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ABSTRACT 

 

 

 

 

New approaches in miniaturised sample preparation have been investigated. 

In this study, novel microextraction methods based on the use of a mixed matrix 

membrane (MMM) were developed in various designs and applications. The 

potential for carbonaceous nanomaterials to be used as adsorbents for the MMM 

microextraction and preconcentration of organic pollutants was demonstrated. In this 

method, multiwall carbon nanotubes (MWCNT) and single layer graphene (SLG) 

nanoparticles were individually incorporated through dispersion in a cellulose 

triacetate (CTA) polymer matrix to form MWCNT-MMM and SLG-MMM, 

respectively. The prepared membranes were evaluated for the extraction of selected 

polycyclic aromatic hydrocarbons (PAHs) from sewage pond water samples. The 

extraction was performed by dipping a small piece of membrane (7 mm × 7 mm) in a 

stirred 7.5 mL sample solution to initiate the analyte adsorption. Enrichment factors 

of 54 to 100 were achieved with relative recoveries of 99% to 101%. The developed 

method proved a simple, feasible, and cost-effective microextraction technique. A 

new sample pre-treatment technique termed mixed matrix membrane tip extraction 

(MMMTE) has been developed and combined with high performance liquid 

chromatography (HPLC) for the determination of selected non-steroidal anti-

inflammatory drugs, namely sulindac, indoprofen, naproxen, diclofenac and 

ibuprofen in environmental water samples. The extraction was carried out by 

preparing a thin film mixed matrix membrane with immobilised C18 adsorbents on a 

100 µL tip wall. The microextraction was conducted by continuously flowing the 

sample solution through the membrane tip device for the effective analyte adsorption 

process. This step was followed by desorption of the analyte into a small amount of 

organic solvent prior to HPLC analysis. The detection limits of the method for the 

selected drugs were in the range of 10-50 pg/mL. Enrichment factors of up to 249 

fold were achieved with relative recoveries of > 90%. A novel mixed matrix 

membrane tip extraction using hydrophilic lipophilic balance particles was developed 

for the preconcentration of the aminoglycoside antibiotic from the human plasma 

prior to the capillary electrophoresis with a contactless conductivity detection (CE-

C
4
D). The parameters affecting the extraction efficiency such as the dynamic rinse 

time and desorption solvent were investigated in detail. Under the optimised 

conditions, the limit of detection and the limit of quantification of the method for 

tobramycin are 0.01 and 0.03 µg/mL, respectively. Relative recoveries in spiked 

human plasma were in the range of 99.6-99.9% with relative standard deviations 

between 3.6% and 8.7%.  
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ABSTRAK 

 

 

 

 

Pendekatan baharu dalam penyediaan sampel skala kecil telah dikaji. Dalam kajian 

ini, kaedah baru pengekstrakan mikro berdasarkan penggunaan membran matriks 

bercampur (MMM) telah dibangunkan dalam pelbagai reka bentuk dan penggunaan. 

Potensi bahan nano berkarbon untuk digunakan sebagai penjerap dalam 

pengekstrakan mikro MMM dan pra-pemekatan bahan pencemar organik telah 

ditunjukkan. Dalam kaedah ini, nanotiub karbon berbilang dinding (MWCNT) dan 

nanopartikel grafin lapisan tunggal (SLG) telah digabungkan secara berasingan 

melalui penyebaran di dalam matrik polimer selulosa triasitat (CTA)  masing-masing 

untuk membentuk MWCNT-MMM dan SLG-MMM. Membran-membran ini dinilai 

bagi pengekstrakan hidrokarbon aromatik polisiklik (PAH) terpilih daripada sampel 

air kolam kumbahan. Pengekstrakan dilakukan dengan mencelup sekeping membran 

bersaiz kecil (7 mm × 7 mm) di dalam sampel air 7.5 mL yang dikacau untuk 

memulakan penjerapan analit. Faktor pengayaan 54 hingga 100 telah dicapai dengan 

perolehan semula relatif 99% hingga 101%. Kaedah yang dibangunkan terbukti 

merupakan suatu teknik pengekstrakan mikro yang mudah, boleh dilaksanakan dan 

kos efektif. Teknik sampel pra-rawatan baharu dipanggil pengekstrakan muncung 

membran matrik bercampur (MMMTE) telah dibangunkan dan digabungkan dengan 

kromatografi cecair prestasi tinggi (HPLC) untuk penentuan dadah anti-radang bukan 

