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ABSTRACT 

 

 

 

 

One of the most significant impacts of climate change is sea-level rise. The 

rate of global sea levels is expected to continue rising in the future, which would 

cause severe damage to coastal areas and threaten the nearby population. This study 

aims to determine the inundation of coastal areas caused by the effects of rising sea 

levels using a combination of satellite altimeters, Global Positioning Systems, and 

Digital Elevation Models. The inundation scenarios for the return periods of 5, 25, 

45, 65, and 85 years were successfully simulated using the hydrological model 

obtained from altimetry data. The inundation scenarios were overlain on land 

elevation datasets to estimate the inundation risks. Vulnerability assessments of 

inundation risk maps were analysed in ArcGIS environment to develop maps for 

vulnerable areas and populations. The study revealed that by the year 2100, sea level 

is projected to be rising at the rate of between 32cm to 50cm for the sub-chosen sea 

over the Malaysian seas. The results from the assessment also show that Kelantan 

area is highly vulnerable to the sea-level rise event. At the local scales, nearly 1km
2
 

of total land area is projected to be inundated under the smallest scenario. Under the 

higher sea level scenarios, over 8.2 km
2
 is potentially inundated with up to 46,000 

people around the coastal and flood plain area of Kelantan, especially near Kota 

Bahru, could be affected. This study has successfully shown the integration of 

hydrological model to produce the inundation risk maps, taking into account the 

extent of land area covered under sea level at different scenarios. Findings are 

valuable to help the local authorities in developing strategic coastal management 

plans to address challenges of the climate change. 
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ABSTRAK 

 

 

 

 

Salah satu dari kesan yang paling penting dari perubahan iklim adalah 

peningkatan paras laut. Kadar paras laut global dijangka terus meningkat pada masa 

akan datang, yang akan menyebabkan kerosakan teruk di kawasan pesisir pantai dan 

mengancam penduduk berhampiran. Kajian ini bertujuan untuk menentukan 

pembanjiran kawasan pesisiran yang disebabkan oleh kesan kenaikan paras laut 

dengan menggunakan gabungan altimeter satelit, sistem penentududukan sejagat, dan 

model ketinggian digital. Senario pembajiran bagi tempoh pulangan 5, 25, 45, 65 dan 

85 tahun telah berjaya disimulasikan menggunakan model hidrologi yang diperoleh 

dari data altimeter. Senario pembanjiran ini telah dilapisi dengan data ketinggian 

tanah bagi menggangarkan risiko berlakunya limpahan banjir. Penilaian kerentanan 

peta risiko pembanjiran dianalisis dalam persekitaran ArcGIS bagi membangunkan 

peta kawasan dan populasi yang akan terancam. Kajian ini menjelaskan bahawa pada 

tahun 2100, paras laut dijangka meningkat pada kadar di antara 32cm sehingga 50cm 

bagi sub-kawasan laut yang terpilih di perairan Malaysia. Hasil daripada penilaian ini 

menunjukkan bahawa kawasan Kelantan sangat terdedah kepada kejadian kenaikan 

paras laut. Pada skala tempatan, hampir 1km
2 

daripada jumlah kawasan tanah 

dijangka akan dilimpahi di bawah senario terkecil. Di bawah senario paras laut 

tertinggi, lebih dari 8.2km
2
 berpotensi dilimpahi dengan hampir 46,000 orang di 

sekitar kawasan persisiran pantai dan dataran banjir di Kelantan terutamanya di 

kawasan Kota Bahru boleh terjejas. Kajian ini berjaya memperlihatkan penyepaduan 

model hidrologi bagi menghasilkan peta risiko pembanjiran dengan mengambilkira 

perluasan kawasan tanah yang dilitupi dibawah paras laut pada senario yang berbeza. 

