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ABSTRACT 

Ageing process in power cables is inevitable especially cables under prolonged 

application of strong electric field for many years. Ageing is normally associated with 

space charge accumulation at the electrodes or in the bulk of the polymeric material. 

Many established non-destructive methods are available in detecting the space charge 

distribution in the material. However, most of these methods have limited spatial 

resolution thus producing large uncertainty in observing the space charge profiles near 

the electrodes. One method that has captured a lot of attention over the years for its 

reliable results and data thus enhancing the knowledge in the initiation of electrical 

ageing of polymeric insulation is known as electroluminescene (EL) method. EL is 

associated with the generation of charge carriers within the polymeric material and 

that these charges can be produced by injection, detrapping and field-dissociation. This 

thesis is based on the investigation of EL emission in virgin and aged low density 

polyethylene (LDPE) subjected to high alternating field. LDPE is chosen as the 

investigated material due to its vast usage in high voltage field. The behaviour of EL 

emission which can be affected by several factors such as, among others, applied 

voltage, applied frequency, ageing of material and types of materials and gases used. 

In all experiments, EL emission increases with increasing applied voltage. In aged 

LDPE, EL emission increases with increasing ageing temperature but decreases with 

increasing ageing duration. However, no specific pattern can be concluded for EL 

emission under applied frequency. A mathematical approach relating some of these 

factors and the intensity of EL is proposed and developed through the aid of 

Dimensional Analysis method. A close relationship between the model and 

experimental data obtained suggests that this mathematical approach can be utilized as 

a tool to predict electrical ageing of insulation material. 
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ABSTRAK 

Proses penuaan dalam kabel kuasa tidak dapat dielakkan terutamanya kabel di 

bawah penggunaan medan elektrik yang kuat selama bertahun-tahun. Penuaan 

biasanya dikaitkan dengan pengumpulan caj ruang pada elektrod atau sebahagian besar 

daripada bahan polimer. Banyak kaedah bukan pemusnah boleh didapati bagi 

mengesan taburan caj ruang dalam bahan. Walau bagaimanapun, kebanyakkan kaedah 

ini mempunyai resolusi ruang yang terhad, oleh itu menghasilkan ketidakpastian besar 

untuk pemerhatian caj ruang bagi profil berhampiran elektrod. Satu kaedah yang 

menarik banyak perhatian sejak beberapa tahun kerana keputusan yang boleh 

dipercayai dan data yang dapat meningkatkan pengetahuan kita dalam permulaan 

penuaan elektrik penebat polimer adalah dikenali sebagai kaedah elektropendarkilau 

(EL). EL dikaitkan dengan penjanaan pembawa caj dalam bahan polimer dan caj ini 

boleh dihasilkan melalui suntikan, penyingkiran perangkap dan penceraian medan. 

Tesis ini adalah berdasarkan kepada kajian terhadap pelepasan EL dalam polietilena 

berketumpatan rendah (LDPE) yang dara dan tua yang dikenakan medan ulangalik 

tinggi. LDPE dipilih sebagai bahan disiasat disebabkan oleh penggunaan yang meluas 

dalam bidang voltan tinggi. Pelepasan EL boleh dipengaruhi oleh beberapa faktor 

seperti, antara lain, voltan yang diaplikasikan, frekuensi yang diaplikasikan, penuaan 

bahan, jenis bahan dan gas yang digunakan. Dalam semua ujikaji, pelepasan EL 

meningkat dengan peningkatan voltan yang diaplikasikan. Dalam LDPE yang tua, 

pelepasan EL meningkat dengan peningkatan suhu penuaan tetapi menurun dengan 

peningkatan masa penuaan. Walaubagaimanapun, tiada pola yang spesifik boleh 

disimpulkan untuk pelepasan EL di bawah frekuensi yang diaplikasikan. Pendekatan 

matematik berkaitan beberapa faktor ini dan keamatan EL telah dicadangkan dan 

dibangunkan melalui bantuan kaedah Analisis Dimensi. Hubungan yang rapat antara 

model dan data ujikaji yang diperoleh mencadangkan bahawa pendekatan matematik 

ini boleh digunakan sebagai alat untuk meramalkan penuaan elektrik bahan penebat. 
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CHAPTER 1 