steroid terpilih iaitu sulindac, indoprofen, naproxen, diclofenac dan ibuprofen di 

dalam sampel air alam sekitar. Pengekstrakan dijalankan dengan menyediakan filem 

nipis membran matrik bercampur dengan penjerap C18 tak bergerak pada diding 

muncung 100 µL. Pengekstrakan mikro dijalankan dengan mengalirkan larutan 

sampel secara berterusan melalui peranti muncung membran untuk proses penjerapan 

analit yang berkesan. Langkah ini diikuti dengan penyahjerapan analit ke dalam 

pelarut organik dalam amaun yang kecil sebelum analisis HPLC. Had pengesanan 

kaedah untuk dadah terpilih adalah dalam julat 10-50 pg/mL. Faktor pengayaan 

sehingga 249 kali ganda telah dicapai dengan perolehan semula relatif > 90%. 

Pengekstrakan muncung membran  matrik bercampur menggunakan zarah imbangan 

lipofilik hidrofilik telah dibangunkan untuk pra-pemekatan antibiotik aminoglikosid 

daripada plasma manusia sebelum elektroforesis kapilari dengan pengesan 

konduktiviti tanpa-sentuhan (CE-C
4
D). Parameter yang mempengaruhi kecekapan 

pengekstrakan seperti masa bilasan dinamik dan pelarut penyahjerap telah dikaji 

secara terperinci. Dalam keadaan optimum, had pengesanan dan had kuantifikasi 

kaedah bagi tobramacin adalah masing-masing 0.01 and 0.03 µg/mL. Perolehan 

semula relatif di dalam plasma manusia terpaku adalah dalam julat 99.6-99.9% 

dengan sisihan piawai relatif antara 3.6% dan 8.7%.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

The development of new, simple and effective sample pretreatment 

techniques is crucial for the aspects of matrix elimination and/or analyte 

preconcentration in order to achieve the desired detection limits.  The oldest pre-

concentration and matrix isolation technique in analytical chemistry is the liquid-

liquid extraction (LLE) [1].  However, this technique is a time consuming, multistage 

operation technique and requires a large amount of organic solvents that are 

potentially toxic and expensive.  The solid phase extraction (SPE) has advantages 

over the LLE, which involve a reduced analysis time and total organic consumption 

and waste disposal, but can be relatively expensive [2].  

 

 

Recently, several microscale membrane based methods have been introduced 

to speed up and simplify the sample preparation procedure as well as minimise 

organic solvent usage.  The best known among them are the hollow fibre liquid 

phase microextraction (HF-LPME) [3], solid phase membrane tip extraction 

(SPMTE) [4] and micro–solid phase extraction (µ-SPE) [5] and thin film 
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microextraction (TFME) [6].  In these reported approaches, the membrane being 

used can act as a solid matrix support in the form of a supported liquid membrane, a 

porous solid protected sheet for an adsorbent/organic solvent, or a homogenous thin 

film.   

 

 

Over the past decade, membrane technologies are growing rapidly by 

developing materials that allow greater flux and selectivity.  Among these 

established methods, mixed matrix membrane (MMM) has been rapidly researched.  

MMM is a heterogeneous membrane consisting of addictive filler embedded in a 

polymer matrix and can be made into flat sheets and hollow fiber.  MMM combine 

the superior permeability and selectivity of inorganic membranes with the 

processability of polymeric membranes.  The combination in MMM has resulted in a 

synergistic effect in which the rigid adsorptive porous type inorganic phase provides 

superior separation properties, meanwhile the presence of flexible polymer enables 

the ideal membrane forming hence solving the problem of fragility inherent found in 

the inorganic membranes [7].  The difficulties in controlling the adhesion between 

the polymer phase and the external surface in MMMs especially when have resulted 

in the use of new materials to produce MMM.  To date, various polymers have been 

modified with inorganic fillers such as zeolites [8], mesoporous silicas [9], activated 

carbons [10], carbon nanotubes [11] and even non-porous solids [12] for the 

preparation of MMM.  The use of MMM have been reported in gas separation 

applications [9, 13-21] and also for the liquid phase separation [8, 22-31].   

