EFFECTS OF WASTE ENGINE OIL ON WARM RECLAIMED ASPHALT MIXTURE

NURUL HIDAYAH BINTI MOHD KAMARUDDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > MARCH 2018

Dedicated to my beloved husband, family and friends for the loves and encouragement.

Thank You

ACKNOWLEDGEMENT

بسْمِ اللهِ الرَّحْمَنِ الرَّحِيم

First and foremost, I would like to thank to Allah Al-Mighty for giving me strength, perseverance and granting me the opportunity to complete this study.

Exceptional thanks to my supervisor, Professor Dr Mohd Rosli Hainin (Universiti Teknologi Malaysia), co-supervisors: Dr Norhidayah Abdul Hassan (Universiti Teknologi Malaysia) and Associate Professor Dr Mohd Ezree Abdullah (Universiti Tun Hussein Onn Malaysia) for the invaluable advice and encouragement every time when I am demoralized. Highly appreciated their exemplary guidance towards fulfilling this achievement.

I also would like to express my profound gratitude to my laboratory mates (Dr Idham, Dr Naqi, Dr Chang, Azah, Sya, Ros, Izzul, Baem,Yaya, Nizam, Siti, Rusna dan Baizura) and my colleagues (Dr Firdaus, Dr Faizal, Dr Salwa, Dr Adila, Dr Azuan, Faniza, Amizah and Hafizal), that always give continuous support during the hard time. Thank you to all laboratory staff in UTM and UTHM for the immeasurable assistance during the research work.

Not to forget, the deepest thank you to the Ministry of Higher Education for the scholarship and fundamental research grant (FRGS) during this study. Finally, I would like to thank my husband, Mohd Rizal Mohd Rais, parents and parents-in-law for their understanding and supporting during my PhD journey.

ABSTRACT

Depletion of natural resources and increase in energy consumption have led the pavement industry to actively explore innovative ways in creating sustainable infrastructure. In this context, the aim of this research was to investigate the modification of recycled binder and mixtures containing waste engine oil (WEO) with two types of warm asphalt additives; wax-based and oil-based. This study was divided into four phases. In the first phase, the WEO was blended with 0, 5, 10, 15 and 20 percent by weight of asphalt binder containing aged binder obtained from extraction and recovery of reclaimed asphalt pavement (RAP). The optimum WEO obtained from the first phase was blended with warm mix additives and tested in phase two. Two types of warm asphalt additives that had been applied were wax-based with dosages of 1%, 2%, and 3%, as well as oil-based with dosages of 0.3%, 0.4%, and 0.5% by weight of asphalt binder with WEO. These modified binders were subjected to storage stability, viscosity, rheology (temperature sweep, rutting resistance, and creep recovery), surface energy, as well as chemical characterization by using Fourier Transform Infrared Spectroscopy (FTIR) to determine the optimum additive content. In phase three, mechanical performance tests were performed by applying the optimum additive content obtained in phase two at compaction temperatures of 135°C, 125°C, and 115°C. The tests were resilient modulus, moisture resistance and rutting evaluation. In the final phase, the correlations between the properties of asphalt binder and the performance of the mixture had been determined by correlation coefficient analysis. The results show that 15% of WEO from various sources had been able to rejuvenate the aged binder to the base binder performance level. The optimum waxbased and oil-based additive contents were found to be 2% and 0.4%, respectively. The asphalt binder with wax-based additive improved the workability, hence displaying superior rutting resistance factor, better elastic response with reduced phase angle and reduction in aging level. Besides that, the mixture with wax-based additive exhibited higher resilient modulus, good moisture resistance, and acceptable lower rut depth, in comparison to other binders. The best compaction temperature was determined to be 135°C. In conclusion, the WEO emerged as a highly promising substance for modified binder with RAP and warm asphalt additive.

