EFFECT OF CERIUM AND BARIUM ADDITIONS AND SUPERHEATING MELT $TREATMENT\ ON\ THE\ MORPHOLOGY\ AND\ HARDNESS\ OF\ Al-Mg_2Si-Cu$ COMPOSITE

NUR AZMAH BINTI NORDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

FEBRUARY 2017

I dedicated this thesis to my beloved parents and family for their endless love and motivational support.

ACKNOWLEGDEMENT

Alhamdulillah.

I would like to express my special thanks to my supervisors, Dr. Tuty Asma Abu Bakar and Prof. Dr. Esah Hamzah for the constant guidance, thoughtful opinions and constructive comments during the course of my research work. Not to forget, I also wish to convey my deep gratitude to Prof. Dr. Ali Ourdjini and my supportive research partner, Dr. Saeed Farahany for the great skill, priceless input and consistent encouragement during my journey as a PhD candidate.

I would also like to acknowledge Universiti Teknologi Malayisa (UTM) and the Ministry of Education of Malaysia for the opportunity and facilities provided to complete my research work. I would also like to extend my gratitude to UTM for the financial support via Zamalah Scholarship during years of my research. Special thanks are also dedicated to all technicians in the Mechanical-Material's lab and fellow friends for the help in supporting my project and tasks. Last but not least, I would like to thank my internal/external panels, Associate Professor Dr. Astuty Amrin and Associate Professor Dr. Zuhailawati Hussain for their useful advices and encouragement to improve my current research work.

ABSTRACT

Aluminium-based alloy, reinforced with particulate Mg₂Si phase has been widely accepted to replace Al-Si alloy due to its improved properties in producing engineering products especially for automotive and aerospace applications. However, in as-cast Al-based reinforced with Mg₂Si composite, the particles formed are coarse with large skeleton shapes and eutectic Al-Mg₂Si phase which are also present in flake-like form. These phases are known to have detrimental effect on the mechanical properties of the composite. The present research is therefore aimed to investigate the effect of elements addition and superheating melt treatment in order to modify the undesired structures and phases in Al-Mg₂Si-Cu metal matrix composite. The elements addition were Ce (0.3-1.0 wt.%) and Ba (0.1-1.0 wt.%). Meanwhile, superheating above the melting temperature of Al-Mg₂Si-Cu composite was carried out at three different temperatures (850°C, 900°C and 950°C) and three different holding times (15, 30 and 45 minutes) to further modify the microstructures. The samples were produced by melting commercial Al-Mg-Si ingot and pouring into a ceramic mould and the transformation temperatures were determined by computer aided cooling curve thermal analysis (CACCTA). The phase and microstructural changes were characterized using optical microscopy, field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Hardness test (ASTM E92) was performed in order to investigate the effect of morphology modification on the hardness of the composite. Both approaches, namely, elements addition and melt superheating with varying parameters were found to refine not only Mg₂Si_P reinforcement particles but also eutectic Al-Mg₂Si phase. Various morphologies of the phases were observed, particularly, coarse skeleton of Mg₂Si_P has been transformed to finer polygonal structure. Likewise, flake-like morphology of Mg₂Si_E has transformed to rod and fibrous-like form while the needle-like intermetallic β has transformed to α phase. The optimum concentrations to achieve the adequate refinement effect were found to While, the optimum parameter for the melt be 0.8wt% Ce and 0.2wt% Ba. superheating was 950°C and underwent 15 minutes holding melt duration. modified composite with addition of optimum concentration of Ce and Ba were observed to increase in hardness property from 61.32Hv to 74.3Hv and 67.95Hv for Ce and Ba, respectively. Whereas, for the composite modified by melt superheating, the hardness improved from 61.32Hv to 70.22Hv.

ABSTRAK

Aloi aluminium yang diperkuatkan dengan pengisian seramik partikel Mg₂Si telah diterima secara meluas bagi menggantikan aloi Al-Si kerana sifatnya yang memuaskan dalam penghasilan produk-produk kejuruteraan, terutamanya dalam aplikasi automotif dan aeroangkasa. Namun, dalam hasil tuangan komposit Al dengan pengisian seramik partikel Mg₂Si, partikel-partikel tersebut telah wujud dalam bentuk yang kasar dengan saiz tetulang yang besar dan fasa eutektik Al-Mg₂Si yang wujud adalah dalam bentuk kepingan-kepingan. Fasa-fasa ini telah dikenalpasti memberi kesan yang memudaratkan ke atas sifat-sifat mekanikal komposit tersebut. Maka, kajian ini adalah bertujuan untuk menyelidik kesan penambahan unsur-unsur dan rawatan lebur pemanasan lampau untuk memperbaiki struktur dan fasa-fasa dalam komposit matrik logam Al-Mg₂Si-Cu (MMC). Penambahan unsur-unsur tersebut adalah dengan menggunakan Ce (0.3-1.0%berat) dan Ba (0.1-1.0%berat). Sementara itu, kaedah pemanasan lampau melebihi suhu leburan komposit Al-Mg₂Si-Cu (750°C) telah dijalankan pada tiga suhu (850°C, 900°C dan 950°C) dan dibiarkan dalam tempoh masa yang berbeza (15, 30 dan 45 minit), bagi penambaikan selanjutnya mikrostruktur-mikrostruktur tersebut. Sampel tuangan diproses dengan meleburkan jongkong Al-Mg₂Si-Cu komersil dan dituang dalam acuan seramik dan suhu-suhu perubahan telah ditentukan dengan menggunakan perisian komputer analisa haba lengkok penyejukan (CACCTA). Perubahan fasa dan mikrostrukturmikrostruktur telah dicirikan dengan mengunakan mikroskop optik, mikroskop elektron pengimbasan medan (FESEM), mikroskop imbasan electron (SEM) dan pembelauan sinar x (XRD). Ujian kekerasan (ASTM E92) telah dijalankan bagi menguji kesan pembaikan mikrostruktur ke atas sifat kekerasan komposit tersebut. Kedua-dua pendekatan iaitu penambahan unsur-unsur dan pemanasan lampau dengan pelbagai parameter telah dilihat dapat menghaluskan bukan sahaja partikelpartikel penguat Mg₂Si_P malah fasa eutektik Al-Mg₂Si. Pelbagai morfologi fasa-fasa telah diperhatikan terutamanya partikel kasar Mg₂Si telah berubah kepada struktur halus poligon. Begitu juga dengan morfologi kepingan-kepingan fasa eutektik Mg₂Si yang berubah kepada bentuk rod dan serabut halus, sementara itu, bentuk jejarum bagi sebatian antara logam fasa β juga telah berubah kepada fasa α. Komposisi optimum untuk mencapai kesan pembaikan yang mencukupi adalah 0.8% berat Ce dan 0.2%berat Ba. Bagi kaedah pemanasan lampau pula, parameter yang terbaik adalah pada suhu 950° dan dibiarkan selama 15 minit. Komposit yang terubah suai dengan penambahan unsur Ce dan Ba telah menunjukkan peningkatan dalam sifat kekerasan komposit, daripada 61.32Hv kepada 74.3Hv untuk Ce dan 67.95Hv untuk Ba. Sementara itu, nilai kekerasan komposit yang terubah suai dengan pemanasan lampau pula telah meningkat daripada 61.32Hv kepada 70.22 Hv.

TABLE ON CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	XXV
	LIST OF ABBREVIATIONS	xxvii
	LIST OF APPENDICES	xxviii
1	INTRODUCTION	1
	Research Background	1
	Problem Statement	5
	Objectives of Research	6
	Scopes of Research	8
	Significance of Research	9
2	LITERATURE REVIEW	10
	2.1 Introduction	10
	2.2 Al-Mg-Si System	12
	2.3 In-Situ and Ex-Situ Metal Matrix Composite	16

	2.3.1	Al-Mg ₂	Si In-Situ Composite	18
2.4	Solidi	ification 1	Process	22
	2.4.1	Nucleat	ion	25
		2.4.1.1	Homogeneous Nucleation	26
		2.4.1.2	Heterogeneous Nucleation	26
		2.4.1.3	Difference between Homogeneous	27
			and Heterogeneous Nucleation	
	2.4.2	Growth	of Solid Nucleus	29
	2.4.3	Nucleat	ion and Growth of Primary Mg ₂ Si	29
		Phase		
		2.4.3.1	Octahedron Shape of Mg ₂ Si Crystal	32
		2.4.3.2	Hopper Shape of Mg ₂ Si Crystal	33
		2.4.3.3	Truncated Octahedron Shape of	35
			Mg ₂ Si Crystal	
		2.4.3.4	Cubic Shape of Mg ₂ Si Crystal	38
		2.4.3.5	Dendrite Shape of Mg ₂ Si Crystal	39
2.5	Modi	fication a	and Refinement of Primary Mg ₂ Si	42
	Phase	;		
	2.5.1	Modific	cation by Elements Addition	42
	2.5.2	Modific	eation by Superheating Melt Treatment	50
2.6	Mech	anism of	Modification and Refinement Effect	52
	2.6.1	Elemen	ts Addition Melt Treatment	53
		2.6.1.1	Heterogeneous Nucleation Site	53
		2.6.1.2	Restricted Growth Theory	55
		2.6.1.3	Oxide Bifilm	57
	2.6.2	Superhe	ating Melt Treatment	59
		2.6.2.1	Heredity Phenomenon of Melt Alloy	60
		2.6.2.2	Phase Formation of τ-AlMn	61
2.7	Thern	nal Analy	ysis	62
	2.7.1	Cooling	g Curve	63
	2.7.2	Correla	tion between Modification/	65
		Refinen	nent Effect with Thermal Analysis	

	2.8	Effect	of Morphology on Mechanical Properties of	67
		the Co	omposite	
3	RES	SEAR(CH METHODOLOGY	72
	3.1	Introd	luction	72
	3.2	Mater	ials	74
	3.3	Ceran	nic Mould Preparation	74
	3.4	Thern	nal Analysis Set Up	77
	3.5	Melt 7	Treatment Process	79
		3.5.1	Interrupted Quench Test	80
		3.5.2	Elements Addition Melt Treatment	82
		3.5.3	Superheating Melt Treatment	84
	3.6	Samp	le Preparation	86
		3.6.1	Cutting	86
		3.6.2	Grinding and Polishing	87
	3.7	Micro	structural Analysis	88
	3.8	Quant	itative Analysis of Primary Mg ₂ Si Particles	88
		Reinfo	orced Al-Mg ₂ Si-Cu in-situ Composite	
	3.9	Hardn	ness Test	90
4	RES	SULTS	S AND DISCUSSION	91
	4.1	Introd	luction	91
	4.2	A1-20	Mg ₂ Si-2Cu Metal Matrix Composite	92
		4.2.1	Sequence of Phase Formation	97
			4.2.1.1 Primary Phase of Mg ₂ Si	98
			4.2.1.2 Secondary Phase of Eutectic Al-Mg ₂ Si	100
			4.2.1.3 Third Phase of Intermetallic Al ₅ FeSi	102
			$4.2.1.4 \;\; Fourth \; Phase \; of \; Al_5C_{u2}Mg_8Si_6 + Al_2Cu$	103
		4.2.2	Solidification Path of Al-Mg ₂ Si-Cu In-situ	106
			Composite	
		4.2.3	Solid Fraction of Phases in Al-Mg ₂ Si-Cu In-	110
			situ Composite	
		4.2.4	Construction of Al-20Mg ₂ Si-2Cu-0.6Fe Phase	112

