have 

successfully entered a country using fake documents. Based on these complications 

of weak credentials, another authentication method that cannot be stolen, misplaced, 
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easily forged or forgotten is needed in order to provide resilient security, efficient, 

faster and automated approach. 

 

 

Issues of traditional authentication methods and recent developments in the 

field of security have led to a renewed interest in biometric technology [2]. 

Biometrics uses human’s biological and behavioural characteristics as a personal 

authentication measurement, hence overcoming the problem of lost or forgotten ID. 

Currently, face, iris and fingerprint biometrics are the most popular and reliable 

choice for authentication for certain systems and applications. In some scenarios 

such as immigration checks at airports which involve a huge amount of people, a 

system with reliable security and faster processing time are the important aspect to be 

considered for passanger identity check [1]. Whilst fingerprint and face are chosen 

by immigration as biometrics technologies of authentication security, they suffer 

from problems such as lost of fingerprints or quality of fingerprints that is not 

sufficient for enrolment [3], [4]. The overall average time for passenger verification 

process is reduced when processing bigger data such as face biometric. Other 

disadvantages of commonly used biometrics include low image resolutions and the 

need for active user participation. Some techniques for data acquisition uses invasive 

technique by using sensors or markers and uncertain measurements may also cause 

some problems and disadvantages that influence the recognition performance and 

efficiency of biometrics practice [5]. Several attempts have been made to overcome 

this matter by either improving the current biometrics modalities or by exploring new 

biometrics modalities. More recently, the problem has received extra attention in 

research literatures and it is found that gait biometrics has the potential to satisfy 

many of the performance requirements. 

 

 

Gait is considered as one of the behavioural types of biometrics. In general, 

gait biometric refers to automatic human identification based on their walking 

manner. Many researches have suggested that gait is unique and has been proposed 

as a biometric method for security applications [6-8]. The main advantage of gait 

over other biometric modalities is that it is capable to be recorded at distance without 

needing physical information from the subjects. Gait is also unobstrusive as it does 

not need subject’s cooperation, non-invasive and easy to be set up in public areas. 
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Gait is difficult to disguise or obscure because the manner of walking is usually 

observable while other biometrics can be camorflage. Moreover, gait is indetifiable 

to a person even by using low resolution video or images thus making gait biometrics 

capable to be implemented in high throughput environment. 

 

 

Generally, methods in gait biometrics can be divided into two categories 

namely model-free and model-based approaches. Model-free approaches acquire gait 

parameters by performing shape extraction from every frame of the video sequence.  

The measurement characteristics vector is done directly on 2D images based on the 

subject structure or movement without adopting specific model of human body [9-

11]. Different authors have measured 2D gait data as susceptible to illumination, 

background noise, occlusion and shadow. The various issues in adopting 2D data 

caused some problems in delivering accurate and fast recognition results. Previous 

studies that have based their approaches on model-free approaches mostly reflects 

geometric-based representations like silhouette, history of movement, joint 

trajectories and optical flow [12-14]. The methods deliberated the measurement of 

individual movements together with the individual appearance without considering 

gait dynamics. Therefore, the methods are less sensitive to covariate factors that 

result in variation of gait dynamics like walking speed but more liable to factors that 

effect in the changes of appearances such as clothing or obesity, changes of view and 

direction of movement [15, 5]. One of the alternative solutions to overcome these 

common problems is by using model-based approaches. 

 

 

The model-based approach is one of the more practical ways and has 

demonstrated efficient and effective ways for representing human motion and thus 

adopted in numerous gait recognition researches [16, 17]. Model-based approaches 

develop the human body model and its movements in 3D and perform acquisition on 

gait parameters like body dimensions, human skeleton, joint kinematics, orientations 

and locations of body parts, steps dimension, etc. from this model [1, 16, 18, 17].  

Clearly, 3D gait dataset based on model-based approaches convey more information 

than 2D model-free dataset. By using 3D gait dataset, it illustrated natural 

representation and a more realistic human gait. Furthermore, 3D data are inherently 

view invariant hence it can be synthesized at any view by simple projection. 
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However most of the model-based approaches provide an intuitive interpretation of 

gait images at the cost of computational complexity out of geometrical 

transformations. Ariyanto [1] used a model fitting approach with a structural model 

in 3D space for gait tracking method and 3D model-based method based on 

marionette and mass-spring models. Although these methods presented certain 

advantage of reliability and robustness, they suffer from high computational cost and 

complicacy due to the large number of parameter space and also the issue of image 