Oleh demikian, dapatan ini dapat memberi manfaat bagi membantu pihak berkuasa 

tempatan dalam membangunkan pelan pengurusan pantai strategik untuk menangani 

cabaran perubahan iklim. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Consistently changing global sea levels is one of the main pressing issues 

closely related to anthropogenic effects. Global warming factors prominently effect 

sea level rise include increased in ocean heat content as well as melting ice sheets 

and glaciers. Rising sea levels tends to make headlines during extreme events such as 

storm surges generated by a tropical or extra-tropical cyclone. Furthermore, an 

increment of sea level can also cause severe damage to coastal landscapes when 

inundates low-lying land.  

 

 

According to Church et al. (2010), global sea levels rose by an average 1.7 

mm per year during the 20th century based on data from coastal and island tide-

gauges. Near-global measurements of sea level since 1993 to 2006 by satellite 

altimeters show an average global sea level rise of 3.1 ± 0.4 mm per year. In the 

Fourth Assessment Report (AR4) by the Intergovernmental Panel on Climate Change 

(IPCC), it is clearly stated that sea level trends are projected to increase by between 

18 cm to 59 cm from 1980-2000 to 2090-2100 (IPCC, 2007). Coastal areas are 

affected in various ways due to climate change since the coast is sensitive to higher 

sea levels that will eventually inundate low-lying land (wetland and dry) as well as 

suffering from storm surges and shoreline erosion. 
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 As the world‟s ocean rise, coastal and lowland areas will permanently 

disappear. Even a small increase in sea level magnitude, it can have devastating 

effects on coastal regions, especially in areas with high population densities and 

other living species such as flora and fauna. Strauss and Kulp (2014) mentioned in 

their new analysis on climate change that, up to 216 million people currently live in 

vulnerable areas that will be affected by rising sea levels and could be regularly or 

permanently inundated within the next 100 years. Thus, it is not surprising if rising 

sea levels and their potential impact has attracted global attention in the last two 

decades. 

 

 

 Coastal inundation or flooding is defined as a natural hazard caused by rising 

sea levels that affects human populations and built-up areas around coastlines. In 

order to determine the vulnerability of coastal lands to incremental increases in sea 

level and inundation from flooding events, high resolution land elevation is an 

important parameter. Especially, inundation extent and depth-averaged in low-lying 

deltaic were observed to be extremely touchy to terrain representation. 

 

 

 In this study, sea level effects were investigate by combining related land and 

water information. This information can be retrieved from the combination of multi-

sensor technology such satellite altimeter, Digital Elevation Models (DEM) and 

Global Positioning System (GPS). Sea level trends over Malaysian seas due to global 

climate change within 23 years can be retrieved from a combination of multi-mission 

satellite altimeters. Meanwhile, Shuttle Radar Topography Mission (SRTM), 

Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital 

Elevation Model (ASTER-GDEM), Global Multi-resolution Terrain Elevation Data 

2010 (GMTED2010), TerraSAR add-on for Digital Elevation Measurements 

(TanDEM-X), airborne Light Detection and Ranging (LiDAR), and Global 

Positioning System (GPS) were used to produce a high accuracy Digital Elevation 

Model (DEM) over land areas. Thus, these techniques allow us to monitor the rate of 

sea level and to simulate the future impact of sea level in the Malaysian coast area.  
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1.2 Problem Statement 

 

 

The coastal areas and island of Malaysia are valuable assets in term of 

supporting local activities such as infrastructure, recreation, agriculture, forestry, 

fishing, aquaculture, and tourism. More importantly, these activities are threatened 

by rising sea levels due to the future negative impacts on coastal environment which 

threatens societies, ecosystem, and infrastructure. Inundation or coastal flooding 

events occur where the water level exceeds land elevation. This event can happen 

from numerous physical processes, including extreme rainfall, storm surges, 

tsunamis, high tidal ranges and increased sea levels. However, this study only 

focused on the impact of rising sea levels and does not take into account on other 

events that can affect coastal areas. Due to the aforementioned facts, a better 

understanding of the possible sea level change scenarios in this region is imperative 

since Malaysia is surrounded by water. With rising sea level becoming a pressing 

issues in the coastal areas, a comprehensive assessment should be conducted to 

assess the vulnerability of Malaysia coastal region to projected inundations. 