Diagram

4.3	Effect	t of Elements Addition	116
	4.3.1	Effect of Cerium (Ce) on the Composite	117
		4.3.1.1 Effect of Ce Addition on Microstructures	117
		of the Composite	
		4.3.1.2 Quantitative Analysis of Microstructures	124
		with Ce Addition	
		4.3.1.3 Distribution of Mg ₂ Si _P Particles with Ce	127
		Addition	
		4.3.1.4 Effect of Ce Addition on Cooling	131
		Curves	
		4.3.1.5 Effect of Ce Addition on Solid Fraction	136
		4.3.1.6 Effect of Ce Addition on Hardness Test	138
		4.3.1.7 Mechanism of Modification/Refinement	139
		Effect with Ce Addition	
	4.3.2	Effect of Barium (Ba) on the Composite	151
		4.3.2.1 Effect of Ba Addition on Microstructures	151
		of the Composite	
		4.3.2.2 Quantitative Analysis of Microstructures	161
		with Ba Addition	
		4.3.2.3 Distribution of Mg ₂ Si _P Particles with Ba	163
		Addition	
		4.3.2.4 Effect of Ba Addition on Cooling	165
		Curves	
		4.3.2.5 Effect of Ba Addition on Solid Fraction	173
		4.3.2.6 Effect of Ba Addition on Hardness Test	174
		4.3.2.7 Mechanism of Modification/Refinement	176
		Effect with Ba Addition	
4.4	Effect	t of Superheating Melt Treatment	188
	4.4.1	Effect of Superheating Melt Treatment on	188
		Microstructures of the Composite	
	4.4.2	Quantitative Analysis of Microstructures with	199
		Superheating Melt Treatment	

		4.4.3	Distribution of Mg ₂ Si _P Particles with	202
			Superheating Melt Treatment	
		4.4.4	Effect of Superheating Melt Treatment on	
			Cooling Curves	205
		4.4.5	Effect of Superheating Melt Treatment on	
			Hardness Test	210
		4.4.6	Mechanism of Modification/Refinement Effect	
			with Superheating melt Treatment	212
	4.5	Sumn	nary	
		4.5.1	Al-20%Mg ₂ Si-2%Cu In-situ Composite	213
		4.5.2	Effect of Ce and Ba Additions on Modification of	213
			Mg ₂ Si _P Particles in Al-Mg ₂ Si-Cu Composite –	215
			Comparison between the Two Elements Addition	
		4.5.3	Effect of Ce Addition and Superheating Melt	
			Treatment on Modification of Mg ₂ Si _P Particles in	220
			Al-Mg ₂ Si-Cu Composite – Comparison between	
			the Two Approaches	
5	CO	NCLU	SIONS AND RECOMMENDATION FOR	224
	FU'	ГURE	WORK	
	5.1	Concl	usions	224
	5.2	Recor	nmendations for Future Work	226
REFEREN(CES			227
Appendices				240
11				_

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Properties and characteristics of Al-Si-Cu, Al-Si and	13
	Al-Mg cast alloys	
2.2	General properties and applications of cerium (Ce)	49
	and barium (Ba)	
3.1	Chemical composition of as received commercial Al-	74
	20%Mg ₂ Si-2%Cu in-situ composite	
3.2	Amount of cerium (Ce) additions (g)	83
3.3	Amount of barium (Ba) additions (g)	83
3.4	Temperatures, T _S and holding times used in	85
	superheating melt treatment	
4.1	Characteristic parameters for observed phases in Al-	108
	20%Mg ₂ Si-2%Cu composite (the N, Min, G and Rec	
	represent the nucleation, minimum, growth and	
	recalescence of crystals)	
4.2	Reactions calculated based on non-equilibrium	115
	solidification of 77.55Al + 12.71Mg + 7.07Si +	
	2.03Fe + 0.64Fe alloy	

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Types of Al alloy with respective alloying elements	11
	and corresponding general properties	
2.2	Classification of aluminium alloy	12
2.3	(a) Ternary phase diagram of Al-Mg-Si alloy with	15
	dotted line represents pseudo-binary Al-20%Mg ₂ Si	
	phase and (b) Pseudo-binary phase diagram of Al-	
	Mg ₂ Si with 20% of Mg ₂ Si reinforcement phase	
2.4	Schematic diagram of preparation (a) ex-situ and (b)	18
	in-situ composite	
2.5	Example of Al MMC products (a) piston, (b) piston	20
	connecting rod and (c) engine with cylinder barrel,	
	made of Al MMC	
2.6	Morphology of Al-Mg ₂ Si in normal cast alloy	21
	consist of (a) primary Mg ₂ Si and (b) eutectic Al-	
	Mg ₂ Si phase	
2.7	Total free energy change of solid-liquid	24
	solidification system	
2.8	Cooling curve of a material associated with	25
	undercooling trend	
2.9	Schematic diagram of homogeneous nucleation	26
	process	
2.10	Schematic diagram of heterogeneous nucleation	27
2.10	process	_,

2.11	Schematic diagram of difference between	28
	homogeneous and heterogeneous nucleation in terms	
	of free energy and temper	
2.12	Schematic diagram of phase transformation process	29
	of a material	
2.13	Face center cubic (FCC) of primary Mg ₂ Si particle	31
2.14	(a) FESEM micrograph of primary Mg ₂ Si grow in	31
	perfect octahedron and (b) schematic growth of	
	respective octahedron shape of Mg ₂	
2.15	SEM micrograph of octahedron shape of Mg ₂ Si	32
	crystal	
2.16	Schematic diagram of Mg ₂ Si transformation from	33
	nuclei to octahedron shape of particles; (a)	
	Formation of primary Mg ₂ Si nuclei, (b) Formation of	
	branches along <100> directions, (c) Formation of	
	octahedral pattern of Mg ₂ Si, (d) Further growth of	
	Mg ₂ Si crystal in <111> directions and (e) Formation	
	of octahedron shape of Mg ₂ Si crystal	
2.17	(a) Directions and crystallographic planes involved	34
	in transformation of Mg ₂ Si hopper-like crystal and	
	(b) SEM micrograph of Mg ₂ Si in hopper-like crystal	
2.18	Schematic diagram of formation hopper-like Mg ₂ Si	35
	crystal; (a) Formation of Mg ₂ Si seed crystal, (b)	
	Growth of seed crystal forming the octahedral	
	outline of Mg ₂ Si and (c) Hopper-like crystal formed	
	due to interruption growth step in <111> directions	
2.19	SEM micrograph of truncated octahedron shape	36
	(tetracaidecahedron) of Mg ₂ Si	
2.20	SEM micrograph of truncated octahedral shape of	37
	Mg_2Si	
2.21	Schematic diagram of truncated octahedral shape of	37
	Mg ₂ Si; (a) Formation of Mg ₂ Si nuclei, (b) Nuclei	
	grow in <100> directions, then in <110> and <111>	

	directions forming octahedral outline of Mg ₂ Si, (c-d)	
	Further grow of Mg ₂ Si crystal until the adjacent	
	branches are joining and (e) Suppression of some	
	facet planes in <100> directions causing truncated	
	shape of Mg ₂ Si	
2.22	SEM micrograph of cubic shape Mg ₂ Si crystal	38
2.23	Schematic diagram of Mg ₂ Si crystal that transformed	39
	from truncated octahedral into cubic shape; (a)	
	Formation of Mg ₂ Si seed crystal, (b) Bulges emerge	
	along <100> directions then in <110> and <111>	
	directions forming octahedral pattern of Mg ₂ Si, (c-d)	
	Further growth of Mg ₂ Si crystal until the adjacent	
	branches are joining, (e) Suppression of some faces	
	in <100> directions (truncated octahedral), (f)	
	Growing of other faces while {100} planes are held	
	and (g) Perfect cubic shape of Mg ₂ Si crystal	
2.24	SEM micrograph Mg ₂ Si crystal in dendrite shape	40
2.25	Schematic diagram of Mg ₂ Si dendrite shape; (a)	41
	Formation of primary dendrite arm in <100>	
	directions, (b) Formation of secondary dendritic arm	
	perpendicular to primary arm and (c) Transformation	
	of Mg ₂ Si into dendrite shape	
2.26	Alteration of primary Mg ₂ Si particles from (a)	43
	dendritic and coarse shape into (b) poligonal form	
	with Al-3%P master alloy	
2.27	Optical micrograph showing refinement of (a) coarse	45
	primary Mg_2Si and (b) polygonal shape with	
	addition of Sr	
2.28	Examples of new intermetallic compound (IMC) in	55
	white colour as a result of elements addition to a	
	composite and they act as heterogeneous nucleation	
	site for Mg ₂ Si primary phase	
2.29	Schematic diagram of restricted growth mechanism	57