quality and sensitivity. The complexity involved for constructing a general model 

describing the structural or dynamical gait components affect the fitting model for 

feature extraction [19]. Furthermore, the derived knowledge has none of 3D skeleton 

information. To overcome the difficulty and complexity in 3D model-based 

approach, Microsoft Kinect is introduced to reduce the computational burden. Kinect 

enables skeleton-detection and tracking of people in real-time by an integrated depth 

camera [20]. The data captured using Kinect is completely different from methods 

using normal cameras as it delivers tracking of different skeletal points which 

eliminate the computational burden of constructing model for model fitting. For that 

reason, it is necessary to investigate the useful benefits of using Kinect for 3D 

model-based approaches. It is also believed that 3D approaches might provide a more 

effective way of handling latent issues in 2D such as occlusion, noise, scale and 

varying view.  

 

 

Although various gait recognition techniques established significant 

performance under controlled environment setups, the covariate factors that 

influence individual’s gait make the gait recognition task in real-life non-realistic and 

limited. There are a number of covariate factors that can change gait characteristics 

such as clothing, footwear, speed, direction and changes of view that can be 

considered as external factors and changes due to injuries, illness, pregnancy or 

aging as internal factors [21]. Recent studies have considered the covariate factors of 

speed and injuries in real life applications to detect anomalies in residents’ 

movements in monitoring gait motion characteristics of residents in senior housing 

[22]. Based on these circumstances, covariate factors must be considered in order to 

make the gait data meaningful for gait analysis.  
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Current research on gait analysis suggests that gait recognition can be derived 

from either static or dynamic features. Several model based approaches have focused 

on gait dynamics and fewer on appearance of individual which represent static data 

The results achieved were more resistant to problems like changes of view and scale 

but in general do not achieve as good results as methods that do not consider 

appearance which represent static information [23]. Research by [24] assumed that 

subjects walk with constant speed without considering any covariate factors. The 

work only use static gait parameters like height, the length of upper and lower limbs 

and step length without including any dynamic features data thus the recognition rate 

achieved was only 85.1% when considering all static features. Ball et al. [25] 

investigated the possibility of recognizing people by using only the lower limb joint 

angles as its dynamic features. The dynamic feature is not fully utilized for the 

recognition task as the work only use standard deviation of joint trajectories which 

resulted in 74% recognition rate. As opposed to these works, gait recognition should 

integrate as much gait information as possible considering that body biometrics 

includes both static and dynamic features. Therefore, combining these features will 

increase the gait recognition performance significantly. 

 

 

Currently there are gait fusion researches concerning 2D and 3D datasets that 

combine static and dynamic features. Although interests in gait biometrics continue 

to increase, only few approaches fused 3D static and dynamic features data. This is 

perhaps due to the complexity of extracting static and dynamic features at the same 

time and lack of publicly available 3D gait dataset [1]. The feature level fusion 

requires well prepared data in order to provide richer information of features from 

biometric data. Researches on gait fusion [26], [27], [28], [29], [30]  utilized gait 

energy image (GEI) and silhouette 2D data indicated the difficulties in achieving 

significant results because of the problems in pre-processing data.  Some of the 

schemes [31], [32] did not include the dimensionality reduction process which leads 

to the curse of dimensionality problem. Although fusion of features is accomplished, 

work by [33] highlighted that by including covariate factors, the recognition 

performance of gait biometric can be improved. Ismail et al. [34] fused only the 

silhouette frame size and the number of silhouette frame, without considering the 

important features of the silhouette images hence resulted in low recognition 
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performance. The static and dynamic features are used based on mode-based 

approach in [35] but the results achieved were less impressive due to the small 

number of features are considered. The fusion work by [36] used model-based 

approach in extracting static features and dynamic features. But the results were not 

significant due to insufficient samples of data. They also emphasized that more 

sophisticated classification algorithms need to be applied in order to achieve better 

recognition rate.   

 

 

 

 

1.2 Problem Statement 

 

 

Many recognition schemes have been proposed for different types of gait 

data. Although silhouette 2D model free approach has previously achieved 

significant recognition rate, this approach depends much on the subject’s appearance. 

Based on the influences of several previously mentioned covariate factors of human 

gait in real life scenarios, the effects of different covariate factors of gait recognition 

including walking speed and footwear, need to be explored and analysed. These 

covariate factors are highlighted since they represent the major covariate factors that 

affect gait recognition performance which practically represent real life environment, 

hence involves extra attention [5]. A 3D model-based gait approach is used in order 

to avoid the 2D silhouette distortion arising from viewpoint or segmentation error. 