 INTRODUCTION  

Overhead lines and underground cables are two main forms of electrical 

energy transmission. Both types offer great advantages as well as disadvantages to 

the consumer and power distributor companies. The cost of manufacturing for 

underground cables is much higher than overhead lines. Underground cables are 

usually buried in the ground thus need to be insulated entirely whereas overhead 

lines take advantage of the convection of the ambient air to create some form of 

insulation. The system faults in underground cables are hard to detect and repair 

which increases the installation and maintenance cost.  

Nevertheless, these do not stop the increase usage of underground cables. 

Several factors that influence the demand for underground cables are the reliability 

of service, environment conditions and impact, and restricted access among others. 

Overhead lines are predicted to be out of service much faster than underground cable 

because they produced outages more frequent than the underground cables.  

Underground cables are much less susceptible to environment conditions such as 

lightning strikes, air-borne pollutants as well as the potential of bird contacts. This 

eliminates the need for repeating maintenance operations as required by overhead 

lines that may increase the overall cost of operating overhead lines. For areas with 

restricted access for power transmission line such as airports and congested urban 

regions, it will be more convenient to use buried underground cables. Underground 

cables have a much lower series inductance than overhead lines because the high 

distance between conductor and earth. In addition to that, underground cables also 
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have a correspondingly higher capacitance, higher charging current and highly 

reduced resistance (Van Hertem et al, 2016). 

Dielectric material acts as an insulation material for current-carrying 

electrical and electronic devices to protect them from high voltages. Dielectric 

materials are not only used in power apparatus but also in microcircuits. A good 

dielectric material required low permittivity, low dielectric loss, low conductivity 

and high dielectric breakdown strength. Dielectric material comes in different forms; 

solids such as ceramic, polyethylene, glass and silica, liquids such as silicone oil and 

transformer oil, gaseous such as air and SF6 and also in vacuum form. 

The vast majority of the current generation of high voltage cables uses 

insulation systems based upon polymeric material. There are several types of 

polymeric insulating material and the choice of this material is based upon their 

ability to meet certain key requirements for insulation systems. These requirements 

include high electric strength, low loss, reasonable flexibility, thermomechanically 

stable and economically attractive (Morgen E et.al, 2000). There are several other 

factors that need to be considered when choosing insulation material such as the 

nature of the polymer itself, the use of any additives and the manufacturing process 

(Ebewele, 2000). This is because different polymer exhibits different characteristics.  

However, any polymers when subjected to prolong electric, mechanical, 

chemical, thermal and environmental stresses will sooner or later become deteriorate. 

In electrical degradation, discharges due to insulation voids, cavities, contaminants 

and protrusions act as a point where electric field is enhanced thus causing erosion to 

the material or forming conducting tracks in the system (Bamji et. al, 1989) It is 

crucial to predict the life of a cable in order to avoid catastrophic failure. Therefore, 

it is necessary to understand the optical, electrical and chemical properties of 

polymer as well as the nature of charge transport and migration in the polymer that 

contributes to the degradation of the material. One such method that can be used to 

detect early electrical ageing especially at interfacial region is known as 

electroluminescence (EL) method. Electroluminescence is the emission of light that 
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is related to successive excitation and de-excitation of valence electrons of polymer 

molecules upon application of high electric field. 