2.30	Schematic diagram of oxide bi-film phenomenon	59
	that occurred in the Al melt alloy/composite	
2.31	Schematic flow steps of τ -AlMn formation as a result	62
	of superheating melt treatment	
2.32	Cooling curve with respective first and second	64
	derivative curves correspond to Al-Si-Cu alloy	
	during solidification process	
2.33	Specific points of temperatures extracted from the	64
	derivative curves for Al-Si-Cu alloy	
2.34	(a) Depression in cooling curve as a result of	66
	0.012% wt Sr added to 319Al (Al-Si) alloy, (b)	
	Unmodified and (c) Corresponding refined	
	morphology after addition of 0.012% Sr to the alloy	
2.35	Schematic plot showing relationship between	67
	nucleation rate, N, growth rate, G and the overall	
	transformation rate versus temperature	
2.36	Schematic diagram of crack initiated at sharp ends of	68
	Mg ₂ Si particles	
2.37	Ultimate tensile strength (UTS) and elongation (%)	70
	improved as a function of Mn added to Al-Mg ₂ Si	
	composite	
2.38	UTS and %El of Al-15%Mg ₂ Si composite as a result	70
	of B addition	
3.1	Flow chart of the experimental process	73
3.2	Dimension of polystyrene cut foam	75
3.3	The sequence process of ceramic mould preparation	75
3.4	(a) Schematic diagram of thermal analysis set up	78
	(CACCTA) and (b) the corresponding exact of	
	CACCTA set up	
3.5	Melting procedure of Al-20%Mg ₂ Si-2%Cu in-situ	80
	composite; (a) re-melted ingot of Al-Mg ₂ Si-Cu in-	
	situ composite (top view), (b) preheated the ceramic	
	mould (front view), (c) pouring of molten composite	

	and recording the temperature-time changed and (d)	
	as-cast samples	
3.6	(a) Schematic diagram of interrupted quench set up	81
	with the used of funnel copper mould and (b) The	
	actual interrupted quench test	
3.7	Schematic flow process of superheating melt	85
	treatment	
3.8	Sample area chosen for morphology analysis of	87
	primary Mg ₂ Si reinforced particles as well as other	
	phases	
3.9	(a) SEM micrograph of Mg ₂ Si particles and	89
	examples quantitative calculation of respective	
	particles based on (b) perimeter size, (c) aspect ratio	
	and (d) particles density per unit area	
4.1	(a) Cooling curve of Al-20%Mg ₂ Si-2%Cu in-situ	93
	composite comprised with first and second	
	derivatives curves and (b-e) magnified of cooling	
	curves of four phases transformation (1, 2, 3, 4)	
4.2	Cooling curve recorded at the centre (TC) and wall	95
	(TW) thermocouples and difference temperatures	
	curve between them ($\Delta T = TW - TC$)	
4.3	(a) BSE micrograph of as received commercial Al-	96
	Mg ₂ Si-Cu in-situ composite together with	
	corresponding (b) EDX and (c) mapping analysis	
4.4	Quench stage applied on cooling curve of fully	98
	solidified Al-Mg ₂ Si-Cu in-situ composite at three	
	different steps to reveal the sequence of phase	
	transformation	
4.5	(a) Optical micrograph of Al-Mg ₂ Si-Cu quenched	100
	after first phase formation with corresponding (b)	
	BSE micrograph and EDX analysis of observed	
	particles	

4.6	(a) Optical micrograph, (b) BSE micrograph and	101
	corresponding elemental mapping analysis of Al-	
	Mg ₂ Si-Cu composite quenched at Q2	
4.7	(a) Optical micrograph of Al-20%Mg ₂ Si-2%Cu	103
	composite quenched at Q3, (b) BSE image and (c)	
	corresponding EDX spectra of iron intermetallic	
4.8	(a) Optical and (b) SEM micrographs of fully	105
	solidified Al-20Mg ₂ Si-2Cu composite, (c) BSE	
	image and corresponding EDX spectra of (d) grey	
	and (e) bright intermetallic compounds	
4.9	XRD pattern of the as-cast Al-20Mg ₂ Si-2Cu	107
	composite (a) without and (b) with Al matrix	
	removed	
4.10	Schematic of physical model of phase	110
	transformations during solidification of Al-20Mg ₂ Si-	
	2Cu in-situ composite	
4.11	(a) Cooling curve, second derivative curve and	112
	associated fraction solid curve and (b) Calculated	
	solid fraction, fs (%) of unmodified in situ composite	
	corresponding to primary Mg ₂ Si, Al-Mg ₂ Si eutectic,	
	intermetallic Al_5FeSi (β -intermetallic) and	
	$Al_5Cu_2Mg_8Si_6(Q) + Al_2Cu(\theta)$	
4.12	(a) Phase diagram for Al-20Mg ₂ Si-2Cu system with	113
	the variation of Al content and (b) The liquid	
	fraction of alloy in equilibrium and non-equilibrium	
	solidification	
4.13	FESEM micrograph of Al-20Mg ₂ Si-2Cu composite	116
	cooled in ceramic mould, contains of (i) Mg ₂ Si _P , (ii)	
	$Mg_{2}Si_{E},$ (iii) $\beta\text{-intermetallic}$ and (iv) $Q\text{+}\theta$ phase	
4.14	Cooling curves of Al-20Mg ₂ Si ₂ Cu in-situ composite	118
	added with different Ce levels: 0.3, 0.5, 0.8 and 1.0	
	wt%	

4.15	Optical micrographs showing changes of	120
	morphologies for Mg_2Si_P (a1-e1), Mg_2Si_E (a2-e2),	
	Al_5FeSi (a3–e3), $Al_5Cu_2Mg_8Si_6 + Al_2Cu$ (a4–e4) in	
	Al-Mg ₂ Si-Cu in-situ composite	
4.16	BSE micrograph of Mg ₂ Si _E phase showing	122
	transformation of (a) flake-like morphology	
	(unmodified) into (b) rod-like form (with 0.5 wt%	
	Ce)	
4.17	Shrinkage porosity formations as a result of β -	123
	intermetallic has impeded the flow of melt during	
	solidification of composite at the last stage of	
	solidification process	
4.18	Particles characteristics of Mg ₂ Si _P in Al-Mg ₂ Si	125
	composite composed of different Ce concentrations;	
	0.3, 0.5, 0.8 and 1.0wt.%	
4.19	Average Mg ₂ Si _E cells size as a function of various	125
	Ce concentrations	
4.20	Particles characteristics of β-intermetallic phase	126
	corresponds to various Ce concentrations added into	
	the composite; 0.3, 0.5, 0.8 and 1.0wt.%	
4.21	Optical macrograph of Al-Mg ₂ Si-Cu in-situ	128
	composite indicating allocation of phases entire the	
	composite area	
4.22	Particles distribution of primary Mg ₂ Si particles in	130
	the composite treated with different level of Ce: (i)	
	0wt%, (ii) 0.3wt%,(iii) 0.5wt%, (iv) 0.8wt% and (v)	
	1.0wt%	
4.23	Change of nucleation temperature, $T_{\rm N}$ and solidus	133
	line of all phases corresponding to effect of various	
	Ce additions	
4.24	Duration of Mg ₂ Si _P particles to nucleate and grow,	133
	$t_{\rm G}^{\rm Mg2SiP}-t_{\rm N}^{\rm Mg2SiP}$ as a function of Ce concentrations	
4.25	Time difference of $t_G^{\text{Mg2SiE}} - t_N^{\text{Mg2SiE}}$ (s) indicating	135

	nucleation and growth duration of Mg ₂ Si _E cells	
4.26	Time difference of $t_{\rm G}^{\beta}-t_{\rm N}^{\beta}$ (s) indicating nucleation	136
	and growth duration of β -intermetallic cells	
4.27	Solid fraction of Al-Mg ₂ Si-Cu composite as a result	137
	of Ce addition	
4.28	Hardness values with variation of Ce accordance to	139
	optical micrograph of the microstructure at each of	
	concentration	
4.29	(a) BSE image of Al-Mg ₂ Si-Cu in-situ composite	140
	treated with 0.8wt% Ce and (b) elemental mapping	
	indicating Ce element white region	
4.30	(a) BSE micrograph of non-uniform Ce white	142
	particle (Spectrum 1), (b) EDX analysis on	
	corresponding non uniform white Ce particle, (c)	
	BSE micrograph of needle-like Ce white particle	
	(Spectrum 2) and (d) enclosed EDX analysis on	
	respective needle-like white particle	
4.31	XRD results of Al-20Mg ₂ Si-2Cu in-situ composite	144
	with (a) Combination of unmodified and all Ce-	
	treated results and (b) Magnified XRD result of Al-	
	20Mg ₂ Si-2Cu + 0.8wt% Ce in situ composite	
4.32	(a) BSE micrograph indicating white Ce compounds	145
	near Mg ₂ Si _P particles and (b) EDX point analysis on	
	respective white Ce compounds	
4.33	(a) SEM micrographs of Mg_2Si_P in	146
	tetracaidecahedron (3D shape) and together with	
	small white particles surround the particles and (b)	
	EDX analysis on small white point particles	
	surrounds Mg ₂ Si _P particle	
4.34	Formation of white Ce compounds distributed on	149
	eutectic area as a result of different Ce	
	concentrations of (a) 0.3wt%, (b) 0.5wt%, (c)	
	0.8wt% and (d) 1.0wt%	

4.35	Cooling curves of Al-Mg ₂ Si-Cu in-situ composite as	152
	a result of Ba addition in different levels: 0.1, 0.2,	
	0.4, 0.6, 0.8, 1.0wt% Ba	
4.36	Optical micrographs presenting changes of	154
	morphologies for Mg_2Si_P (a1-g1), Mg_2Si_E (a2- g2),	
	β -intermetllic (a3–g3) and Q+ θ phase (a4–g4) in Al-	
	Mg ₂ Si-Cu in-situ composite	
4.37	Optical micrograph of showing α-intermetallic	159
	phase nucleated at the needle-like β -intermetallic	
4.38	Twin-platelets Fe-rich phase formation that growing	160
	from β -intermetallic	
4.39	(a) SEM micrograph of script-type α -intermetallic	161
	together with (b) corresponding EDX analysis	
	(Spectrum 1)	
4.40	Characteristics particles of Mg ₂ Si _P respective to	162
	change in normalized average area, average grain	
	size, aspect ratio and particles formed per unit area	
	correspond to various Ba concentrations	
4.41	Particles distribution of Mg ₂ Si _P particles in the	164
	composite treated with different concentration of Ba:	
	(a) 0wt%, (b) 0.1wt%, (c) 0.2wt%, (d) 0.4wt%, (e)	
	0.6wt%, (f) 0.8wt% and (g) 1.0wt%	
4.42	Change of arrests corresponding to formation of	166
	Mg_2Si_P phase	
4.43	Change of T_N of all phases including solidus line as a	167
	result of different concentration of Ba addition	
4.44	Duration for Mg ₂ Si _P particles formation and growth	168
4.45	(a) Decrease of eutectic growth temperature, $T_{\rm G}^{\rm Mg2SiE}$	170
	and (b) corresponding increases of depression	
	eutectic temperature, $\Delta T_{\rm G}^{\rm Mg2SiE}$ and (c) Period	
	Mg ₂ Si _E phase formation	
4.46	Cooling curve of 0.4wt% Ba added to Al-Mg ₂ Si-Cu	172
	in-situ composite associated with corresponding first	

