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ABSTRACT 
 
 
 
 
 

 
In recent years, active vibration control (AVC) has emerged as an important 

area of scientific study especially for vibration suppression of flexible structures. 

Flexible structures offer great advantages in contrast to the conventional structures, 

but necessary action must be taken for cancelling the unwanted vibration.   In this 

research, a simulation algorithm representing flexible beam with specific conditions 

was derived from Euler Bernoulli beam theory. The proposed finite difference (FD) 

algorithm was developed in such way that it allows the disturbance excitation at 

various points. The predicted resonance frequencies were recorded and validated with 

theoretical and experimental values. Subsequently, flexible beam test rig was 

developed for collecting data to be used in system identification (SI) and controller 

development. The experimental rig was also utilised for implementation and validation 

of controllers. In this research, parametric and nonparametric SI approaches were used 

for characterising the dynamic behaviour of a lightweight flexible beam using input - 

output data collected experimentally. Traditional recursive least square (RLS) method 

and several artificial neural network (ANN) architectures were utilised in emulating 

this  highly  nonlinear  dynamic  system here.  Once  the  model of the  system was 

obtained, it was validated through a number of validation tests and compared in terms 

of their performance in representing a real beam. Next, the development of several 

conventional and  intelligent  control schemes  with  collocated  and  non-collocated 

actuator sensor configuration for flexible beam vibration attenuation was carried out. 

The investigation involves design of conventional proportional-integral-derivative 

(PID) based,  Inverse  recursive  least  square  active vibration control (RLS-AVC), 

Inverse neuro active vibration control (Neuro-AVC), Inverse RLS-AVC with gain and 

Inverse Neuro-AVC with gain controllers. All the developed controllers were tested, 

verified and validated experimentally.  A comprehensive comparative performance to 

highlight the advantages and drawbacks of each technique was investigated 

analytically and experimentally. Experimental results obtained revealed the superiorit y 

of Inverse RLS-AVC with gain controller over conventional method in reducing the 

crucial modes of vibration of flexible beam structure. Vibration attenuation achieved 

using proportional (P), proportional-integral (PI), Inverse RLS-AVC, Inverse Neuro- 

AVC, Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain control 

strategies are 9.840 dB, 6.840 dB, 9.380 dB, 8.590 dB, 17.240 dB and 5.770 dB, 

respectively. 
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ABSTRAK 
 

 
 
 
 
 
 

Beberapa tahun kebelakangan ini, kawalan getaran aktif (AVC) muncul 

sebagai bidang penting di dalam kajian saintifik terutamanya bagi pengurangan 

getaran struktur fleksibel. Struktur fleksibel menawarkan banyak kelebihan 

berbanding dengan struktur konvensional, tetapi langkah pencegahan perlu diambil 

untuk mengurangkan getaran yang tidak diingini. Dalam kajian ini, algoritma simulasi 

yang mewakili model rasuk fleksibel dengan syarat-syarat tertentu diperolehi daripada 

teori rasuk Euler Bernoulli. Cadangan algoritma perbezaan terhingga (FD) 

dibangunkan dengan cara ia membolehkan pengujaan gangguan dilakukan di beberapa 

tempat yang berbeza. Ramalan frekuensi resonans direkodkan dan disahkan dengan 

nilai yang diperolehi dari teori dan eksperimen. Selepas itu, pelantar ujian rasuk 

fleksibel dibangunkan untuk mengumpul data yang akan digunakan di dalam 

pengenalpastian sistem dan pembangunan pengawal. Pelantar ujian rasuk fleksibel 

juga akan digunakan di dalam uji kaji pelaksanaan dan pengesahan pengawal- 

pengawal yang telah dicadangkan. Dalam kajian ini, pendekatan identifikasi sistem 

(SI) parametrik dan bukan parametrik digunakan untuk mencirikan kelakuan dinamik 

masukan-keluaran menggunakan data masuk-keluar yang diperolehi melalui ujikaji. 