1.1 Problem Statement 

Under the prolong application of a strong electric field or after decades of 

operating life, the insulating material of a high voltage cable may experience 

degradation and ageing that can cause catastrophic breakdown. Ageing process 

comes in many forms such as thermal ageing due to temperature fluctuation, 

mechanical ageing due to vibration and bending, chemical ageing due to molecular 

changes in the bulk of polymer and many more. During aging, space charges are 

formed when injected charges are trapped in the trapping levels of polymer. The 

space charges enhanced the electric stress at the semicon tip and reduce the local 

field in polymer. Space charge is detectable through a range of non destructive 

methods such as the thermal pulse method (TPM), the thermal step method (TSM), 

the laser induced modulation method (LIMM), the laser induced pressure pulse 

(LIPP) and the pulsed electro acoustic (PEA) techniques. Each method differ in term 

of the way the internal space charge is perturbed which will produce a time 

dependent signal that allows the internal space charge distribution within the material 

to be detected by external circuit. 

However, there are some limitations observed for most of these methods. In 

general, the limited spatial resolution of most space charge measurements (typically 

10 m) created uncertainty in the observing of the space charge profiles near the 

electrodes. In addition, most of these methods are based on the relative displacement 

of the space charge in respect to the electrodes thus modifying the influence of the 

charge on the electrodes. Moreover, the form and the evolution of the perturbation as 

a function of time are important elements that need to be identified during the 

measurements. PEA technique is the only technique that does not impose a 

displacement of charges in measuring the space charge distribution. However, PEA 

requires matching acoustic impedance for comprehensible signals to be detected. 

LIPP on the other hand provides poor data acquisition due to interference from 
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Pockels cell that it opted. LIPP method also requires appropriate pressure pulse to be 

targeted to the sample and the sample holder has to be strong enough to withhold 

several laser shots. The thermal methods which include TSM, TPM and LIMM are 

mostly suitable for thick samples of more than 2 mm thickness. 

Another non-destructive method that is capable of investigating the 

interaction of charges within a polymer is the emission of light due to external 

electric field known as electroluminescence (EL). The light emission occurs in the 

visible spectrum before the onset of degradation mechanism such as electrical treeing 

and partial discharges. Under the application of AC electrical field, due to the nature 

of the positive and negative half cycle of the AC field, the injected charges are not 

able to migrate far into the bulk of the polymer but instead the charges will remain in 

close proximity to the injecting electrode during one half cycle before recombining 

with opposite polarity charge during the following half cycle. This enhances the 

robustness of EL method in investigating the interaction of charge within a very 

small region near the electrode-polymer interface. Moreover, EL method can be 

applied to thin film polymers (< 100 m). The use of electron multiplying charged 

coupled device (EMCCD) cameras in the EL configuration system compensates the 

lack of spatial resolution in most space charge measurements thus offering 

uniformity in data acquisition. It is thought that the EL measurements may provide 

an alternative method to investigate the electrical ageing and degradation of polymer 

besides space charge probing. One of the main characteristics of EL is the variation 

of EL intensities with respect to insulating material ageing, such as that in a power 

cable. Thus it is hypothesized that by developing an EL model based on the factors 

contributing to the EL emission, the simulation results may provide some relevant 

information in understanding the ageing process thus allowing improved cable’s 

lifetime estimation by monitoring the remaining cable’s lifetime while in service. 

Therefore, it is necessary to develop an understanding of the underlying processes of 

EL and to investigate the possible influencing factors that contributed to EL emission 

before modelling techniques based on EL characteristics could be used reliably in 

service life of cable system. 
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1.2 Objectives 

The main objectives of this research is  to investigate the factors affecting the 

intensity of EL emission of polymeric insulating material as different condition 

produces different EL intensity by observing the occurrence of EL in LDPE at room 

temperature under the influence of uniform electric field configuration. The specific 

objectives of this research are listed as follows; 

i. To investigate the EL intensity of virgin and aged LDPE samples under the 

application of high voltage stresses with variable frequency.  

ii. To investigate the breakdown voltage and failure distribution of virgin and 

aged LDPE.  

iii. To develop a mathematical model using Dimensional Analysis method 

that can be used for condition monitoring of insulating materials. 