	derivative curve and indication of Fe-rich phase	
	formation	
4.47	Solid fractions of all four phases, Mg_2Si_P , Mg_2Si_E , β -	174
	intermetallic and $Q+\theta$ with respect to various amount	
	of Ba addition	
4.48	Hardness values as a result of Ba addition in various	176
	concentrations	
4.49	(a) FESEM micrograph of 0.2wt% Ba treated sample	177
	accompany with (b) elemental mapping analysis on	
	corresponding phases	
4.50	(a) FESEM micrograph of Al-Mg ₂ Si-Cu in-situ	178
	composite treated with 0.4wt% Ba and associated	
	with corresponding (b) elemental mapping	
4.51	(a) FESEM micrograph of white point inside the	179
	Mg ₂ Si _P phase and (b) Corresponding EDX analysis	
	on this white point shape	
4.52	(a) FESEM micrograph of white Ba particles	180
	observed near the Mg_2Si_P particles; (b) and (c) are	
	corresponding EDX on two white spots	
4.53	(a) FESEM micrograph of needle-like Ba	181
	intermetallic and (b) corresponding EDX analysis	
4.54	Combination of XRD results of all Ba concentrations	182
	containing diffraction angles of certain phases	
	including new peak observation as in oval (~83°C)	
4.55	SEM micrograph of 3D shape Mg ₂ Si _P particle treated	183
	with 0.2wt% Ba	
4.56	FESEM micrograph of white Ba compounds forming	185
	around the Mg_2Si_E phase and its change in shape and	
	size as a result of different Ba concentration; (a)	
	0.1wt%, (b) 0.2wt%, (c) 0.4wt%, (d) 0.6wt% and (e)	
	0.8wt% and (f) 1.0wt% with correspond low	
	magnified area, respectively	
4.57	Needle-like Al ₅ Si ₂ Ba intermetallic has disrupted	187

	structure of flakes-like Mg ₂ Si _E	
4.58	Refinement of Mg ₂ Si _P particles as a result of various	190
	superheat temperatures (850-950°C) and holding	
	times (15-45 min)	
4.59	Effect of Mg ₂ Si _E phase as a result of various	192
	superheat temperatures (850-950°C) and different	
	holding times (15-45 min)	
4.60	Effect of β -intermetallic phase as a result of different	195
	superheat temperatures (850-950°C) and holding	
	times (15-45 min)	
4.61	Effect of $Q+\theta$ phase as a result of different superheat	198
	temperatures (850-950°C) and holding melt times	
	(15-45 min)	
4.62	Quantitative analysis of Mg ₂ Si _P particles respective	199
	to various superheat temperatures (850-950) and	
	different holding times (15-45 minutes)	
4.63	Optical micrograph of Mg ₂ Si _P particles distribution	203
	over the composite area respective to (a) unmodified;	
	the composite treated with superheating melt	
	treatment at fixed superheat temperature of 950°C	
	for (b) 15 min, (c) 30 min, (d) 45 min; and the	
	composite treated at a constant 15 min melt holding	
	time for (e) 850°C, (f) 900°C, (g) 950°C	
4.64	Cooling curves of Al-Mg ₂ Si-Cu in-situ composite	206
	under superheat melt treatment with various	
	temperature and holding times	
4.65	Change in T_N of all phases corresponding to various	206
	superheat temperatures with respect to holding times	
4.66	Change of T_G^{Mg2SiE} as a result of various superheat	208
	temperature and respective holding melt time on Al-	
	Mg ₂ Si-Cu in-situ composite	
4.67	Hardness values as a result of superheating melt	211
	treatments with (a) vary the superheat temperatures	

	(850-950°) at a fixed 15 minutes holding time and	
	(b) vary the holding melt duration (15-45 minutes) at	
	a constant superheat temperature of 950°C	
4.68	Cooling curve of Al-Mg ₂ Si-2Cu in-situ composite,	214
	equipped with projected cooling curves and	
	corresponding phase formation at respective each	
	peak (Adopted from Fig. 4.1)	
4.69	SEM micrograph of Mg ₂ Si _P particles illustrating the	216
	shape of particles in (a) polygonal form (0.8wt%	
	Ce), (b) Square and rectangular/triangle form	
	(0.2wt% Ba), (c) 3D shape of respective polygonal in	
	truncated structure (0.8wt% Ce) and (d) 3D shape of	
	square in cubic form (0.2wt% Ba)	
4.70	Characteristics particle of Mg ₂ Si _P correspond to	217
	0.8wt% Ce and 0.2wt% Ba	
4.71	Change of T_N respective to Mg_2Si_P phase as a result	218
	of optimum concentration of Ce and Ba	
4.72	Duration of Mg ₂ Si _P formation correspond to Ce and	219
	Ba elements addition	
4.73	Effect of optimum concentration of Ba and Ce on	220
	hardness, compared to the base composite	
4.74	Comparison of Mg ₂ Si _P shape between two	221
	approaches (a) Addition of 0.8wt% Ce and (b) 950°C	
	superheat temperature with 15 minutes holding time	
4.75	Characteristics particle of Mg ₂ Si _P correspond to	222
	0.8wt% Ce and 950°C_15 min superheating melt	
	treatment	
4.76	Comparison in hardness value as a result of 0.8wt%	223
	Ce addition element and 950°C_15 minutes holding	
	time in superheating melt treatment, respective to	
	base composite	

LIST OF SYMBOLS

Mg₂Si - Magnesium silicide

Al₃Ti - Titanium trialuminide

AlP - Alkaline phosphate

 Y_2O_3 - Yttrium oxide

SiC - Silicon carbide

Al₂O₃ - Alumina

K₂TiF₆ - Potassium fluotitanate

Mg₃(PO₄) - Magnesium phosphate

Mg₃P - Magnesium phosphide

Mg₃Sb₂ - Magnesium antimonide

KBF₄ - Potassium tetrafluoroborate

HCl - Hydrochloric acid

r* - Critical radius

 ΔG_{ν} - Free energy per unit volume

 ΔG_s - Surface free energy per unit area

 G_V - Volume free energy

G_S - Surface free energy

 ΔG^* - Activation energy

 ΔG - Gibbs free energy

 γ_{SI} - Solid surface free energy

 γ_{SL} - Soli-liquid free energy

 γ_{IL} - Liquid surface free energy

 Θ - Wetting angle

 $T_{\rm m}$ - Melting temperature

T_P - Pouring temperature

 $T_S \hspace{1cm} \text{-} \hspace{1cm} Superheat \ temperature}$

 T_{N} - Nucleation temperature

 $T_{min} \qquad \quad \text{-} \qquad \quad Minimum \ temperature}$

 $T_G \qquad \quad \text{-} \qquad \text{Growth temperature}$

 T_c - Temperature at centre

 $T_w \qquad \quad \text{-} \qquad \text{Temperature at wall}$

CR - Cooling rate

xxvii

LIST OF ABBREVIATIONS

MMC - Metal Matric Composite

CACCTA - Computer Aided Cooling Curve Analysis

DTA - Differential Thermal Analysis

DSC - Differential Scanning Calorimetry

TGA - Thermogravimetric Analysis

FESEM - Field Emission Scanning Electron Microscopy

EDX - Energy Dispersive X-ray Analysis

XRD - X-ray Diffraction

BSE - Backscattered Secondary Electron

FCC - Face Centered Cubic

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Temper designation system of Al alloy based on Identification of Aluminum Alloy Designation System	236
	(IADS)	
В	Difference between volume, ΔG_V and surface free energy, ΔGs	
С	Theoretical calculation of 20% Mg_2Si in the Al-based composite	237
D	Zahn flow cup	238
E	Formula of average value regarding the characteristics	238
	particles of Mg ₂ Si _P respective to grain size, normalized	
	area, aspect ratio and number of particles per unit area (mm²)	
F		238
	Changed of $T_{\rm G}^{\rm Mg2SiP}$ as a result of Ce addition element	
G	Diffraction angle data of Al-Si-Ce compounds	239
	indicating the element presents at angle of 28.7°C and 27.7°C	
Н	Collection of atomic number (%) respective to white	239
11	needle-like and white non-uniform Ce compounds	237
I	Collection of atomic numbers (%) correspond to white	240
	particles and needle-like Ba compounds	
J	Matching analysis on 83° identifies presence of Al	240
K	List of Publications	245

CHAPTER 1

INTRODUCTION

1.1 Research Background

As a class of advanced engineering materials, aluminium metal matrix composites (MMCs) have been paid greater attention extensively owing to their excellent properties which make them useful for high performance applications. Their properties such as low density, excellent castability, excellent mechanical properties and low production cost render these materials more attractive to meet further application demands especially for light-weight components [1-3], particularly in the manufacture of automotive parts where the pressure to use light-weight material has been increasing due to environmental issues.

The common aluminium metal matrix composites (Al-MMC) are mostly based on the Aluminium-Silicon (Al-Si) casting alloys reinforced with hard ceramic particles, such as silicon carbide (SiC) and alumina (Al₂O₃) [4, 5]. However, these metal matrix composites suffer from thermodynamic instability of interfaces between the ceramic reinforcement and matrix, in addition to poor wettability of the reinforcements [6]. Moreover, small particle size of the reinforcement and the density differences between reinforcement and matrix make the fabrication of these composites more difficult due to settling and agglomeration issues [7].

Al-based composite, reinforced with particulate Mg₂Si phase have recently been shown to possess advantages [5, 8]. However, mechanical properties in normal cast Al-Mg₂Si in-situ composite is unsatisfactory due to the nature form of dendrite and coarse morphology of primary Mg₂Si phase which lead to stress concentration at sharp edges and corners of Mg₂Si structure [9, 10]. This would cause more brittle phase of structure [11] and low ductility of the in situ composite [2]. Thus, mechanical properties of the composite are rather limited especially at high temperature [10, 12]. Therefore, melt treatment by refinement and modification of the coarse primary Mg₂Si structure as well as corresponding matrix phase of Al-Mg₂Si in-situ composite is crucial in order to improve the morphology of Mg₂Si reinforcement and achieve better mechanical properties.

Various methods have been employed and developed to enhance the composite properties by refining the structure of the primary Mg₂Si as well as that of the matrix. Among the techniques [13, 14], melt treatment method with modifier or refiner elements is chosen due to result effectiveness in addition to low cost because of the use of Al, Mg and Si as starting materials [6, 7]. Furthermore, the technique results in an even distribution of reinforcing phase, good particle wetting and less steps of processing for industrial utilization. Besides, reinforcement particles are thermodynamically stable in the matrix, leading to less degradation in high temperature services [5, 11, 12].