Kaedah tradisional kuasa dua terkecil recursive (RLS) dan beberapa senibina neural 

network buatan (ANN) digunakan dalam mewakili sistem dinamik yang sangat tidak 

linear ini. Apabila model sistem diperolehi, ia disahkan melalui beberapa ujian 

pengesahan dan dibandingkan dari segi prestasi model-model tersebut dalam mewakili 

rasuk pelantar yang sebenar. Seterusnya, pembangunan beberapa skim kawalan 

konvensional dan pintar dengan konfigurasi penderia-penggerak di satu titik operasi 

yang sama dan berlainan bagi pengecilan getaran rasuk fleksibel dijalankan. 

Penyiasatan  ini melibatkan reka bentuk  pengawal konvensional terbitan-kamiran- 

berkadaran (PID), Songsangan kuasa dua terkecil recursive bagi kawalan getaran aktif 

(RLS-AVC), Songsangan neuro bagi kawalan getaran aktif (Neuro-AVC), 

Songsangan RLS-AVC   bersama gandaan dan  Songsangan Neuro-AVC bersama 

gandaan. Semua pengawal-pengawal yang dibangunkan diuji dan disahkan melalui 

ujikaji yang dijalankan. Perbandingan secara menyeluruh untuk menonjolkan 

kelebihan dan kelemahan setiap teknik disiasat secara analisis dan ujikaji. Keputusan 

eksperimen yang diperolehi mendedahkan keunggulan pengawal Songsangan RLS- 

AVC bersama gandaan berbanding kaedah konvensional mengurangkan mod penting 

getaran struktur rasuk fleksibel. Jumlah pengurangan getaran yang diperoleh bagi 

pengawal terbitan (P), terbitan-kamiran (PI), Songsangan RLS-AVC, Songsangan 

Neuro-AVC, Songsangan RLS-AVC bersama gandaan dan Songsangan Neuro-AVC 

bersama gandaan adalah 9.840 dB, 6.840 dB, 9.380 dB, 8.590 dB, 17.240 dB and 5.770 

dB. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

 The emergence of industrial needs in flexible beam structures are very rapid in 

the last two decades replacing the conventional rigid structures especially in 

mechanical, aerospace, civil and architectural systems (Su and Chesnik Carlos, 2011; 

Damanpack et al., 2013; Pai, 2013; Panferov et al., 2013). The advantages of highly 

flexible beams benefited in many applications such as flexible robotic arms, helicopter 

rotor blades, lightweight turbine machine rotor blades, slender space structures for 

buildings to name a few. Flexible structures used less material and are lighter in 

weight, thus reducing the overall cost, man power, wind resistance and energy 

requirement. Despite all the advantages associated with flexible structures, reducing 

structure’s size has a major drawback of higher sensitivity to unwanted vibration. If 

the machinery is being affected by unwanted vibration, many processes which require 

precision cannot take place (Lyshevski, 2003; Tao et al., 2006; Zhi and Ru-fei, 2010; 

Jian and Bin, 2010). 

 

 Unwanted vibration is undeniably a limiting factor and undesired phenomenon 

in system. Vibration occurs by introducing an excitation force either intentionally or 

unintentionally. Some of the effects of this vibration are affecting the machine’s 

efficiency, reduce overall performance and life span of the system. Without proper 

precautions, this vibration capable of damaging and destructing the whole system. 

Hence, it is required to find the best solutions to overcome this crucial problem. In 

order to suppress the unwanted vibration acting on flexible systems, there are various 

strategies and attempts have been introduced over the past few years. The cheapest and 
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easiest method is to introduce passive control strategy on the desired system. Passive 

scheme consists of mounting passive material such as vibration dampers and dynamic 

absorbers on the system. Still, this attempt might not efficient enough if to be 

implemented on flexible structures. Some of the major disadvantages of passive means 

are ineffective to be utilised at low frequencies and the additional volume and mass is 

impractical when physical space and mass loading are critical criteria in a system 

(Tokhi and Hossain, 1996; Meurers et al., 2003; Jnifene, 2007).  