 

 

In this study, new and simple microextraction techniques based on the use of 

a mixed matrix membrane in various types and designs were developed.  

Comprehensive studies were conducted on the applicability of new microextraction 

techniques in various applications.  The applicability of the developed method was 

studied by determining the selected polycyclic aromatic hydrocarbon and drugs in 

solutions.   
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1.2 Problem Statement 

 

 

The increasing amounts of organic pollutants entering the environment have 

become critical issues.  Their presence in the environment, especially in water, is 

hazardous because they cause human beings to become more susceptible to disease.  

Furthermore, the contamination of pharmaceuticals in the aquatic environment has 

also been identified as one of the emerging issues in environmental chemistry.  

Nevertheless, the contamination level of these drugs in the environmental ecosystem 

has now reached alarming stages due to their continuous release into the environment 

through various routes including excreta and the improper disposal of unused drugs 

[32].  The analysis of samples for these pollutants is problematic, because they are 

usually present in the environment in low concentrations, in addition to the laborious 

and time-consuming operations involved in preparing the samples for the analysis, 

which themselves may be a source of additional contaminations and errors.  For 

these reasons, it is crucial to develop analytical methods for the detection and 

removal of these pollutants.  

 

 

Many extraction techniques have evolved from the classical LLE and SPE.  

Nevertheless, these extraction techniques are time-consuming and require large 

amounts of toxic and expensive solvents.  Therefore, many sample preparation 

techniques have been developed in order to improve the selectivity in extraction, to 

minimise the initial sample size, to facilitate the automation and to reduce the 

volume of organic solvent consumption.  Nowadays, several microscale membrane 

based methods, such as HF-LPME, µ-SPE, SPMTE and TFME, have been developed 

in order to reduce the amount of solvents and facilitate low costs, the simplicity of 

the sample preparation procedure and an excellent clean-up.  Although these 

established techniques have proven to be efficient in treating different complex 

matrices, however, these methods have several disadvantages in terms of the cost of 

the analysis, tedious experimental setup and possible analyte carryover effects.   
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Membrane technology has receiving a great attention in the last few decades.  

Membranes were synthesized with various materials which depended on the 

applications.  The fabrication of polymeric membrane was one of the fastest growing 

fields of membrane technology.  However, polymeric membranes could not meet the 

separation performances required especially in high operating pressure due to 

deficiencies problem [33].  The chemistry and structure of support materials like 

inorganic membranes were also one of the focus areas when inorganic membranes 

showed some positive results towards gas and liquid separation.  However, the 

materials are somewhat lacking to meet the separation performance requirement 

because generally they have low permeability of the highly selective (dense) 

membranes at medium temperatures and difficulty in achieving high selectivities in 

large scale microporous membranes.  Mixed matrix membrane (MMM) which is 

comprising polymeric and inorganic membranes presents an interesting approach for 

enhancing the separation performance.  Nevertheless, MMM is yet to be 

commercialized as the material combinations are still in the research stage.   

 

 

Material selection and method of preparation are the most important part in 

fabricating a membrane.  An alternative nanoparticles adsorbent with greater 

selectivity and adsorption affinity should be explored for a wider range of potential 

chemical and biological applications.  Although MMM has proven an enhancement 

of selectivity, it was noticed that most MMMs were endured with poor adhesion 

between the organic matrix and addictive particles [7].  Even MMM fabrication does 

have its disadvantages, but exploratory study of MMM should be conducted with 

different materials is worth to work since it has proven its ability to have high 

separation performance.  Besides, the membrane must be easily manipulated to 

develop different sizes and shapes that could accommodate the needs of different 

experimental designs and sample size requirements.  

 

 

 Therefore, in this study, new and simple microextraction techniques based on 

the use of MMM in various design and sizes were developed.  In addition, different 

materials were studied as adsorbent fillers in the preparation of MMM. 

