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ABSTRACT

Oil palm empty fruit bunches (EFB), a major solid waste in the palm oil
industries is a source of lignocellulosic biomass. Cellulose, which is the major
component of EFB can be converted to lactic acid. Production of lactic acid is
desirable because it can be utilized in industries including bioplastics, chemicals, and
cosmetics. The aim of this study is to produce lactic acid on a larger scale from
microwave-alkali (Mw-A) pretreated oil palm EFB using simultaneous
saccharification and fermentation (SSF) process with Rhizopus oryzae fungus. The
present work is divided into four different stages; pretreatment of EFB, development
of practical and effective procedure for inoculum build up for lactic acid production
on a pilot scale, optimization of process to improve the yield by using fed batch
mode operation and scale up of lactic acid production in 150 L fermentor. The Mw-A
pre-teatment proved to be an effective method for removing lignin, preserving
cellulose fraction and enhancing the enzymatic hydrolysis of EFB. The composition
changes on the lignin, hemicelluloses and cellulose after pretreatment was used as
indicators to represent the effectiveness of the pretreatment. In order to fulfill the
requirement of massive inoculum production for large scale fermentation, a study
was performed to develop a protocol in preparing inoculum for lactic acid production
from EFB. Multi-stage inocula were developed and their fermentation ability was
assessed. The procedure performed eliminated the requirement of huge quantity of
spore suspension and improved the fermentation consistency. In order to obtain the
desired morphological form of Rhizopus pellets, several parameters such as
concentration of spore suspension, storage time and doses of inoculum were varied.
Longer storage time of spore suspension of more than three days led to the formation
of free mycelia. Low inoculum concentrations of 107 spores/ml are beneficial for
formation of pellet. In addition, xylose has a positive effect on pellet formation
compared to glucose. To achieve a high lactic acid concentration in the broth, high
solids loading was required to allow a higher rate of glucose conversion. However, a
decrease in the final lactic acid concentration was observed when running SSF at a
massive insoluble solids level. High osmotic pressure in the medium led to poor
cellular performance and caused the Rhizopus oryzae pellets to break down, affecting
the lactic acid production. The process performance was further improved using a
fed-batch operation mode. The fed-batch operation was observed to facilitate higher
lactic acid concentration of 12 g/L, compared with the SSF batch mode with final
lactic acid concentration of 6.8 g/L. For scale-up of the lactic acid fermentation, the
strategy was adopted to provide almost equivalent oxygen mass transfer coefficient
(kLa) to the different-sized fermentor systems (16 L and 150 L), thus ensuring the
same amount of dissolved oxygen supply in each fermentation broth. At kLa value of
0.06 s-1, final lactic acid concentration in both scales were found identical.
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ABSTRAK