 

Aside from passive control, another approach which has received remarkable 

research attention in the last decade is active control. Active control is proven to be 

more effective, reliable, and flexible where the actuator can be adjusted according to 

the characteristic of vibration during operation. With the help of active vibration 

control (AVC), a precision industrial process can be maintained on a platform 

essentially vibration free. AVC concept is very different with passive strategy. In 

AVC, it reduces the amplitude of structural vibration of a dynamical system by 

introducing a secondary source of vibration to the dynamical system. With the 

superposition of waves (cancellation source), the aim is to destructively interfere with 

the unwanted source and thus result in a reduction in the level of vibration at desired 

location(s) (Mat Darus and Tokhi, 2005). Besides, it is possible to control the 

unwanted vibrations with a broad band frequency through the AVC. As a result, AVC 

is an encouraging method to be used in the field of flexible structures. Other 

applications of AVC are aerospace equipment, semiconductor industry, ground 

transportation equipment, aerospace, architectural systems and many more (Hudson 

and Reynolds, 2012; Wang et al., 2015; Enriquez-Zarate et al., 2016; Prakash et al., 

2016; Shukla and Ghodki, 2016). 

 

Thus, in this research, an investigation of an AVC for optimum vibration 

reduction of flexible beam which subjected to a vibration excitation. For the 

development of an artificial neural network (ANN) controller algorithm on vibrating 

structure, flexible beam structure with fixed-free ends condition is considered in this 

study. In order to develop an effective control mechanism for vibration suppression 

control, an accurate dynamic model which represents flexible beam structure is 

needed. Motivated by the proven advantages of finite difference (FD) approach for 

numerical analysis of flexible structures, this method is employed in this study and 
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used to solve the partial differential equation (PDE) characterising the dynamic 

behaviour of a flexible beam system in specific condition. Next, system identification 

(SI) using parametric and ANN nonparametric techniques which determine model that 

best describes input and output behaviour of a system are presented. The parametric 

model of the system is developed using recursive least square (RLS), while 

nonparametric models are identified using several types of ANN and classified 

according to their structures.  

 

 

 

1.2 Problem Statement 

 

Vibration suppression is a crucial problem which related to flexible structures 

especially in the area of robotics system, where flexible structures offer several 

advantages compared to rigid structures. However, one of the major drawback in 

dealing with this structures is they are highly sensitive to the effect of unwanted 

oscillation. To avoid this limiting factor which undeniably affecting the system’s 

overall performance, the best precautions must be taken in order to solve this problem. 

Therefore, several control schemes which utilising AVC methods have been designed 

in order to eliminate the unwanted oscillation acting on the flexible structures.  

 

Despite the fact that there are countless control strategies have been devised 

for AVC on flexible beam structures. Nonetheless, AVC is still an open area of 

research to be explored. Furthermore, flexible structures are known to possess many 

resonance modes and low frequency. Thus, vibration control of nodes become an 

important issue to be handled. With the invention of piezoelectric patch, the device has 

become one of popular tool to apply in the study of AVC area. These smart materials 

are generally small in size, consume low energy, offer fast response and can be 

integrated with the flexible structures. Taking advantage from the ability of 

piezoelectric patch to convert mechanical to electric energy and vice versa, this fact 

was used in this research as actuation strategy (acts as sensor or actuator), (Schoeftner 

et al., 2015). 

Hence, in this study, simulation and experimental study of PID based and 

Inverse AVC control schemes were conducted in order to find the best method able to 
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damp the unwanted oscillation of the system. In the beginning, best model which 

represents the flexible beam was estimated using RLS and four types of ANN 

architectures. Then, PID based and Inverse AVC control schemes were developed 

offline to investigate the performance of each controller in attenuating the unwanted 

vibration acting on flexible beam. Finally, all these controllers were implemented on 

the real rig as the dynamic changes occur on the system resulted from the external 

disturbances. Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain were 

also considered with aim to increase total attenuation of the vibration. Comparative 

study among developed control schemes were compared and analysed.  