It has been reported that potassium fluotitanate, K₂TiF₆ [15], potassium fluotitanate + potassium tetrafluoroborate (K₂TiF₆+KBF₄) [16], strontium (Sr) [17-19], sodium (Na) [19] and phosphorus (P) [9, 18, 20] are important additives to be introduced to the melt alloy in order to refine or modify the morphology of the primary Mg₂Si and enhance the properties. However, some of the findings from this research have reported drawbacks as described by and Zhao *et al.* [19] and Wang *et al.* [16] in their research respectively. In particular, Na has limited solid solubility in Al melt and has a very high vapour pressure. Thus, Na is readily volatilized during the modification process, resulting in negative effects [19]. Another case, addition of K₂TiF₆ and KBF₄ individually in Mg-Si composite have refined and modified the shape of primary Mg₂Si respectively. However, combination of K₂TiF₆+KBF₄ in the

composite has reduced the role of KBF₄ as modifier and as a result, primary Mg₂Si become coarser again [16].

Previous research also showed that the refinement effect have been achieved by addition of extra silicon (Si) [9, 21] since the morphology of coarse primary Mg₂Si particles resulted in finer polyhedral shape with a reduced size. The addition also caused modification in the eutectic Mg₂Si phase by altering the flake-like structure to a finer fiber shape. Similar results of refined primary and eutectic Mg₂Si structures have also been obtained with the addition of lithium (Li) to Al-Mg₂Si melt composite [11, 22], addition of antimony (Sb) [23, 24], Sr [25, 26] and bismuth (Bi) [10, 27].

The role of rare earth elements as modifiers or refiners have also been investigated but most research have focused on Al-Si alloys [28-30]. It was reported that addition of rare earth elements (RE) such as lanthanum (La), cerium (Ce), nyeodium (Nd), yttrium (Y) and mischmetal could be capable to modify the eutectic structure but not the primary Si phase [31]. However, in a recent research by Qin Lin *et al.* [28] it has been shown that addition of Ce has a significant refining effect on the primary Si crystals besides modifying the eutectic Si structure as well. Knuutinen *et al.* [29] in their research on barium (Ba), calcium (Ca), Y and ytterbium (Yb) also concluded that both Ca and Ba can act as modifiers while Y and Yb act as refiners to modify and refine the morphology of Al-Si alloy respectively.

Similar refinement result was obtained with the use of Ce into Al-Si-Cu composite on the primary Mg₂Si structure as reported by Zhang *et al.* [32]. In other research, Zheng *et al.* [33] have proved that addition of Y₂O₃ compound has caused modification of the morphology of primary Mg₂Si in Mg-Si base composite while other findings have claimed that Y itself just affect the size and not the morphology of Mg₂Si particles. However, Emamy *et al.* [34] claimed that Y individually could modify both the morphology of Mg₂Si phase as well as its size and produce a refined structure. In addition, Wang *et al.* [35] who investigated the effect of La in Mg-Si composite have revealed that La could refine the morphology of Mg₂Si from coarse to refined polygonal structure.

Instead of melt treatment by the elements addition approach, the morphology of cast alloys can also be affected by superheating melt treatment. It is a process that involves preheating the cast alloy at higher temperature, basically above the melting temperature and holding it for a certain period of time and then immediately cooled to pouring temperature before casting or solidifying [36-38]. The process of preheating at elevated temperature would cause a change in heredity of the alloy by remelting the particles and clusters completely and homogeneously in the melt, then resolidify as finer particles. This would result in finer grain nucleation [37, 39].

It was reported that melt superheating temperature on Mg₂Si/Al-Si-Cu composite resulted in a change of coarse dendritic primary Mg₂Si particles to equiaxed shape and a decrease in their size while the eutectic Mg₂Si phase has been improved from Chinese script type to irregular type [39]. Similar result was observed by Zhamin *et al.* [33] who claimed that superheating melt treatment on Mg-3.5Si-1Al composite caused reduction in heredity phenomenon of the composite such that both primary and eutectic Mg₂Si phase have been refined.

Besides that, Chen *et al.* [38] in their study on Al-Si melt alloy have claimed that eutectic Si phase could be modified and refined by reducing heredity phenomenon in the melt and changing its growth phase to get better final structure. Meanwhile, Haque *et al.* [40] have clarified that superheating technique with addition of Sr results in better modification effect compared to modified alloy with Sr without superheating. Indeed, the morphology of eutectic Si phase has been refined. Although most of the research concerning superheating melt treatment focused on the eutectic Si phase in Al-Si alloy, it is believed that superheating could also result in similar modification effect on the primary Mg₂Si phase in Al-Mg₂Si insitu composite.

In summary, modification and refinement of coarse morphology of any material by addition of inocculation agents and superheating melt treatment are important and may be considered as useful routes to enhance the mechanical properties of the material. Inocculation agents, similar to neutralizer or modifier elements would be induced to the Al melt alloy/composite in order to treat the undesirable structure and produced modified and refined morphology. Although,

most of research studies on refinement and modification treatment are related to the Al-Si alloy, there is great similarities between the solidification behaviour of Al-Si and Al-Mg₂Si systems [31]. Therefore, it is believed that element additions of Ce and Ba as well as superheating melt treatment at certain temperature ranges and holding time can be effective routes to alter the morphology of primary Mg₂Si structure in the Al-Mg₂Si in-situ composite. Control of their microstructure is more practical and cost effective method because of low production cost commercially and is the same as that practiced in casting of metallic alloys.

1.2 Problem Statement

High performance of Al-Mg-Si composites containing Mg₂Si reinforced phase are attractive candidates to manufacture industrial products especially for automotive and aerospace components. However, the presence of Mg₂Si reinforced particles in the form of dendrite and coarse shape have adverse effect on the mechanical properties of the composites due to ease of crack formation at sharp edges and corners of the Mg₂Si particles. Therefore, modification and refinement of the coarse morphology is required in order to improve the structure and thus enhance the mechanical properties such as reduce the brittleness of the Al-Mg₂Si in-situ composite.

Elements addition and superheating melt treatment have been proposed to alter the coarse morphologies of the phases in the melt alloys. The first approach is by element addition. Examples of elements addition are cerium (Ce) and barium (Ba). However, scarcity of Ce and Ba elements has limited their use as modifier or refiner elements and restricted their use in general industrial applications. Research findings, albeit very little have proved that addition of such elements causes modification and refinement effects of phases in many melt alloys. Moreover, the interaction between these rare earth elements and the exact mechanism of

modification is still unclear. In fact, focus of Ce and Ba elements are rather limited that inspired to further emphasis its role as modifier and refiner agents.

Superheating melt treatment as a second approach has been suggested to achieve refinement in the in-situ composite melt. Preheating the melt composite at elevated temperature, normally above the melting temperature of Al-20%Mg₂Si-2%Cu in-situ composite, causes complete dissolution of particles and yet lead to nucleation of finer particles. However, the exact reasons and role of modifying effect is not clearly understood, in addition to very little research work done regarding the superheating treatment on primary phase and in Al-Mg-Si composite.

Therefore, this current research is carried out in order to investigate the effect of elements addition namely Ce and Ba as well as superheating melt treatment on the primary Mg₂Si phase. Both methods will be carried out with computer aided cooling curve thermal analysis (CACCTA) technique in order to monitor the solidification behavior of the composite and to determine the characteristic temperatures for each phase. Understanding the characteristic temperatures can be beneficial in controlling the solidification process of the cast alloy, yet producing improved microstructure of composite with the corresponding desired mechanical properties. As both methods are expected to improve the morphology and properties of the in situ composite, they will be compared and the best method will be proposed at the end of this research study.

1.3 Objectives of the Research

The primary aim of this research is to investigate the effect of elements addition (Ce and Ba) and superheating melt treatment on the morphology of primary Mg₂Si phase and mechanical property namely hardness of commercial Al-20% Mg₂Si-2%Cu in-situ composite.

The specific objectives of the research are:

- 1. To evaluate the characteristic temperatures of the in-situ composite during solidification process by elements addition and superheating melt treatment using computer aided cooling curve thermal analysis (CACCTA) technique.
- 2. To determine the effects of elements addition (Ce and Ba) on the morphology of in-situ Mg₂Si reinforced particles in Al-Mg₂Si-Cu composites and the hardness of respective in-situ composites using gravitational casting process.
- 3. To determine the effect of superheating temperature (850-950°C) and holding time (15-45 minutes) on primary Mg₂Si structure phase and the hardness of the corresponding Al-Mg₂Si-Cu in-situ composite.
- 4. To determine the optimum concentration of Ce and Ba addition and the optimum parameter of superheating melt treatment that resulted in adequate modification and refinement effect on the morphology of Al-Mg₂Si-Cu in-situ composite.
- 5. To propose the mechanisms related to phase transformation of Al- $20\%Mg_2Si$ -2%Cu in situ composite, in addition to modification effect of primary Mg_2Si as a result of Ce and Ba additions as well as superheating melt treatment.

1.4 Scopes of the Research

The scopes of the research are as follows:

- 1. Preparation of ceramic moulds for the casting process.
- 2. Preparation of samples by casting as-cast commercial Al-Mg₂Si-Cu composite with and without elements addition (Ce and Ba) and superheating melt treatment.
- 3. Analysis of the as-cast molten Al-Mg-Si-Cu in-situ composite with and without elements addition using computer aided cooling curve thermal analysis (CACCTA) in order to determine the characteristic temperatures of the primary Mg₂Si phase.
- 4. Analysis of Al-Mg₂Si-Cu composite melt during superheating melt treatment using CACCTA to characterize the characteristic temperatures of the primary Mg_2Si .
- 5. Microstructural and phase analysis of as-cast prepared samples using optical microscopes, field emission scanning electron microscopy (FESEM) with energy dispersive x-ray analysis (EDX) and x-ray diffraction (XRD).
- 6. Perform hardness test on as-cast samples that have treated with elements addition and superheating melt treatment.