Tandan kosong buah kelapa sawit (EFB) adalah salah satu daripada sisa pepejal
utama dalam industri minyak sawit dan merupakan sumber biojisim lignoselulosa. Selulosa
adalah komponen yang paling tinggi dalam EFB yang boleh ditukar kepada asid laktik.
Pengeluaran asid laktik adalah wajar kerana ia telah digunakan dalam industri termasuk
bioplastik, bahan kimia, dan kosmetik. Tujuan kajian ini adalah untuk mengeluarkan asid
laktik berskala besar daripada EFB terawat gelombang mikro-alkali (Mw-A) melalui proses
fermentasi dan pensakaridaan serentak (SSF) menggunakan kulat Rhizopus oryzae. Kajian
ini dibahagikan kepada empat bahagian yang berbeza iaitu prarawatan EFB untuk mengenal
pasti perubahan fizikal dan kimia, pembangunan prosedur yang praktikal dan berkesan untuk
menyediakan inokulum bagi penghasilan asid laktik pada skala perintis, pengoptimuman
proses untuk meningkatkan hasil asid laktik dengan menggunakan mod operasi suapan
berkelompok dan pengskalaan penghasilan asid laktik dalam fermentor 150 L. Prarawatan
Mw-A terbukti berkesan untuk mengeluarkan lignin, mengekalkan selulosa dan
meningkatkan hidrolisis enzim EFB. Perubahan komposisi pada lignin, hemiselulosa dan
selulosa selepas prarawatan digunakan sebagai penunjuk keberkesanan rawatan. Bagi
memenuhi keperluan inokulum yang banyak pada fermentasi berskala besar, satu kajian telah
dilakukan untuk membangunkan protokol dalam menyediakan inokulum untuk penghasilan
asid laktik daripada EFB. Inokula bertingkat telah dibangunkan dan keupayaan fermentasi
tersebut dinilai. Prosedur ini dapat menghapuskan keperluan kuantiti spora yang besar dan
meningkatkan ketekalan proses fermentasi. Untuk mendapatkan bentuk morfologi yang
dikehendaki iaitu pelet Rhizopus, beberapa parameter seperti kepekatan spora, masa
penyimpanan dan dos inokulum telah dikaji. Penyimpanan spora yang lama iaitu melebihi
tiga hari menyebabkan pembentukan miselia. Kepekatan inokulum yang rendah iaitu 107
spora/ml bermanfaat untuk pembentukan pelet. Di samping itu, xilosa mempunyai kesan
positif ke atas pembentukan pelet berbanding glukosa. Bagi mencapai kepekatan asid laktik
yang tinggi, substrat pepejal yang tinggi diperlukan untuk membolehkan kadar penukaran
glukosa yang lebih tinggi. Walau bagaimanapun, penurunan hasil asid laktik diperoleh
apabila proses SSF dilakukan mengunakan substrat pepejal yang terlalu tinggi. Tekanan
osmosis yang tinggi di dalam media membawa kepada prestasi sel yang lemah dan
menyebabkan pelet Rhizopus oryzae pecah seterusnya menjejaskan pengeluaran asid laktik.
Untuk meningkatkan prestasi proses, mod operasi suapan berkelompok telah digunakan.
Operasi suapan berkelompok menghasilkan asid laktik yang lebih tinggi iaitu 12 g/L,
berbanding dengan mod SSF kelompok dengan kepekatan asid laktik 6.8 g/L. Untuk
pengskalaan fermentasi asid laktik, strategi yang diguna pakai telah menyediakan pekali
pemindahan jisim oksigen (kLa) yang hampir sama kepada sistem berbeza bersaiz (16 L dan
150 L), dengan itu memastikan jumlah bekalan oksigen terlarut yang sama di dalam setiap
brot fermentasi. Pada nilai kLa 0.06 s-1, kepekatan akhir asid laktik di kedua-dua skala
didapati serupa.
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CHAPTER 1

INTRODUCTION

1.1 Justification and Background

In Asia and the Pacific region, the consumer demand for non-biodegradable

plastics has increased sharply because of urbanization and economic growth. This

trend has resulted in an increased of plastic waste which posed a serious threat to the

environment and human health. Waste plastics are not biodegradable for hundreds of

years. People around the world have begun to realize the magnitude of this problem,

and countries are taking steps to reduce the use of non-biodegradable plastics. The

negative impact of waste plastics could be addressed or minimized by finding an

alternative plastic compound that is truly biodegradable and compostable. After years

of research into principle compostable, bio-based plastics, polylactic acid (PLA) is

found to be one of the superior choices and has the desired strength, flexibility, and is

fully biodegradable. Polylactic acid’s physical properties and the degradation rate

can be altered by manipulation of the manufacturing process, making it much more

versatile.
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In the past, the use of PLA as a biodegradable plastic lacked popularity

because it was too expensive to produce for large-scale applications because the

main component, lactic acid, was too expensive. Today, most commercial lactic acid

is produced from the fermentation of starch, glucose, and sucrose (Lunelli et al.,

2011; Abdel-Rahman et al., 2015; Wakai et al., 2014). The fermentation of these

sugars into lactic acid is well-established in terms of both the microbiology and the

chemical processes.

To reduce the feedstock cost, many studies were focused on the fermentation

of agro-industrial wastes, such as lignocellulosic carbohydrates, for lactic acid

production (Ye et al., 2014; Zhang et al., 2016; Miura et al., 2004; Pesionne et al.,

2014). Lignocellulose biomass is viewed as a sustainable lactic acid feedstock. The

beauty of this process lies in the opportunity given to the agricultural industry to

solve both the economic and environmental problems of waste by turning it into a

highly desirable product.

The worldwide production of lignocellulosic biomass is reported to reach

about 200 × 1019 metric tons per annum (Saini et al., 2015). The lignocellulosic

resources included;

(i) agricultural residues (palm trunk and empty fruit bunch (EFB), corncobs,

wheat straw, sugarcane bagasse, corn stover, coconut husks, wheat rice, and

empty fruit bunches);

(ii) forest residues (hardwood and softwood);

(iii) energy crops (switch grass);

(iv) food wastes

(v) municipal and industrial wastes (waste paper and demolition wood).