The advantages of 3D model-based is that it allows for efficient and consistent 

features extraction from a human skeleton data hence, increasing the potential of 

finding significantly unique features of human gait [37].   

 

 

To obtain optimal and reliability of biometric recognition performance, an 

automatic person recognition system should integrate as many informative clues as 

possible [38, 39]. Existing researches in gait recognition are either extracting static or 

dynamic features only for personal recognition. Moreover, despite the various 

properties of gait that might serve as recognition features, the previous works on gait 

recognition mainly adopted low level information such as 2D silhouette data as static 

data or use temporal features of joint angle as dynamic data separately. There are 

efforts to combine these features but most researches adopted 2D silhouette data 
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which suffers from background noise and occlusion. Most approaches do not 

consider or combine the 3D static and dynamic gait features for personal recognition. 

Based on the idea that body biometrics include both the appearance of human body 

and the dynamic of gait motion measured during walking, some efforts are made to 

fuse the different sources of information available from 3D gait skeleton information 

for personal recognition. Fusion of 3D static and dynamic features across different 

covariate factors will increase the recognition performance of gait biometric 

recognition. 

 

 

 

 

1.3 Research Questions 

 

 

The ultimate goal of this research is to determine if it can distinguish a person 

based on fusion of static and dynamic features. The output of this research is 

expected to increase the recognition rate. The following research questions are 

formulated to address the stated general research question and the discussed 

problems in this research area: 

 

i. RQ1: What are the covariate factors that affect the gait recognition 

performance? 

ii. RQ2: Which gait features provide more accuracy for personal 

recognition? 

iii. RQ3: Does fusing the classification output help improve the recognition? 

iv. RQ4: How to evaluate the accuracy of the proposed approach in order to 

recognize a person based on gait? 
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1.4 Objectives of the Study 

 

 

The objectives of this study have been derived from the problem statement 

above. The objectives of this research are: 

 

i. To examine the effect of covariate factors on gait recognition 

performance; 

ii. To create 3D static and dynamic gait features dataset for personal gait 

recognition; 

iii. To propose an improved fusion technique for personal gait biometrics 

recognition; and 

iv. To evaluate the quality of the proposed approach based on specific and 

acceptable benchmarks. 

 

 

 

 

1.5 Scopes of the Study 

 

 

The underlined research covers several areas that include gait biometric 

analysis approaches, feature extraction, feature selection, classification, fusion and 

evaluation. In order to achieve the objectives of the study, the research directions are 

limited to the following scope of study:  

 

 

i. Microsoft Kinect Systemis is used to capture the gait motion data in 3D 

model-based format; 

ii. Sample collection of gait motion data are collected by conducting a lab 

experiment based on Microsoft Kinect system at Mix and Virtual 

Environment Lab (MiViELab) employed by Universiti Teknologi 

Malaysia; 

iii. The gait motion is focused at lower limb, that is the distance between 

pelvis and feet; and 

iv. The proposed scheme is implemented using the MATLAB programme for 

feature extraction and feature selection, classification and some parts of 

fusion were done using Weka machine learning toolkit. 
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1.6 Significance of the Study 

 

 

The result of this research would prominently contribute to gait recognition 

scheme for personal recognition. The contributions of this research are: 

 

i. A fusion scheme for static and dynamic gait features data is developed to 

effectively identify a person based on the available and influential 

information of human body appreance and the dynamics of gait motion 

from human motion recordings. 

ii. A comparative study of gait covariate factors with static and dynamic 

features can help in better understanding of the gait process in biometric 

recognition. 

iii. The accuracy of classifications performance improved significantly when 

reducing dimensionality of 3D gait data.  

iv. The recognition performance of the scheme can be enhanced by 

establishment of the fusion of static and dynamic feature data. 

 

 

 

 

1.7 Thesis Outline 

 

 

This thesis is divided into six chapters and organised as follows: 

 

 

Chapter 1: This chapter introduce the purpose of gait biometric recognition 

and the background of the problem. From the problem statement, the whole problem 

of gait biometric can be understood and the objectives of this research specified. 

 

 

Chapter 2: This chapter discusses the literature relevant to the research work. 

It begins with a description on the concepts of gait biometrics and gait analysis 

approaches. This is followed by a discussion and comparative evaluation on state-of-

the-art gait biometric analysis issues and solution, feature selection, classification 

and fusion approaches. The comparative evolution from these four perspectives is 

necessary in order to understand the strengths and weaknesses of current approaches 
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