1.3 Scope of Work 

In order to deliver the objectives of this thesis, the experimental data of EL 

measurements were conducted and collected at The Tony Davies High Voltage 

Laboratory, University of Southampton, United Kingdom. The EL experimental rig 

has been set up precisely in the laboratory for the experiments to be carried out. The 

EL setup utilizes a Peltier cooled electron multiplying charge coupled device 

(EMCCD) camera as its detection mechanism for measuring the light intensity. 

EMCCD camera is chosen over the traditional use of photomultiplier tube (PMT) 

because its fast framing, low light sensitivity, low-noise read out electronics, higher 

quantum efficiency and broader spectral range.  

The study of EL phenomenon was undertaken on 100 ± 5 m virgin and aged 

additive-free LDPE. All materials under investigation were prepared at the clean 
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preparation room in the laboratory. Cleanliness is important throughout the sample 

preparation in order to eliminate discharges as much as possible. For aged LDPE, 

samples were thermally aged in fan oven either with varying elevated temperature 

(310 K, 330 K and 350 K) for 3 days or with varying duration (6, 12 and 21 days) at 

330 K. To allow EL mechanism to take place, all materials must be coated with 20 

nm thick gold layer which provides reasonable electrode conduction good optical 

transmission for the detecting EL phenomenon. Comparisons are made for EL 

emission between virgin and aged LDPE sample under the application of high 

electrical stresses in order to observe the effect of ageing processes towards EL 

emission.  

To support the assumptions made on EL characteristics of LDPE, the optical, 

electrical and chemical properties of samples were analyzed through EL imaging, 

breakdown voltage, ultraviolet and visible (UV-Vis) spectrophotometer and Fourier 

Transform Infra-red (FTIR) spectroscopy which are conducted at The Tony Davies 

High Voltage Laboratory. The EL experiments were carried out as a function of 

varying applied AC stresses at a constant 50 Hz and of varying applied frequency at 

a constant applied voltage. The former was performed on virgin and aged LDPE 

while the latter was completed on virgin LDPE only. The EL measurements collected 

from the sample provide information on the point-on-wave measurement, phase 

angle as well as average EL intensity. All of these data are essential in deducing the 

EL characteristics of aged material. 

With the growing importance of the use of EL phenomenon as diagnostic 

tool, it becomes necessary to develop a mathematical model that could replicate the 

experimental data thus allowing sound judgment in predicting the life of a cable. To 

achieve this, Dimensional Analysis method was used that incorporated the factors 

affecting the EL emission of both virgin and aged LDPE. The simulation data were 

compared with experimental data for validation of the model.   
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1.4 Significant Contributions  

This thesis has established experimental methodology, procedures and sample 

preparation for the optical, electrical and chemical properties measurements for 

virgin and thermally aged LDPE. The UV-Vis spectroscopy, FTIR spectroscopy, 

gold sputtering technique, EL experimental rig and EMCCD camera were employed 

throughout the experiment. This study is concerned on the effect of ageing on the 

behavior of EL emission as a function of applied voltage as well as the effect of 

varying applied voltage and frequency on virgin LDPE. In general, the findings of 

this study are in agreement with other research outcomes from other researchers. 

However, there are several major contributions from this study as described below; 

i. Statistical analysis was performed on the breakdown voltage 

distribution in virgin and aged LDPE using several statistical distributions such as 

Weibull, General Extreme Value and Johnson SB based on Anderson-Darling and 

Kolgomorov-Smirnov goodness-of-fit. It has been known that Weibull distribution 

has been widely used in reliability engineering and life data analysis. However, it 

was found that Generalized Extreme Value provides the best-fitted distribution with 

lower statistical error, followed by Johnson SB distribution in all breakdown analysis 

conducted on virgin and aged LDPE.    

ii. EL emission measurements were conducted on LDPE samples that 

were thermally aged in fan oven either by varying the ageing temperature (at 310 K, 

330 K and 350 K) for 3 days or by varying the ageing duration (at 6, 12 and 21 days) 

at 330 K. Several previous works have been done but were conducted separately thus 

comparisons between both types of thermally aged samples are impossible. This 

study allows comparisons to be made between both types of thermally aged samples 

in terms of optical and chemical properties as well as the EL emission characteristics 

hence contributing towards the knowledge of ageing processes in polymeric material. 