 

 

 

1.3 Research Objectives 

 

 This research focuses on the development of intelligent AVC schemes for 

flexible beam structures. Hence, four main objectives of this study are as follows: 

 

(1) To develop single input single output (SISO) active vibration controller 

for flexible beam using conventional and Inverse control strategies. 

 

(2) To test, verify and validate the performance of all the developed 

controllers for vibration suppression flexible beam via simulation and 

experimental test using smart actuators. 

 

(3) To develop a parametric and nonparametric identification techniques 

for dynamic modelling of a flexible beam structure. 

 

 

 

1.4 Scope of the Research 

 

The scope for this research comprise the following issues: 
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(1) In this study, fabrication of a lab-scale experimental rig to represent one 

edge clamped cantilever flexible beam structure with uniform cross 

section is constrained to transverse motion. 

 

(2) The parametric modelling using RLS method and four types of ANN 

nonparametric modelling using multi-layered perceptron (MLP) 

network, nonlinear autoregressive with exogenous variables (NARX), 

ELMAN network and radial basis function (RBF). 

 

(3) The implementation of AVC for flexible beam structure is restrained to 

SISO control strategy. 

 

(4) Simulation and experimental evaluation of several AVC schemes using: 

 

i) PID based controllers (P and PI) with non-collocated actuator-

sensor configuration. 

 

ii) Inverse RLS-AVC controller with collocated actuator-sensor 

configuration. 

 

iii) Inverse Neuro-AVC controller with collocated actuator-sensor 

configuration. 

 

(5) The robustness tests for proposed controllers are conducted 

experimentally limited to variation of disturbance amplitude range (-5 

V to 10 V) and beam tip load (6 g and 12 g). 

 

 

 

1.5 Contributions of the Research 

 

 A brief outline of the contributions of this research is given as follows:   
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(1) This research provides the development of AVC controller for the 

removal of resonance phenomenon in vibrating beam structure. Non-

collocated and collocated configurations for the positions of actuator 

and sensor are implemented in this research. The implementations of 

developed controller algorithms in MATLAB Simulink are briefly 

explained.  

 

(2) This study has developed several types of conventional and Inverse 

control strategies. These controllers are used to dampen the unwanted 

oscillation acting on the flexible beam structure. Comparative studies 

between these methods are thoroughly discussed in this study.  

 

(3) The validity of proposed control algorithms is investigated through an 

experimental procedure. Test results show that the controllers are able 

to suppress the unwanted vibration and work well in attenuating the 

crucial dominant resonance modes. 

 

 

 

1.6 Methodology of the Study 

 

The complete flowchart which describes the research methodology used in this 

study is shown in Figure 1.1. The research begins with a critical and comprehensive 

literature review related to this study is conducted to identify the research gaps within 

this area of research. 
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Figure 1.1 Research procedure flowchart 
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1.6.1 Dynamic Modelling of Flexible Beam Structure 

 

 A mathematical model of flexible cantilever beam in transverse motion is 

developed. To control flexible beam efficiently, it is required to have an accurate 

dynamic model. Various approaches have been developed by previous researches for 

modelling the flexible beam using numerical analysis methods to solve the PDE 

characterising the flexible beam system’s dynamic behaviour. For the purpose of this 

study, FD method was used. The algorithm is implemented within the MATLAB 

environment. For the validation purpose, predicted spectral density obtained from the 

model was compared with the theoretical and experimental values. 