The high availability of biomass has made it as one of the most potential

resources for transportation fuels and chemicals platform. Previously, most of the

lignocellulose wastes were burnt which led to the pollution crisis. Lignocellulosic
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biomass consists mainly of three biopolymers: (i) cellulose (~30–50% by weight), (ii)

hemicellulose (~19–45% by weight), and (iii) lignin (~15–35% by weight). These

polysaccharides are associated with each other in a heteromatrix to different degrees

and varying composition depending on the type of biomass, species of plant, and

even source of the biomass. The chemical composition of biomass for different

types of agriculture, industrial, and forestry wastes is shown in Table 1.1.

Table 1.1: Composition of various lignocelluloses biomass (Anwar et al., 2014)

Types of

biomass

Lignocellulosic

substrate

Cellulose

(%)

Hemicellullose

(%)

Lignin

(%)

Agriculture

waste

Corncob

Wheat straw

Barley straw

Corn stover

Nut shell

45 35 15

30 50 15

33-40 20-35 8-17

39-42 22-28 18-22

25-30 25-30 30-40

Energy

crops

Empty fruit bunch

Switch grass

41

45

24

31.4

21

12

Forestry

waste

Hardwoods stems 40-55 24-40 18-25

Softwoods stems 45-50 25-30 25-35

Leaves 15-20 80-85 0

Industrial

waste

Waste paper from

pulp
60-70 10-20 5-10

wastewater solid 8-15 0 0

Every year, an estimated more than 200 million dry tons of agricultural

residues were generated in the world (Muth et al., 2013). There are many

lignocellulosic agricultural waste available for lactic acid production such as EFB,

sugarcane baggase, rice straw, corncobs and corn stover. Most of these materials

remain potentially accessible and are not effectively utilized. However, the situation
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is now changing due to the approaching depletion of fossil oils, and the

competitive uses of starch materials as chemical feedstock and food, as well as the

increasing public concern about the environment. During the past decades, intensive

researches were conducted in this field and has yielded significant progress.

It was reported, about 90 million tonne accumulation of lignocellulose

biomass from oil palm milling was generated (Sulaiman et al., 2011). The crop

residues comprised of trunk, fronds, shells, palm press fibre and empty fruit bunch.

The amount of empty fruit bunch that can be sustainably collected in the Malaysia is

estimated to be 2.8 million dry tonne/yr. Owing to its sustainable abundance, EFB

has been considered to be one of the most promising feedstock for lactic acid

production in Malaysia.

However, lignocellulose biomass fractionation is a very complex process as

high recovery of polysaccharides (cellulose, hemicellulose, and lignin) is required so

that all three components can be fully converted into useful end products (Lee et al.,

2014; Jonsson and Martin, 2016). Sometimes, the biomass pretreatment led to over

depolymerisation of polysaccharide chains and subsequent sugar ring opening (Lee

et al., 2014). Generally, a biomass pre-treatment step is necessary to ensure the

separation of cellulose component from the tight bond of polymeric constituents

(cellulose, hemicellulose, and lignin) in lignocellulosic biomass. The main intention

of this fractionation treatment is to increase the accessibility of cellulose fiber to

chemical attack prior to mild hydrolysis of isolated cellulose, by cleaving the ether

bonds between glucose chains in order to produce nanosize cellulose intermediate

(Lai and Idris, 2013; Ahktar et al., 2014).

The process scheme in production of lactic acid from cellulosic biomass has

much to share with that of bioethanol production from biomass. It is simultaneous

sacchariffication and fermentation (SSF) (Kumneadklang et al., 2016; Zhao et al.,

2015). It is an art in bioprocess engineering that can transform lignocellulosic

carbohydrate to end product in single process. There is large volume of research
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work has been done to investigate its connection with ethanol production from

cellulosic biomass (Narra et al., 2015; Elemike et al., 2015; Abideen et al., 2011).

Recently, this technique was also been used in producing lactic acid. It it notably

that many of lactic acid producing microorganisms are thermo tolerant. Thus,

operating temperatures of SSF are favor to conduct near to the optimum

temperature level of the enzymes hydrolysis process. Consequently, the overall

process become more efficient, especially in the use of enzymes.