Both types produced different results in all measurements suggesting that the charge 

distributions in the polymer reacted differently depending on the method of ageing. 

This is also due to the oxidation process that was created as a result of thermal 

ageing (as observed from FTIR spectroscopy) thus modifying the chemical 
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properties of the aged samples. 

iii. Investigations were also conducted on virgin LDPE as well to observe 

the effect of varying applied voltage at 50 Hz and varying applied frequency at a 

constant electric field on the light emission. The work on varying applied voltage 

concurred with other previous works by other researchers. However, the outcome of 

EL emission at varying applied frequency was the first of its kind. It was thought that 

the EL intensity will increase as the frequency is increased. Nonetheless, this was not 

materialized. The EL emission was irregular with increasing applied frequency but 

showed a similar pattern; the EL emission reached its peak at 20 Hz, 60 Hz and 90 

Hz at all applied voltage. This suggests that the charge density is not a steady state 

but dependent on the recombination rate of the polymer. The findings of this research 

have contributed towards the advancement of theoretical knowledge related to the 

degradation processes in polymeric material. 

iv. A mathematical model based on bipolar recombination model was 

developed using Dimensional Analysis method to simulate the EL phenomenon in 

LDPE to further understand the factors affecting the EL emission.  The model is 

developed for the application of both virgin and aged LDPE. Many models have 

been constructed to simulate EL emission and many have reported the use of 

Dimensional Analysis in life model.  Therefore, the mathematical model generated in 

this study is a novel work as none has been developed to simulate the EL emission 

using Dimensional Analysis method.  Although the model developed is empirical at 

this stage, the information yielded from this model is valuable for future predictions. 

The outcome of this research may provide valuable information for high voltage 

cable engineers to predict the longevity of a cable before major catastrophic can 

occur.  This could help the high voltage power company to save a lot of operational 

cost in reconstructing the high voltage system that might have been destroyed by the 

high voltage failure. 

v. The results of this research can help to facilitate high voltage cable 

manufacturers in producing better cable insulating material with longer lifetime.  

Consequently, consumers will be able to enjoy better services and will have 
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minimum supply interruptions from high voltage cable breakdown. The findings 

from this study may help other researchers to gain deeper understanding and 

knowledge related to EL phenomenon and at the same time becomes a reliable 

reference for their research. This study wishes to inspire future researchers in 

improving the proposed method and model in order to further enhance the 

knowledge of EL phenomenon. 

1.6 Outline of the Thesis 

This thesis is divided into a few chapters and is arranged as follows: 

Chapter 1 overviews the development of power cables for centuries, the 

space charges within the dielectric as one of the cause of degradation and the 

electroluminescence as a method to observe space charge distribution.  

Chapter 2 discusses in details regarding the theories behind 

electroluminescence method and the factors affecting the EL intensity. Several 

previous works by various researchers are compared and discussed. This chapter also 

focuses on the background theory of Dimensional Analysis method as well as the 

mathematical steps to achieve dimensionally correct equation. This chapter also 

outlines the methods of model formulation and validation. The statistical analysis 

used in this work is also included in this chapter. 

Chapter 3 describes extensively the experimental setup, the sample 

preparation and experimental procedures and measurements for this research. The 

results of the measurement are displayed and discussed in Chapter 4. The results 

include images taken from EL measurement, phase-resolved measurement for 

various factors and statistical analysis on the breakdown voltage of LDPE. 

Chapter 5 focuses on the development of EL modelling using Dimensional 

Analysis method to simulate the phenomenon when LDPE is subjected to uniform 

AC field. The modelling is different for virgin and aged material. Each model is 
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formulated and validated through several methods. Finally, the conclusion and future 

works can be obtained in Chapter 6.  
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