REFERENCES

- [1] A. Bahrami, A.R., M. Emamy, H.R. Jafari and G.S. Mousavi. Microstructure and Tensile Properties of Al-15wt%Mg₂Si Composite After Hot Extrusion and Heat Treatment. *Key Engineering Materials*. 2011. 471-472: 1171-1176.
- [2] Chong Li, Y., Hui Li and Xiangfa Liu. Microstructural Formation in Hypereutectic Al–Mg₂Si with Extra Si. *Journal of Alloys and Coumpounds*. 2009, 477: 212-216.
- [3] H. Liao, Y.S. and G. Sun. Restraining Effect of Strontium on the Crystallization of Mg₂Si Phase during Solidification in Al-Si-Mg Casting Alloys and Mechanisms. *Materials Science and Engineering A.* 2003. 358: 164-170.
- [4] H. Ahlatci, E. Candan and H. Cimenoglu. Mechanical Properties of Al-60%SiC Particulate Composites Alloyed with Mg. *Metallurgical and Materials Transactions A*, 2004. 35: 2127-2141.
- [5] M. Suery, L. Lajoye in P. Rohatgi. Solidification of Metal Matrix Composites. *The Minerals Metals and Materials Society*. 1990: 171-179.
- [6] E. Candan, H.V. Atkinson and H. Jones. Effect of Alloying Addition on Treshold Pressure for Infiltration and Porosity of Aluminium-Based Melt Infiltrated Silicon Carbide Power Compact. Key Engineering Materials. 1997. 127-131: 463-470.
- [7] I.A. Ibrahim, F.A. Mohamed and E.J. Lavernia. Particulate Reinforced Metal Matrix Composites - A Review. *Journal of Materials Science*. 1991. 26: 1137-1156.
- [8] M. Gupta and S.F. Hassan. Development of A Novel Magnesium-Copper Based Composite with Improved Mechanical Properties. *Materials Research* Bulletin, 2002, 37: 377-389.

- [9] Chong Li, X. Liu and Y. Wu. Refinement and Modification Performance of Al–P Master Alloy on Primary Mg₂Si in Al–Mg–Si Alloys. Journal of Alloys and Compounds. 2008. 465: 145-150.
- [10] E.J. Guo, B.X. Ma and L.P. Wang. Modification of Mg₂Si Morphology in Mg–Si Alloys with Bi. *Journal of Materials Processing and Technology*. 2008. 206: 161-166.
- [11] R. Hadian, M. Emamy, N. Varahram and N. Nemati. The Effect of Li on The Tensile Properties of Cast Al–Mg₂Si Metal Matrix Composite. *Materials Science and Engineering A*. 2008. 490: 250-257.
- [12] M.R. Ghorbani, M. Emami, R. Khorshidi, J. Rasizadehghani and A.R. Emami. Effect of Mn Addition on the Microstructure and Tensile Properties of Al–15%Mg₂Si Composite. *Materials Science and Engineering A*. 2012. 550: 191-198.
- [13] M. Mabuchi and K. Higashi. Strengthening Mechanism of Mg-Si Alloys. *Acta Materialia*. 1996. 4: 4611-4618.
- [14] Y. Tsunekawa, H.S. and Y. Genma, Application of Ultrasonic Vibration to In-Situ MMC Process by Electromagnetic Melt Stirring. *Materials Desisgn*. 2001. 22: 467-472.
- [15] Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang and Q.C. Jiang. In Situ Mg₂Si/Al-Si Composite Modified by K₂TiF₆. *Materials Letters*. 2004. 58: 2192-2194.
- [16] H.Y. Wang, Q.C. Jiang, B.X. Ma, Y. Wang, J.G. Wang and J.B. Li. Modification of Mg₂Si in Mg–Si alloys with K₂TiF₆, KBF₄ and KBF₄ + K₂TiF₆. *Journal of Alloys and Compounds*. 2005. 387: 105-108.
- [17] Q.D. Qin, Y.G. Zhao, C. Liu, P.J. Cong and W. Zhou. Strontium Modification and Formation of Cubic Primary Mg₂Si Crystals in Mg₂Si-Al Composite. *Journal of Alloys and Compounds*. 2008. 454: 142-146.
- [18] Y.H. Cho, H.C.L., K.H. Oh and A.K. Dahle. Effect of Strontium and Phosphorus on Eutectic Al-Si Nucleation and Formation of β-Al₅FeSi in Hypoeutectic Al-Si Foundry Alloys. *Metallurgical and Materials Transactions A*. 2008. 39A: 2435-2488.
- [19] Y.G. Zhao, Q.D. Qin, Y.H. Liang, W. Zhou and Q.C. Jiang, In-situ Mg2Si/AlSi-Cu Composites Modified by Strontium. *Journal of Materials Science*. 2005. 40: 1831-1833.

- [20] Q.D. Qin, Y.G. Zhao, W. Zhou and P.J. Cong. Effect of Phosphorus on Microstructure and Growth Manner of Primary Mg₂Si Crystal in Mg₂Si/Al Composite. *Materials Science and Engineering A*. 2007. 477: 186-191.
- [21] N. Nasiri, M. Emamy and A. Malekan. Microstructural Evolution and Tensile Properties of the In-situ Al–15%Mg₂Si Composite with Extra Si Contents. *Materials Design.* 2012. 37: 215-222.
- [22] R. Hadian, M. Emamy and J. Campbel. Modification of Cast Al-Mg₂Si Metal Matrix Composite by Li. *Metallurgical and Materials Transactions B*. 2009. 4: 822-832.
- [23] Ren Bo, L.Z., Zhao Ruifeng, Zhang T., Liu Z., Wang M. and Weng Y.. Effect of Sb on Microstructure and Mechanical Properties of Mg₂Si/Al-Si Composites. *Transaction of Nonferrous Metals Society of China*. 2010. 20: 1367-1377.
- [24] Yan Hong, H. Yong and W. Xiaoqian. Influence of Sb Modification on Microstructures and Mechanical Properties of Mg₂Si-AM60 Composite.

 *Transaction of Nonferrous Metals Society of China. 2010. 20: 411-145.
- [25] Yang M., Pan F., Cheng R. and Shen J. Comparison About Effects of Sb, Sn and Sr on As-Cast Microstructure and Mechanical Properties of AZ61–0.7Si Magnesium Alloy. *Materials Science and Engineering A*. 2008. 489: 423-418.
- [26] Yang M., Pan F., Shen J. and Bai L. Comparison of Sb and Sr on Modification and Refinement of Mg₂Si Phase in AZ61-0.7Si Magnesium Alloy. *Transaction of Nonferrous Metals Society of China*. 2009. 19: 287-292.
- [27] NA. Nordin, S. Farahany, A. Ourdjini, TA. Bakar and E. Hamzah. Refinement of Mg₂Si Reinforcement in a Commercial Al-20%Mg₂Si In-situ Composite with Bismuth, Antimony and Strontium. *Materials Characterization*. 2013. 86: 97-107.
- [28] Q. Li, T.X., Y. Lan, W. Zhao, L. Fan and P. Li. Effect of Rare Earth Cerium Addition on the Microstructure and Tensile Properties of Hypereutectic Al–20%Si Alloy. *Journal of Alloys and Compounds*. 2013. 562: 25-32.
- [29] A. Knuutinen, K. Nogita, S.D. McDonald and A.K. Dahle. Modification of Al–Si Alloys with Ba, Ca, Y and Yb. *Journal of Light Metals*. 2001. 1: 229-240.

- [30] Q. Li, T. Xia, Y. Lan, P. Li and L. Fan. Effects of Rare Earth Er Addition on Microstructure and Mechanical Properties of Hypereutectic Al-20%Si Alloy. *Materials Science and Engineering A.* 2013. 588: 97-102.
- [31] J. Zhang, Z.F., Y.Q. Wang and B.L. Zhou. Microstructural Development of Al–15wt.%Mg₂Si In Situ Composite with Mischmetal Addition. Materials Science and Engineering A. 2000. 281: 102-144.
- [32] Y.G. Zhao, Q.D. Qin, W. Zhou and Y.H. Liang. Microstructure of the Ce-Modified In-Situ Mg₂Si/Al–Si–Cu Composite. Journal of Alloys and Compounds. 2005. 389: 1-4.
- [33] Zheng Na, Wang H., Zhao F., Gu Z., Li D. and Jiang Q. Modification of Primary Mg₂Si in Mg-₅Si Alloys with Y₂O₃. *Transaction of Nonferrous Metals Society of China*. 2007. 17: 440-443.
- [34] M. Emamy, H.R.J. Nodooshan and A. Malekan. The Microstructure, Hardness and Tensile Properties of Al–15%Mg₂Si In-situ Composite with Yttrium Addition. *Materials Design*. 2011. 32: 4559–4566.
- [35] Wang L., Guo. E., and Ma B. Modification Effect of Lanthanum in Primary Phase Mg₂Si in Mg-Si Alloys. *Journal of Rare Earth*. 2008. 26: 105-109.
- [36] Song C., Han Q. and Zhai Q. Review on Grain Refinement Methods for As-Cast Microstructure of Magnesium Alloy. *China Foundary*. 2009. 6: 93-103.
- [37] Zha Min, W.H., Liu Bo, Zhao Bing, Liang Minli, Li Dong and Jiang Qichuan. Influence of Melt Superheating on Microstruture of Mg-3.5Si-1Al Alloy. *Transaction of Nonferrous Metals Society of China*. 2008. 18: 107-112.
- [38] Wanqi Ji, Z.C.W Reif and K. Muller. Superheat Treatment of Al-7Si-0.55Mg Melt and Its Influence on the Solidification Structures and the Mechanical Properties. *Metallurgical and Materials Transactions A*. 2009. 34: 799-806.
- [39] Q.D. Qin, Y.G. Zhao, Y.H. Liang and Q. Zhou. Effect of Melt Superheating Treatment on Microstructure of Mg₂Si/Al-Si-Cu Composite. *Journal of Alloys and Compounds*. 2005. 399: 106-109.
- [40] M.M. Haque and A.F. Ismail. Effect of Superheating Temperatures on Microstructure and Properties of Strontium Modified Aluminum-Silicon Eutectic Alloy. *13th International Scientific Conference in Achievement in Mechanical and Materials Engineering*. Gliwice-Wisla, Poland: Worldwide