In SSF, the cellulosic substrate, cellulase enzyme and the microorganism are

introduced into one reactor. The enzymes breaks the cellulose chains into cellobiose

and glocose during the saccharification process. Cellobiose and glucose are known

to inhibit enzymes activity. If an enzymatic hydrolysis is carried out separately, the

hydrolisis rate is very low due to inhibition of the cellulase by cellobiose and

glucose. To overcome this end product inhibition, the SSF process was invented

(Ooshima et al., 1985; Spangler and Emert 1986). By introducing microorganism

along with cellulase, glucose can be consumed by the microorganism as soon as it

formed. As a result, the enzymatic hydrolysis reaction is pulled in the forward

direction and the rate of glucose production is significantly enhanced. Therefore,

SSF proceeds under glucose limitation and the inhibition of glucose on enzymes is

completely eliminated.

The production of lactic acid using the SSF process can be performed by

bacteria or fungi cultures. There are several major reasons for using fungi instead of

bacteria; among these, fungi is normally used when the substrate is a raw material or

a waste material (Soccol et al., 1994; Miura et al., 2004; Park et al., 2004). Under

such circumstances, there is no requirement for specific nutrients, and most fungi

can tolerate very acidic conditions. Other advantages include the simple and cheap

downstream processing, whereby the filamentous or pelleted biomass can easily be

removed from the fermentation broth.

Despite many studies conducted on the bioconversion of lignocellulose

biomass using solid substrates, most of the previous studies were focused on the use
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of bacteria, e.g., Lactobacillus spp. (Sreenath et al., 2001; Garde et al., 2002; Hu et

al., 2015). Recently, a fungus producing lactic acid, Rhizopus spp., was used in the

fermentation process and was proven to produce lactic acid from lignocellulose

biomass. However, in most of the studies that produced lactic acid via SSF using

Rhizopus spp., the process involved lignocellulose hydrolysate (liquid) as a substrate,

which was accomplished in two stages (Miura et al. 2004; Zhang et al. 2015).

Hamzah and Idris (2008) had made an attempt to produce lactic acid using SSF of

EFB in a laboratory-scale experiment using Rhizopus spp. pellets and cellulolytic

enzymes. Unlike other studies (Miura et al. 2004; Ye et al. 2014), which used

lignocellulose hydrolysate (liquid) as the substrate, Hamzah and Idris (2008) used

EFB, as solid substrate which was pretreated using a microwave-alkali method in

the one stage SSF and the maximum lactic acid yield was 11 g/l. Besides, Hamzah

and Idris (2008), the lactic acid production using a solid substrate and R.oryzae has

not been widely investigated.

1.2 Problem statement

In Malaysia palm oil tree was cultivated over an area of 5 million hectares. It

is predicted that the amount of biomass waste from EFB in year 2020 will reach 2.8

million tons. The huge accumulation of waste lead to serious problem as they do not

have any suitable end use and are generally burnt in the fields causing environmental

pollution. Therefore EFB as lignocellulose carbohydrate source can be used as a

renewable and cheap substrate for lactic acid production. Lactic acid was reported to

be produced from microwave alkali pre treated EFB by Rhizopus oryzae (Hamzah

and Idris, 2008). However, the study was mainly performed at laboratory scale

which involved shake flask fermentations. Up to this date, there is no report or data

published for large scale production of lactic acid from solid substrate by using

Rhizopus oryzae. Therefore, the present study aims to scale up the production of

lactic acid and optimizes the yield as well. Several issues of cellulosic lactic acid

production such as pretreatments and inoculum development were addressed. Scale-
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up strategy was also developed that will lead to the advancement of knowledge and

provide engineering aspect guidance towards development of commercial industrial-

scale of cellulosic lactic acid from EFB.

1.3 Significant of the Study

High production cost and low lactic acid yield are the factors that limit the

industrial lactic acid production using lignocellulose biomass. One of the major

production cost is the substrate used. In this study, EFB is used as a substrate, which

can significantly reduce the feedstock cost for lactic acid production. It is believed

that this work would demonstrate the advantages of using low cost substrate derived

from agricultural residue for lactic acid production. Process engineering method

used in this work, would prove potential application for the future commercial

production of lactic acid as a starting material for polylactic acid production.