Carbonaceous nanomaterials namely multiwall carbon nanotubes (MWCNTs) and 
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graphene are classified as inorganic fillers [34].  Several atomic simulation studies 

have suggested that CNTs can serve as an ideal candidate for adsorption and 

separation purposes as a result of their superior selectivity and permeability [7]. In 

the case where the CNTs are vertically aligned to the membrane surface, they would 

behave like pinholes that facilitate the rapid transport of the molecules passing 

through the channel of the nanotubes, leading to high permeability without 

selectivity [35]. The adsorption selectivity is strongly driven by the interaction 

potentials of the molecules with the graphitic CNT walls. Recent studies showed that 

graphene could be used as a viable and inexpensive filler substitute for CNTs in 

nanocomposites owing to the excellent in-plane mechanical, structural, thermal and 

electrical properties of graphite [36]. Graphite can be a good candidate as filler in 

MMMs due to its high aspect ratio [37]. The permeation rate of molecules diffusing 

through membranes can be decreased by embedding a high aspect ratio, impermeable 

particles that provide tortuous paths and reduce the cross sectional area available for 

permeation [38]. 

 

 

We also studied organic fillers such as C18 and hydrophilic lipophilic balance 

(HLB) particles. The C18 particles have been widely used as sorbents in SPE 

cartridges because the cartridge features a highly retentive alkyl-bonded phase for 

nonpolar to moderately polar compounds.  The hydrophobic reversed phase material 

is retentive for most nonpolar compounds, and retains most organic analytes from 

aqueous matrices.  The interaction of C18 particles with non-polar groups on the 

analytes of interest are via the Van der Waals force. The HLB is a hydrophilic 

modified styrene-based polymer developed for the solid phase extraction of a highly 

broad range of compounds from aqueous samples.  The retention mechanism is 

based primarily on a reversed phase; however, because the polymer is 

hydrophilically modified, it is also appropriate for more polar compounds. This dual 

selectivity creates a Hydrophobic Lipophilic Balance (HLB). Moreover, because the 

HLB polymer phases contain polar functionalities, they are very resistant to over-

drying, often rendering the associated extraction methods more reproducible/robust.   
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1.3 Research Objectives 

 

 

The aim of this study is to develop miniaturised sample preparation techniques 

using the mixed matrix membrane microextraction for the analysis of organic 

pollutants and drugs in different types of sample matrices.  The objectives of this 

research are as follows: 

 

 

(a) To develop carbonaceous nanomaterials immobilised the mixed matrix 

membrane microextraction combined with high performance liquid 

chromatography ultraviolet detection (HPLC-UV) for the determination of 

polycyclic aromatic hydrocarbons (PAHs) in sewage pond water samples.  

 

 

(b) To develop the dynamic mixed matrix membrane tip microextraction coupled 

with high performance liquid chromatography-ultraviolet detection (HPLC-

UV) for the determination of non-steroidal anti-inflammatory drugs 

(NSAIDs) in effluent water samples.  

 

 

(c) To develop the dynamic mixed matrix membrane tip extraction using 

capillary electrophoresis with contactless conductivity detection (CE-C
4
D) 

for the determination of tobramycin in human plasma.  

 

 

 

 

1.4 Scopes of Research 

 

 

In this study, an innovative development of the mixed matrix membrane 

microextraction was developed for the analysis of organic pollutants and drugs in 

solutions. The potential to employ carbonaceous nanomaterials namely multiwall 
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carbon nanotubes (MWCNTs) and single layer graphene (SLG) as alternative 

nanofillers in flat sheet MMM were investigated for the analysis of polycyclic 

aromatic hydrocarbon (PAHs) in sewage pond water. Carbonaceous nanomaterials, 

also known as inorganic fillers have been selected due to their excellent ability to 

remove various inorganic and organic pollutants from large volumes of aqueous 

solution.  

 

 

The study was expanded by fabricating the flat sheet MMM in a 

commercially available pipette tip. This new sample pre-treatment method denoted 

as mixed matrix membrane tip extraction (MMMTE) was developed for the analysis 

of non-steroidal anti-inflammatory drugs (NSAIDs) in effluent water samples using 

C18 particles. The performance of the C18 filler immobilised CTA membrane 

prepared in the pipette tip was compared with the flat sheet of the C18-MMM in our 

previous study (Kamaruzaman et al., 2013). Furthermore, the new membrane tip 

device which is a miniaturised version of the previously introduced MMMTE 

approach was developed for the analysis of tobramycin in human plasma using the 

hydrophilic lipophilic balance (HLB).  