 

 

For certain periods, the sea level changes can be derived from coastal tide 

gauges observations for a specific area. In the meantime, the average sea level 

around the world is not rising uniformly at all locations, thus causing difficulties in 

predicting sea level changes with traditional tide gauge instruments due to the 

uneven topographical distribution of tide gauge stations mounted at shore area and 

no long period continuous deep ocean data (Din, 2014). Tide gauges only measured 

relative sea level, which reflects the vertical land motion effect, but to study the sea 

levels, absolute sea level is necessary (Feng et al., 2013). Poor maintenance and low 

quality data has resulted difficulties in monitoring long-term sea levels using tide 

gauge stations (Hannah, 2010). With the latest satellite technology development such 

as satellite altimeters, absolute sea level can be estimated, particularly along the 

coastline of Malaysian.  

 

 

 Nowadays, satellite altimeters are widely used to improve ocean dynamic 

studies and to determine absolute sea level from space in order to overcome the 

problems of existing techniques. In contrast with the tide gauge method, satellite 
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altimeters can provide long-term sea level data and monitor sea level changes over 

Malaysian seas, especially in the deep sea. By measuring absolute sea level from the 

altimetry data, projecting the future rate sea level can be done for the next 100 years. 

To obtain the best results for absolute sea level for the Malaysian region, all 

geographical effects such as geoid undulation, sea state bias, tidal range variation, 

and atmospheric effects that response to sea surfaces must be modelled and removed 

from sea surface height. 

 

 

 One of the most prominent issues caused by rising sea levels is coastal 

inundation over low-lying areas. Floods from the sea can overflow lowland areas 

such as beach ridges, coastal plains, deltas, lagoons, and bays, and this would 

threaten communities around the Malaysian coastal region. Elevation data play a 

major role in determining the extent to which inundating areas will be affected by sea 

level increments. More importantly, the spatial resolution and vertical accuracy of 

the Digital Elevation Model (DEM) data sources has a great influence in determining 

accuracy when mapping of the entire coastal areas that potentially impacted by 

coastal inundation when it‟s done later.  

 

 

Topographical surfaces with high-resolution data derived from LiDAR are 

extensively used in inundation modelling. However, LiDAR data is not available for 

some area in Malaysia region. Common publicly available DEM datasets are 

frequently used in coastal inundation risk assessments as an alternative method to 

overcome this problem. DEMs like ASTER GDEM with 1 arc-seconds horizontal 

resolution data set, SRTM with 1 and 3 arc-seconds horizontal resolution data set, 

and GMTED2010 with 7.5 arc-seconds horizontal resolution data set can be assessed 

and freely downloaded without charge, and are ready to use for modeling, even 

though their accuracy and resolutions are relatively low (Sande et al., 2012; and 

Eakins et al., 2014).  

 

 

 Therefore, various analyses were performed to study the spatial variation of 

the sea level rise over Malaysian seas using 23 years data of satellite altimeter data 

and external quality validation of DEMs vertical accuracy data to understand the 

proper modelling of coastal vulnerability assessments. Reliable vulnerability 
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assessment information is important to government agencies, local communities, 

environmental scientists, and the private sector for providing some solutions through 

proper management and adaptive planning to mitigate the impacts of rising sea levels 

on coastal areas in the future. 

 

 

 

 

1.3 Research Question 

 

 

The questions of this study are main arguments that need to be answered in 

order to design the objectives of this study. They are: 

 

a) How does the resolution and accuracy of DEM affect inundation risk 

assessment?  

 

b) What are the trends for sea level change for each Malaysian Sea and what is 

the magnitude of future rising sea levels for the next 100 years? 