 

 

 

1.6.2 Flexible Beam Test Rig Setup 

 

Design, fabrication and development of a lab-scale flexible beam experimental 

test rig. The test rig consists of an integration of mechanical and electrical components 

which include the flexible beam, data acquisition and instrumentation system. This test 

rig was used as a platform to demonstrate the performance of proposed control 

strategies which will be done later. Input-output data acquired experimentally was used 

later in Chapter 4 for the development of dynamic modelling and identification of the 

flexible beam structure. 

 

 

 

1.6.3  SI Analysis of Flexible Beam Structure 

 

 SI using parametric RLS method and nonparametric ANN technique which 

determine the dynamic model that best describes input and output behaviour of the 

flexible beam system was presented. ANN consists of a network or circuit of biological 

neurons and there are classified according to their architectures. Several architectures 

namely MLP, NARX, ELMAN network and RBF were assessed in this study. Both 

parametric and nonparametric method were used in order to find the best technique 

that can represent the flexible beam structure. In parametric modelling, the model to 

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Neuron
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fit the data is known. While for nonparametric modelling the data will define how the 

model should look like, thus makes it perform better in capturing hidden pattern in the 

data compared to parametric ones.  

 

 

 

1.6.4 Validation Tests 

 

Each model obtained from parametric and nonparametric approaches were 

tested their effectiveness in emulating the system’s dynamic behaviour. The 

performance of the network was observed based on its capability to represent the 

system with the lowest mean squared error (MSE), one step ahead (OSA) prediction 

and was also validated using correlation tests. 

 

 

 

1.6.5  Development of ANN AVC Controller Algorithm 

 

 Inverse RLS-AVC, Inverse Neuro-AVC, Inverse RLS-AVC with gain and 

Inverse Neuro-AVC with gain algorithms were developed, and its performance for 

flexible beam vibration suppression were simulated and compared to the conventional 

PID based controllers (P and PI). The non-collocated actuator/sensor configuration 

was adopted for P and PI controllers while collocated actuator/sensor configuration 

was utilised for Inverse RLS-AVC, Inverse Neuro-AVC, Inverse RLS-AVC with gain 

and Inverse Neuro-AVC with gain control algorithms. These developed control 

schemes are capable to eliminate vibration acting on the system, thus spectral 

attenuation can be achieved.  

 

 

 

1.6.6  Experimental Test of ANN AVC Controller Algorithm 

 

All the developed intelligent controllers were validated experimentally. Their 

efficiency and performance in achieving vibration suppression was observed. 
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1.6.7 Comparison Study 

 

 Lastly, both results from the simulation and experimental studies were 

analysed and compared thoroughly to see how well the control system reduce the 

vibratory disturbance on flexible beam. 

 

 

 

1.7 Organisation of the Thesis 

 

 This research is organised into eight chapters. A brief outline of all the chapters 

are as follows:  

 

Chapter 1 presents an introduction to the research problem. Background of this study, 

problems statements, objectives, scopes covered, contribution of the research and 

methodology of the study are all outlined in this chapter 

 

Chapter 2 presents the literature review on identifying flexible structures using several 

parametric and nonparametric techniques. Next, previous works on AVC of flexible 

structures are addressed. Various AVC control strategies which have been developed 

on flexible structures are reviewed. 

 

Chapter 3 presents the development of dynamic modelling of a flexible beam structure 

in two-dimensional with fixed-free ends (cantilever beam) using FD approach to 

characterise the plant over specific range of frequencies. The dynamic equation 

representing flexible beam in transverse motion is obtained. Next, the dynamic 

response of the flexible beam system is then simulated within MATLAB environment. 

The algorithm is developed in such way that disturbance can be excited at any point 

on the beam. Next, comparison of the modes of vibration with the theoretical value is 

carried out in order to ensure the validity and reliability of the proposed FD algorithm 

in representing the actual response of flexible beam. Detailed explanation on the 

experimental set-up of flexible beam test rig. All hardware used in this study is 

discussed in detail in this chapter. To identify the resonance frequencies of flexible 
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