Microbial lactic acid production process unfortunately remains less efficient and its

industrialization production process is still in the research stages. Therefore, aim of

this project is to determine the possibility of large scale production of lactic acid

from EFB at pilot scale. Despite the detailed knowledge of the bio refineries

involved in the bio conversion pathway of lactic acid and basic fermentation studies ,

there is still no published information regarding the engineering aspects of

fermentation scale-up of lactic acid from EFB.
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1.4 Objectives and Scope of Study

The objectives of this research are:

1) To evaluate the effectiveness of a 30 L microwave alkali pretreatment of

empty fruit bunch (EFB) on lactic acid yield and identify the physical and

chemical changes on EFB fibre.

2) To develop a preculture technique in a 16 L bioreactor and control strategy to

obtain desirable morphological form of Rhizopus oryzae NRRL 395 for

lactic acid production in airlift bioreactor.

3) To improve the process performance in a 16 L bioreactor by using fed batch

mode operation. This stepwise procedure was aimed at achieving high SSF

yields, at lower enzyme loading, together with high lactic acid concentration.

Effect of addition fresh enzyme during the process was also assessed.

4) To scale up the proposed bench scale SSF procedure and to identify the key

issues of cellulosic lactic acid production at larger scales (150 L).

In order to achieve these objectives, the following scope of work should be covered.

1) The raw EFB and microwave-alkali treated EFB composition in terms of

cellulose, hemicellulose and lignin content were determined.

2) The chemical and physical changes of EFB fibre using FESEM

(Scanning Electron Microscope) and FT-IR (Fourier transform Infrared

Spectroscopy were analyzed.

3) Identifying the factors that influence the formation of Rhizopus oryzae

NRRL 395 pellet in a 16 L bioreactor including spore concentration,

storage time of spore suspension and types of carbon sources used.

4) The growth profile of Rhizopus oryzae NRRL 395 in bioreactor were

determined.

5) The effect of multi-stage inoculum on biomass production and their

fermentation ability were assessed.
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6) The effect of enzymes dosage, substrate concentration on lactic acid

concentration were also investigated.

7) In addition, the effect of fed batch mode operation on lactic acid production

using 3 different strategies were included using the following strategies:

i) Strategy A ( substrate and enzymes were added initially. After 24 h

of fermentation, an additional 15 g of solid was added).

ii) Strategy B ( substrate and enzymes were added initially. Additional

fresh fresh substrate was added twice after 24 h and 48 h).

iii) Strategy C (substrate and enzymes were added initially. Additional

both substrate and enzymes was added at 24 and 48 h of

fermentation).

8) Evaluation of oxygen transfer coefficient ( akL ) using dynamic gassing out

technique.

9) Investigates the effect of aeration rate on volumetric oxygen mass transfer

coefficient ( akL ) in the 16 L and 150 L fermentor systems.

10) Study effect of aeration rate on the production rate of lactic acid and

morphology of Rhizopus oryzae NRRL 395.

11) Compare time course profiles of cell growth, glucose consumption, DO

concentration and lactic acid production in a 16 L and 150 L bioreactor.

The overall research frame work was presented in flowchart in Figure 1.1
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Figure 1.1: Flowchart of research activities

Raw EFB
Microwave

alkali
Pre-treatment

Scaling up
150 L

Fermentation

Hydrolysis Fermentation

SSF 16 L

Enzymes

Pellet R.oryzae
NRRL 395

Parameter studied
1. Determine the chemical composition of
raw and treated EFB2
2. Analyses the chemical and physical changes
using FESEM and FTIR

Parameter studied
1. Identify the factors that influence the
formation of R.oryzae pellet including spore
concentration, storage time of spore and types
of carbon used.
2. Determine the growth profile of R.oryzae
NRRL 395
3. Study the effect of multi-stage inoculum
on biomass production and lactic acid

1.Effect of enzymes dosage on lactic acid
production

Parameter studied
1.Evaluation of oxygen transfer coefficient using dynamic
gassing out method
2.Investigated the effect of aeration rate on volumetric oxygen
mass transfer coefficient in 16 L and 150 L fermentor system
3.Study effect of aeration rate on the production rate of lactic
acid and morphology of R.oryzae NRRL 395

Parameter studied
1.Effect of fed batch mode operation
using 3 different strategy A, B and C
on lactic acid production
2.Effect of substrate loading on
lactic acid production
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