 

 

The entire procedure was greatly simplified with automation and was able to 

accommodate a small solution volume. The HLB particles had been used due to their 

ability to extract aminoglycoside from the biological samples. The synthesised 

materials were characterised using field emission scanning electron microscopy 

(FESEM).  Several organic pollutants (PAHs) and drugs (NSAIDs and tobramycin) 

were selected as model analytes.  The separation and quantification of the target 

analytes were conducted by the HPLC-UV and CE-C
4
D system.  Several parameters 

affecting the microextraction techniques were comprehensively optimised and the 

analytical performances of the developed methods were evaluated, validated and 

applied to the quantification of the target analytes in solutions.   
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1.5 Significance of Research 

 

 

 This study is of significance to the development of the mixed matrix 

membrane microextraction technique in the sample preparation.  This technique has 

been proposed to improve the speed and reduce the cost of the methods, eliminate or 

reduce the organic solvent consumptions and provide better sensitivity and 

selectivity for the quantitation of target analytes.  In this study, mixed matrix 

membranes with different types of adsorbent particles were synthesised, 

demonstrated superior mechanical robustness and were proven to be suitable for the 

solid-liquid phase microextraction.  The study also demonstrates that adsorbents with 

particles sizes in the nanometre range are capable of being dispersed and 

immobilised within a membrane for the effective adsorption analytes in an aqueous 

solution.  Hence, this work will provide a great interest to further investigate the 

applicability of the mixed matrix membrane microextraction method since a wider 

range of nanomaterial adsorbents is expected to be used especially for the analysis of 

organic pollutants and drugs in solutions.  Furthermore, this study has expanded the 

fabrication based on the concept of the mixed matrix membrane since the membrane 

could be developed in different sizes and shapes that could accommodate the needs 

of different experimental designs and sample size requirements.  Through this work, 

various alternative microextraction methods can be implemented effectively with 

environmental benignity due to the small amounts of organic solvents used, 

simplicity of the microextraction setup and cost effectiveness.  Moreover, this 

research will be useful for the establishment of more rapid and efficient methods for 

wider applications.   

 

 

 

 

1.6 Outline of the Thesis 

 

 

This thesis is divided into six chapters.  The first chapter presents a detailed 

account of the research background, problem statement, objective, scope and 
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significance of the study.  The second chapter provides the literature review on 

conventional extraction and microextraction techniques, mixed matrix membrane 

and model analytes in this study.  

 

 

Chapter three describes the experimental methodology of the preparation and 

application of carbonaceous nanomaterials immobilised mixed matrix membrane 

microextraction for the analysis of the selected PAHs namely naphthalene, 

acenaphthene, fluorine, anthracene, phenanthrene, fluoranthene, pyrene and benz[a] 

anthracene in sewage pond water.  Several important extraction parameters, such as 

the sample pH, ionic strength, sample volume, extraction time, desorption solvents 

and desorption time were optimised.  

 

 

In chapter four, the experimental methodology of the preparation, 

characterisation and application of the C18-mixed matrix membrane tip extraction for 

the determination of five selected NSAIDs in effluent water samples will be 

elaborated in further detail.  The experimental parameters which influence 

microextraction efficiency, such as the pH value, salting out effect, dynamic 

extraction cycle, desorption solvent, and desorption time, were comprehensively 

optimised.  

 

 

Chapter 5 reports the development of the hydrophilic lipophilic balance- 

mixed matrix membrane tip extraction (HLB-MMMTE) for the analysis of 

tobramycin in human plasma using capillary electrophoresis with contactless 

conductivity detection (CE-C
4
D).  The parameters affecting the extraction efficiency, 

such as the dynamic rinse time and desorption solvent were investigated in detail.   

 

 

Finally, in Chapter 6, the overall conclusions and future directions for further 

studies were covered.  This chapter summarises the overall results acquired, such as 

the optimised conditions and the analytical performance of the development 
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methods.  Moreover, future directions are presented and discussed for a further 

improvement of the study.   
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