- Congress on Materials Manufacturing Engineering and Technology. 2005. 267-270.
- [41] John Weritz. *The Aluminium Association Alloy and Temper System*. United State. 2016.
- [42] Ron Cobden, Alcan and Banbury. Aluminium: Physical properties, Characteristics and Alloys. EAA - European Aluminium Association. 1994.
- [43] J.R. Davis. Aluminium and Auminium Alloy. *Light Metals and Alloy*. 2001: 351-416.
- [44] D. Kopeliovich. Classification of Aluminium Alloy: Cast Aluminium Alloy. 2012.
- [45] D. Kopeliovich. Classification of Aluminium Alloys: Temper Designation of Aluminium Alloys. 2012.
- [46] S. Storen. Understanding Aluminium as a Materia: TALAT Lecture 2101.01. 1994. *EAA European Aluminium Association*.
- [47] H. Wang. In-Situ Si/Al Composite Produced by Semisolid Metal Processing. *Materials and Manufacturing Processes*. 2007. 22: 696-699.
- [48] Haizhi Ye. An Overview of the Development of Al-Si Alloy Based Material for Engine Applications. *Journal of Materials Engineering and Performance*. 2003. 12(3): 288-297.
- [49] Aluminium Alloy: Aluminum Alloy Selection and Applications. The Aluminium Accosiation, Inc. 1998: 1-24.
- [50] K.C. Hari Kumar, N.C., Hans-Leo Lukas, Oksana Bodak and Lazar Rokhlin.
 Aluminium Magnesium Silicon. *Light Metal System*. 2005: 165-177.
 Springer: Verlag.
- [51] J. Zhang, Z.F., Y.Q. Wang and B.L. Zhou. Equilibrium Pseudobinary Al-Mg₂Si Phase Diagram. *Materials Science and Technology*. 2001. 17: 212-216.
- [52] V. Raghavan. Al-Mg-Si (Aluminum-Magnesium-Silicon). *Journal of Phase Equilibria and Diffusion*. 2007. 28: 188-190.
- [53] Ram N.R., A.K.P. Rao, G.L. Dutta and M. Chakraborty. Forming Behaviour of Al-TiC In-situ Composites. *Materials Science Forum*. 2013. 765: 418-422.
- [54] E. Georgatis, A. Lekatou, A.E. Karantzalis, H. Petropoulos, S. Katsamakis and A. Poulia. Development of a Cast Al-Mg₂Si-Si In Situ Composite:

- Microstructure, Heat Treatment and Mechanical Properties. *Journal of Materials Engineering and Performance*. 2013. 22: 729-741.
- [55] A.R.Kennedy and S.M. Wyatt. Characterizing Perticle-Matrix Interfacial Bonding in Particulate Al-TiC MMCs Produced by Different Methods: Composites Part A. *Applied Science and Manufacturing*. 2001. 32: 555-559.
- [56] A. Bahrami, A. Razaghian, M. Emamy and R. Khorshidi. The Effect of Zr on the Microstructure and Tensile Properties of Hot-Extruded Al-Mg₂Si Composite. *Materials Design*. 2012. 36: 323-330.
- [57] M. Emamy, M. Khodadadi, A. Honarbakhsh Raouf and N. Nasiri. The Influence of Ni Addition and Hot Extrusion on the Microstructure and Tensile Properties of Al–15%Mg₂Si Composite. *Materials Design*. 2013. 46: 381-390.
- [58] R.M. Aikin Jr. The Mechanical Properties of In-Situ Composites. *Journal of the Mineral, Metals and Materials Society (JOM)*. 1997. 49(8): 35-39.
- [59] K. Sundaram. Ex-situ and In-situ Metal Matrix Composite.
- [60] M. Emamy, A.R. Emami and K. Tavighi. The effect of Cu Addition and Solution Heat Treatment on the Microstructure Hardness and Tensile Properties of Al–15%Mg₂Si–0.15%Li Composite. *Materials Science and Engineering A.* 2013. 576: 36-44.
- [61] A. Akrami, M. Emamy and H. Mousavian. The Effect of Bi Addition on the Microstructure and Tensile Properties of Cast Al-15%Mg₂Si Composite. *Mat.-wiss. u.Werkstofftech.* 2013. 44: 431-435.
- [62] C. Li, Y.Y. Wu, H. Li and X.F. Liu. Morphological Evolution and Growth Mechanism of Primary Mg₂Si Phase in Al–Mg₂Si Alloys. *Acta Materialia*. 2011. 59: 1058-1067.
- [63] F. Misahi and M. Meratian. High Temperature Tensile Properties of Modified Mg/Mg₂Si In Situ Composite. *Materials Design*. 2011. 33: 557-562.
- [64] C. Li, Y. Wu, Hui Li, Y. Wu and X. Liu. Effect of Ni on Eutectic Structural Evolution in Hypereutectic Al–Mg₂Si Cast Alloys. *Materials Science and Engineering A*. 2010. 528: 573-577.
- [65] B. Stojanovic and L. Ivanovic. Application of Aluminium Hybrid Composites in Automotive Industry. *Technical Gazette*. 2015. 22(1): 247-251.
- [66] Wu Xiaofeng, Z. Guang'an, Wu Fufa and Wang Zhe. Influence of Neodymium Addition on Microstructure, Tensile Properties and Fracture

- Behavior of Cast Al-Mg₂Si Metal Matrix Composite. *Journal of Rare Earth*. 2013. 31(3): 307-312.
- [67] Yuhua Zhao, X.W., Xinghao Du and Chao Wang. Effects of Sb and Heat Treatment on the Microstructure of Al-15.5wt%Mg₂Si Alloy. International *Journal of Minerals, Metallurgy and Materials*. 2013. Springer.
- [68] T. Grostad. Nucleation of Primary Mg₂Si in Al-Mg-Si Alloys, in Department of Materiasl Science and Engineering. 2014. Norwegian University of Science and Technology: Norway. 1-12.
- [69] Kazuhiko Iwai and Jun Du. Modification of Primary Mg₂Si Crystals in Hypereutectic Mg-Si Alloy by Application Alternating Current. *Materials Transactions*. 2009. 50: 562-569.
- [70] L. Liao, X. Zhang, H. Wang, X. Li and N. Ma. Influence of Sb on Damping Capacity and Mechanical Properties of Mg₂Si-Mg–9Al Composite Materials. *Journal of Alloys and Compounds*. 2007. 430: 292-296.
- [71] C. Vives. Effect of Electromagnetic Vibrations During the solidification of Aluminium: Part 1. Solidification in the Presence of Crossed Alternating Electric Fields and Stationary Magnetic Field. *Metallurgical and Materials Transactions B.* 1994. 27: 445-454.
- [72] Kurz W. and D.J. Fisher. Fundamentals of solidification. 4th Edition. Switzerland: Trans Tech Publications.1998.
- [73] W.D. Callister. Phase Transformation: Development of Microstructure and Alteration of Mechanical Bahviour. Materials Science and Engineering: An Introduction. 7th Edition. New York: John Wiley & Sons, Inc. 13. 2006.
- [74] D. Kaschiev. Nucleation: Basic Theory with Applications. Burlington: Butterwoth-Heinemann, Oxford. 2000.
- [75] Donald R.A., Pradeep P.F. and Wendelin J.W. The Science and Engineering of Materials: Principle of Solidification. Sixth Edition. United State: Cengage Learning Inc. 8. 2010.
- [76] James J. De Yoreo and Peter G. Vekilov. Principles of Crystal Nucleation and Growth. 2003: 57-93.
- [77] J.W. Mullin. *Crystallization*. Fourth Edition. Oxford: Butterwoth-Heinemann. 2001.
- [78] X.Y. Liu. Heterogeneous Nucleation or Homogeneous Nucleation. Journal of Chemical and Physics. 2000. 112: 9949-9955.

- [79] K. Chen, Z.Q. Li, J.S. Liu, J.N. Yang, Y.D. Sun and S.G. Bian. The Effect of Ba Addition on Microstructure of In Situ Synthesized Mg₂Si/Mg–Zn–Si Composites. *Journal of Alloys and Compounds*. 2009. 487: 293-297.
- [80] L. Chen, H.Y. Wang, Y.J. L.M. Zha and Q.C. Jiang. Morphology and Size Control of Octahedral and Cubic Primary Mg₂Si in an Mg–Si System by Regulating Sr Contents. *Cryst. Eng. Comm.* 2014. 16: 448-454.
- [81] Tanghong Yi, S.C., Shawn Li, Hao Yang, Sabah Bux, Zhixi Bian, Nebil A. Katcho, Ali Shakouri, Natalio Mingo, Jean-Pierre Fleurial, Nigel D. Browning and Susan M. Kauzlarich. Synthesis and Characterization of Mg₂Si/Si Nanocomposites Prepared from MgH₂ and Silicon, and Their Thermoelectric Properties. *Journal of Materials and Chemistry*. 2012. 22: 24805-24813.
- [82] I. Sunagawa. Growth and Morphology of Crystals. Japan: Mathematical Sciences. 1999.
- [83] L. Chen, H.Y. Wang, D. Luo, H.Y. Zhang, Bo Liu and Q.C. Jiang. Synthesis of Octahedron and Truncated Octahedron Primary Mg₂Si by Controlling the Sb Contents. *Cryst. Eng. Comm.* 2013. 15: 1787-1793.
- [84] M.R. Ghorbani, M. Emamy and N. Nemati. Microstructural and Mechanical Characterization of Al–15%Mg₂Si Composite Containing Chromium. *Materials Design*. 2011. 32: 4262-4269.
- [85] J.L. Hu, C.P. Tang, X.M. Zhang and Y.L. Deng. Modification of Mg₂Si in Mg–Si Alloys with Neodymium. *Transaction of Nonferrous Metals Society of China*. 2013. 23: 3161-3166.
- [86] Q.C. Jiang, H.Y. Wang, Y. Wang, B.X. Ma and J.G. Wang. Modification of Mg₂Si in Mg–Si Alloys with Yttrium. *Materials Science and Engineering A*. 2005. 392: 130-135.
- [87] J. Hou, C. Li and X. Liu. Nucleating Role of an Effective In Situ Mg₃P₂ on Mg₂Si in Mg–Al–Si Alloys. *Journal of Alloys and Compounds*. 2011. 509: 735-739.
- [88] N. Nasiri, M. Emamy, A. Malekan and M.H. Norouzi. Microstructure and Tensile Properties of CastAl–15%Mg₂Si Composite: Effects of Phosphorous Addition and Heat Treatment. *Materials Science and Engineering A*. 2012. 556: 446-453.