 

c) Which areas are likely to be inundated due to sea level events with different 

magnitude values? 

 

 

 

 

1.4 Research Aims and Objectives 

 

 

The aim of this study is to determine the potential coastal inundation areas 

due to sea level changes using multi-mission satellite altimeters and DEM dataset. In 

order to achieve the research aim, the specific objectives are as follows: 

 

i. To evaluate the accuracy of DEM model from open sources data and 

LIDAR data. 

 

Different types of DEM data are available to the public in different 

spatial resolutions. The relationship and correlation between ground 
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control point data retrieved from GPS levelling and DEM datasets 

was analyzed in order to provide better DEM estimation for coastal 

areas.  

 

ii. To estimate spatial sea level trends and projection along the 

Malaysian coastal zone. 

 

Sea level trends were quantified using robust fit regression analysis 

and simple linear regression. After that, the magnitude of sea level 

rise was projected for the next 100 years.  

 

iii. To perform a coastal vulnerability assessment based on an inundation 

risk map. 

 

Vulnerability assessment in this study concentrates on risk assessment 

of the area affected areas and human populations around coastal 

areas as a result of coastal inundation due to rising sea levels. 

 

 

 

 

1.5 Research Scope 

 

 

The research scope of this study are as follows: 

 

i. The development of sea level rise simulations and the assessment of coastal 

vulnerabilities over the Malaysian region. The Strait of Malacca, the South 

China Sea, the Sulu Sea, and the Celebes Sea were selected due to their 

relationship to the Malaysian coastal region in terms of their geophysical and 

geological conditions (see Figure 1.1).  

a) Coastal zone around Kelantan (covering a small area using the highly 

accurate DEM data). 

b) Malaysian coastal zone (covering regional areas using the low 

accurate DEM data). 
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Figure 1.1: Malaysia Map (Worldatlas, 2017). 

 

ii. A ground truth dataset from Global Positioning System (GPS) were used to 

evaluate the vertical accuracy of Digital Elevation Model (DEM) data from 

SRTM, ASTER, GMTED2010, and TanDEM-X. Airborne Light Detection 

and Ranging (LiDAR) data over the Kelantan area was used in this study for 

data validation purposes. 

 

iii. Altimetry datasets retrieved from RADS (Radar Altimeter Database System) 

from eight multi-mission satellite altimeters (TOPEX/POSEIDON, ERS-1, 

ERS-2, Jason-1, Jason-2, Saral, Cryosat2 and EnviSat) from 1993-2015 were 

used to obtain sea level anomalies over Malaysian Seas. The increase in sea 

level rates and its magnitude was calculated using simple linear and robust fit 

regression. Scenarios of rising sea levels were projected for 2020, 2040, 

2060, 2080 and 2100. 

 

iv. In the simulation process, sea level values and suitable elevation models from 

global DEMs and LiDAR data played the important role in identifying the 

inundated areas. Potential inundation maps were displayed using Geographic 

Information System (GIS) software. 

 

v. For estimating vulnerable areas due to the rising sea levels, there is a variety 

of commercial, open source, and scientific software. In this study, Global 
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Mapper 18 and GIS tool (ArcGIS version 10.3), which has the capability to 

handle multiprocessing and various map models were used to model 

vulnerable areas and estimate inundation damage caused by coastal 

inundation with additional information such as human population data. The 

detail of this analysis is explained in Chapter 4  

 

 

 

 

1.6 Significance of the Study 

 

 

The findings from this study are expected to provide some benefits and impacts as 

follows: 

 

i. This study proves whether or not elevation datasets from LiDAR and global 

DEMs is suitable for use in natural hazard identification such as coastal 

inundation. 