- [89] Yang Mingbo, and Shen Jia. Modification and Refinement Mechanism of Mg₂Si Phase in Sr Containing AZ61-0.7Si Magnesium Alloy. *Research and Development*. 2009. 6: 37-42.
- [90] M. Tebib, A.M. Samuel, F. Ajersch and X.G. Chen. Effect of P and Sr Additions on the Microstructure of Hypereutectic Al–15Si–14Mg–4Cu Alloy. *Materials Characterization*. 2014. 89: 112-123.
- [91] J.H. Jun. Microstructure and Damping Capacity of Mg₂Si/MgAlSi(Bi) Composites. *Materials Transaction*. 2012. 53: 2064-2066.
- [92] A. Razaghian, A. Bahrami and M. Emamy. The Influence of Li on the Tensile Properties of Extruded in situ Al–15%Mg₂Si Composite. *Materials Science and Engineering A*. 2012. 532: 346-353.
- [93] M. Emamy, N. Nemati and A. Heidarzadeh. The Influence of Cu rich Intermetallic Phases on the Microstructure, Hardness and Tensile Properties of Al–15% Mg₂Si Composite. *Materials Science and Engineering A*. 2010. 527: 2998-3004.
- [94] N. Maleki, M. Meratian, M. Panjepour and A. Foroozmehr. The Effect of Zinc on the Morphology and Wear Resistance of Mg₂Si-Reinforced Magnesium Matrix Composites. 2011. 18th International Conference on Composite Materials (ICCM 18). Jeju Island.
- [95] X.F. Wu, G.G. Zhang and F.F. Wu. Microstructure and Dry Sliding Wear Behavior of cast Al–Mg₂Si In-situ Metal Matrix Composite Modified by Nd. *Rare Metals.* 2013. 32(3): 284-289.
- [96] Barium Periodic Table. Royal Society of Chemistry. 2016.
- [97] Cerium. Periodic Table. Royal Society of Chemistry 2016.
- [98] Doug Stewart, Cacbrol D., Moore J. W and Kotz J. C. *Barium Element Facts*. Chemicool Periodic Table. 2017.
- [99] Z. Liu and M. Xie. Hypereutectic Al-Si-Mg In-Situ Composite Prepared by Melt Superheating. Switzerland: Trans. Tech. Publication. 2011: 113-116.
- [100] Changshuai Wang, J.Z., Lin Liu and Hengzhi Fu. Effect of Melt Superheating Treatment on Directional Solidification Interface Morphology of Multi-component Alloy. *Journal of Materials Science and Technology*. 2011. 27(7): 668-672.
- [101] E.F. Emley. Principles of Magnesium Technology. Oxford: Pergamon Oress Ltd. 1966.

- [102] O. Fakhraei, M. Emamy and H.Farhangi. The Effect of Al–5Ti–1B Grain Refiner on the Structure and Tensile Properties of Al–20%Mg Alloy. *Materials Science and Engineering A*. 2013. 465: 148-153.
- [103] W.D. Callister. Materials Science and Engineering: An Introduction. 7th Edition. Vol. 3. Salt Lake City, Utah: John Wiley & Sons, Inc. 2007.
- [104] J. Campbell. *Castings: Entrainment*. 2nd Edition. Boston, Butterworth Heinemann: Oxford. 2003.
- [105] F.C. Robles Hernandes and J.H. Sokolowski. Thermal Analysis and Microscopical Characterization of Al–Si Hypereutectic Alloys. *Journal of Alloys and Compounds*. 2006. 419: 180-190.
- [106] J.E. Gruzleski and B.M. Closset. The Treatment of Liquid Aluminum-Silicon Alloys. 1990. American United State of America: Foundrymen's Society, Inc
- [107] J. Campbell. Entrainment Defects. *Materials Science and Technology*. 2006. 22: 127-145.
- [108] Zheng Liu, M. Xie. Hypereutectic Al-Si-Mg In-situ Composite Prepared by Melt Treatment. *Advance Materials Research*. 2011. 194-196: 113-116.
- [109] S.G. Shabestari and M. Malekan. Computer-Aided Cooling Curve Thermal Analysis Used to Predict the Quality of Aluminum Alloys. *Journal of Thermal Analysis and Calorimetry*. 2011. 103: 453-458.
- [100] D. Emadi, L.V. Withing, S. Nafisi and R. Ghomashchi. Applications of Thermal Analysis in Quality Control of Solidification Processes. *Journal of Thermal Analysis and Calorimetry*. 2005. 81: 235-242.
- [111] S. Farahany, A. Ourdjini and M.H. Idris. The Usage of Computer-Aided Cooling Curve Thermal Analysis to Optimise Eutectic Refiner and Modifier in Al–Si Alloys. *Journal of Thermal Analysis and Calorimetry*. 2011. 109(1): 105-111.
- [112] S. Farahany, A. Ourdjini, M.H. Idris and S.G. Shabestari. Evaluation of the Effect of Bi, Sb, Sr and Cooling Condition on Eutectic Phases in an Al-Si ADC12 Alloy by In-situ Thermal Analysis. *Thermochimica Acta*. 2013. 559: 56-86.
- [113] Shabestari S.G. and M. Malekan. Assessment of the Effect of Grain Refinement of the Solidification Characteristics of 319 Aluminium Alloy Using Thermal Analysis. *Journal of Alloy and Compounds*. 2007. 492: 134-142.

- [114] Saeed Farahany. Assessment of the Effect Additives and Their Interaction on Silicon Structure of Complex Al-Si-Cu-Mg Alloy by Thermal Analysis, in Materials Engineering. 2012. Universiti Teknologi Malaysia (UTM), Johor: 181.
- [115] S.G. Shabestari, M. Malekan. Assessment of the Effect of Grain Refinement of the Solidification Characteristics of 319 Aluminium Alloy Using Thermal Analysis. *Journal of Thermal Analysis and Calorimetry*. 2007. 492: 134-142.
- [116] M. Azarbarmas, M. Emamy, M. Karamouz, M. Alipour and J. Rassizadehghani. The Effects of Boron Additions on the Microstructure, Hardness and Tensile Properties of In situ Al–15%Mg₂Si Composite. Materials Design. 2011. 33: 5049-5054.
- [117] N. Nafsin and HMMA. Rashed. Effects of Copper and Magnesium on Microstructure and Hardness of Al-Cu-Mg Alloys. *International Journal of Engineering and Advanced Technology (IJEAT)*. 2013. 2(5): 533-536.
- [118] M. Azabarmas, M. Emamy, J. Rasizadeh, M. Alipour and M. Karamouz. The Effect of Be on Mechanical Properties of Al-Mg₂Si In-situ Composite. *The Minerals, Metals and Materials Society.* 2011. 3: 1-9.
- [119] S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, A.F. Lotfabadi A. Ourdjini. Thermal and In-situ Analysis and Macroscopical Characterization of Mg–xCa and Mg–0.5Ca–xZn Alloy System. Thermochimica Acta. 2012. 527: 180-189.
- [120] A.E. Karantzalis, A. Lekatou, E. Georgatis, V. Poulas and H. Mavros. Microstructural Observations in a Cast Al-Si-Cu/TiC Composite. *Journal of Materials Engineering and Performance*. 2009. 19(4): 585-590.
- [121] S. Ji, W. Yang, F. Gao, D. Watson and Z. Fa. Effect of Iron on the Microstructure and Mechanical Property of Al–Mg–Si–Mn and Al–Mg–Si Die Cast Alloys. *Materials Science and Engineering A*. 2013. 564: 130-139.
- [122] J.A. Taylor. The Effect of Iron in Al-Si Casting Alloys. *Cooperative Research Centre for Cast Metals Manufacturing (CAST)*. 2003.
- [123] S.G. Shabestari. The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Aluminium-Silicon Alloys. *Materials Science and Engineering A*. 2004. 383: 289-298.

- [124] L. Anantha Narayanan, F.H. Samuel and J.E. Gruzleski. Crystallization Behavior of Iron-Containing Intermetallic Compounds in 319 Aluminum Alloy. *Metallurgical and Materials Transactions A.* 1994. 25: 1761-1773.
- [125] A.M. Samuel, F.H.S., C. Villeneuve, H.W. Doty and S. Valtierr. Effect of Trace Elements on B-Al5FeSi Characteristics, Porosity and Tensile Properties of Al-Si-Cu (319) Cast Alloy. *International Journal of Casting Metal*. 2001. 14: 97-120.
- [126] J.A. Taylor, G.B.S. and D.H. StJohn. The Role of Iron in The Formation of Porosity in Al-Si-Cu Based Casting Alloys: Part II. A Phase Diagram Approach. *Metallurgical and Materials Transactions A*. 1999. 30: 4273-4280.
- [127] S.D. McDonald, A.K. Dahle, J.A. Taylor and D.H. StJohn. Eutectic Grains in Unmodified and Strontium-Modified Hypoeutectic Aluminum-Silicon Alloys. *Metallurgical and Materials Transactions A*. 2004. 35: 1829-1837.
- [128] S.D. McDonald, K.N. and A.K. Dahle. Eutectic Nucleation in Al-Si Alloys. *Acta Materialia*. 2004. 52: 4273-4280.
- [129] S. Nafisi and R. Ghomashchi. Combined Grain Refining and Modification of Conventional and Rheo-Cast A356 Al-Si Alloy. *Materials Characterization*. 2006. 57: 371-385.
- [130] Stuart D. McDonald, K. Nogita and A.K. Dahle. Eutectic Grain Size and Strontium Concentration in Hypoeutectic Aluminium–Silicon Alloys. *Journal* of Alloys and Compounds. 2006. 422: 184-191.
- [131] M.H. Mulazimoglu and A. Zaluska, J.E. Gruzleski and F. Paray. Electron Microscope Study in 6201 Aluminum Alloy of AI-Fe-Si Intermetallics. Metallurgical and Materials Transactions A. 1996. 27: 929-936.
- [132] N.S. Tiedje, J.A.T. and M.A. Easton. A New Multi-zone Model for Porosity Distribution in Al–Si Alloy Castings. Acta Materialia. 2013. 61: 3037-3049.
- [133] J. Zhang, Z.F., Y. Wang and B. Zhou. Microstructure and Mechanical Properties of In situ Al-Mg₂Si Composite. *Materials Science and Technology*. 2000. 16: 913-918.
- [134] Sathaypagal H. and K.N. Prabhu. Modification of Eutectic Silicon in Al–Si Alloys. *Journal of Materials Science*. 2008. 49: 3009-3027.
- [135] M. Rosefort, C.M., H. Buck and H. Koch. Determination of α- and β-AlFeSi-Phases in Wrought Aluminium Alloys. 1-7.

- [136] M.V. Kral, P.N.H. Nakashima and D.R.G. Mitchell. Electron Microscope Studies of Al-Fe-Si Intermetallics in an Al-11 Pct Si Alloy. *Metallurgical and Materials Transactions A*. 2006. 37: 1987-1997.
- [137] M. Husseinifar and D. Malakho. The Sequence of Intermetallics Formation during the Solidification of an Al-Mg-Si Alloy Containing La. *Metallurgical and Materials Transactions A*. 2010. 42: 825-833.
- [138] Z.H. Gu, H.Y. Wang, N. Zheng, M. Zha, L.L. Jiang, W. Wang and Q.C. Jiang. Effect of Melt Superheating Treatment on the Cast Microstructure of Mg-1.5Si-1Zn Alloy. Journal of Materials Science. 2008. 43: 980-984.
- [139] Chen H.S., Zu F.Q., Chen J., Zou Li, Ding G.H. and Huang Z.Y. The Effect of Melt Overheating on the Melt Structure Transition and Solidified Structures of Sn-Bi40 Alloy. *Science in China Series E: Technological Sciences*. 2008. 51. 1402-1408.