 

ii. In terms of providing long term sea level data for coastal vulnerability 

assessments due to coastal inundation, the use of multi-mission satellite 

altimeters derive absolute sea level anomalies and to understand sea level 

trends over Malaysia Seas is more reliable than tide gauge data due to its 

sparse data distribution and high maintenance cost. The results of this 

analysis are expected to be valuable for other studies related to coastal 

environmental issues such as coastal inundation, coastal erosion, and impacts 

on the marine ecosystem. 

 

iii. Accurate, updated, and frequent rising sea level data projections are 

important because it can determine sea level increments in the future. The 

results of rising sea level projections for Malaysian Seas will become an 

important reference to helping authorities in coastal planning and 

development in the future. 

 

iv. This study highlights the potential areas along the Malaysian coastline that 

could be inundated due to rising sea levels based on projected sea level values 
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and DEM data sources. The generation of inundation risk maps could 

increase public awareness about coastal inundation, especially those who live 

in low-lying areas and near coastlines.  

 

v. The results of this study will serve as a pre-indicator to designing long-term 

inundation mitigation to reduce vulnerability by assessing potential risks 

impacts that may occur in the future.  

 

vi. The development of the simulation model, will help local government 

agencies such as the Department of Irrigation and Drainage (DID) and 

National Hydraulic Research Institute of Malaysia (NAHRIM) to predict the 

increments of sea level and flood discharge for the next events. However, in 

order to complete inundation forecasting operations in the future, this model 

needs to be integrated with other parameters such as hydraulic models, tidal 

models, wind speed models, wave heights, etc. 
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1.7 General Methodology 

 

 

Figure 1.2 illustrates the data flow as well the main processing steps taken for 

this study. This study is comprised of four major phases as shown in Figure 1.3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Framework of the Research Study. 
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Figure 1.3: Research Structure Organization. 
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1.8 Thesis Structure 

 

 

This thesis has been structured into five (5) chapters. The description of each 

chapter is outlined as follows: 

 

 

Chapter 1 introduces this study, which provides a brief review of climate 

change and global warming issues, sea level rise, topographic data and vulnerabilities 

in coastal region. The problem statement, research aim, research scope, and study  

significance were identified by constructing clear research objectives. 

 

 

Chapter 2 reviews the literature based on previous and related research. An 

overview of the sea level rise scenarios and the impact of climate change over on 

coastal areas is reviewed in this chapter. Moreover, knowledge of theoretical and 

principle of altimeter satellites is important to deriving sea level data from multi-

mission satellite altimeters to determine sea level anomalies. Besides that, this study 

also attempts to elaborate the topographic effect and resolution of elevation data used  

to predict coastal inundation and related damages along coastal regions. 

Understanding the methodology used for estimating coastal inundation and 

vulnerabilities is essential to designing the sea level simulation framework. 

 

 

Chapter 3 clearly describes the methods used in this study to obtain its results. 

An assessment of DEM datasets in terms of vertical accuracy with validation from 

ground truth data from GPS measurements are discussed in this chapter. 

Furthermore, the overall process of sea level derivation using Radar Altimeter 

Database System (RADS), sea level trend analysis using robust fit and linear 

regression, and projected rising sea levels over 100-year for the Malaysian Seas 

extensively described. At the end, coastal inundation modelling was performed to 

estimate flood risk uncertainty over coastal areas by combining sea level projection 

and elevation data are demonstrated in this chapter. 

 

 

Chapter 4 discusses the relationship and correlation between ground control 

points retrieved from GPS levelling and DEM dataset to provide better DEM 
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estimation within coastal areas specifically for coastal inundation risk assessment. In 

addition, the derivation of absolute sea level anomalies and changes in sea level 

magnitudes every 20 years until 2100 are described in details. A detailed discussion 

was carried out to identify an uncertainty impacts sea level changes for the particular 

areas based on coastal inundation modelling.  

 

 

Chapter 5 summarize the findings of this study based on the analysis, its 

contribution, and implications. Several recommendation and suggestions are 

proposed in order to improve future studies. 
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