ABSTRAK

Pengurangan sumber asli dan peningkatan penggunaan tenaga telah mendorong industri turapan meneroka secara aktif kaedah inovatif untuk mewujudkan infrastruktur yang mampan. Dalam konteks ini, matlamat kajian adalah untuk menyiasat pengubahsuaian pengikat asfalt kitar semula dan campuran yang mengandungi minyak enjin terbuang (WEO) dengan dua jenis bahan tambah asfalt suam; berasaskan lilin dan berasaskan minyak. Kajian ini dibahagikan kepada empat fasa. Dalam fasa pertama, WEO diadun dengan 0, 5, 10, 15 and 20 peratus daripada berat bahan pengikat asfalt yang mengandungi pengikat lama yang diperolehi daripada pengekstrakan dan pemulihan daripada turapan tebus guna (RAP). WEO optimum yang diperolehi daripada fasa pertama dicampur dengan bahan tambah suam dan diuji dalam fasa kedua. Dua jenis bahan tambah campuran suam yang digunakan adalah berasakan lilin dengan dos yang berbeza iaitu 1%, 2% dan 3%, serta berasaskan minyak pada kadar 0.3%, 0.4% dan 0.5% daripada berat bahan pengikat asfalt dengan WEO. Bahan pengikat yang diubahsuai ini diuji untuk kestabilan penyimpanan, kelikatan, reologi (perbezaan suhu, rintangan aluran dan pemulihan rayapan), tenaga permukaan serta pencirian kimia dengan menggunakan Fourier Transform Infrared Spectroscopy (FTIR) untuk menentukan kandungan optimum bahan tambah. Dalam fasa ketiga, ujian-ujian prestasi mekanikal dijalankan dengan menggunakan kandungan optimum bahan tambah yang diperoleh dari fasa kedua pada suhu pemadatan 135°C, 125°C dan 115°C. Ujian-ujian yang dijalankan adalah ujian modulus keanjalan, rintangan kelembapan dan penilaian aluran. Dalam fasa akhir, korelasi antara sifat pengikat asfalt dan prestasi campuran ditentukan dengan analisis pekali penentuan. Keputusan menunjukkan bahawa 15% WEO dari pelbagai sumber yang berbeza dapat meremajakan pengikat lama kepada aras prestasi asfalt asas. Kandungan optimum bahan tambah berasaskan lilin dan minyak masing-masing adalah 2% dan 0.4%. Pengikat asfalt dengan bahan tambah berasaskan lilin didapati meningkatkan kebolehkerjaan, seterusnya mempamerkan faktor rintangan aluran yang lebih bagus, tindak balas elastik yang lebih baik dengan mengurangkan sudut fasa dan mengurangkan tahap penuaan. Di samping itu, campuran dengan bahan tambah berasaskan lilin menunjukkan nilai modulus keanjalan yang lebih baik, rintangan kelembapan yang bagus dan kedalam aluran yang boleh diterima pakai berbanding campuran lain. Suhu pemadatan yang terbaik ditentukan pada 135°C. Sebagai kesimpulan, WEO muncul sebagai bahan yang meyakinkan untuk bahan pengikat ubah suai bersama RAP dan bahan tambah suam.

TABLE OF CONTENTS

CHAPTER		TITL	Ε	PAGE
	DECLARATION			ii
	DED	ICATI	DN	iii
	ACK	NOWL	EDGEMENT	iv
	ABS	TRACT		V
	ABS	TRAK		vi
	TAB	LE OF	CONTENTS	vii
	LIST	Г OF T A	BLES	xiii
	LIST	r of fi	GURES	XV
	LIST	Г OF AE	BREVIATIONS	xviii
	LIST	r of sy	MBOLS	xix
	LIST	Г OF AF	PENDICES	XX
1	INT	RODUC	TION	1
	1.1	Backgr	ound of Study	1
	1.2	Proble	n Statement	3
	1.3	Aim ar	d Objectives of Study	4
	1.4	Scope	of Study	5
	1.5	Signifi	cance of Study	6
	1.6	Thesis	Outline	7
2	LITI	ERATU	RE REVIEW	8
	2.1	Introdu	ction	8
	2.2	Reclair	ned Asphalt Pavement (RAP)	8
		2.2.1	Binder Content Determination of RAP	10
		2.2.2	RAP Aggregate Properties	11

Benefit of RAP			
Limitati	on of High RAP Content	13	
2.2.4.1	Hardening of RAP Binder	13	
2.2.4.2	Blending of RAP Binder and		
	Virgin Binder	14	
2.2.4.3	High Dust Content in RAP	16	
nator		17	
Criteria of Rejuvenator			
Mechanism of Rejuvenation			
Waste Engine Oil (WEO)			
2.3.3.1	Uses of WEO	22	

		2.3.3.2	Disposal of WEO	24
2.4	Warm	Mix Asph	alt (WMA)	24
	2.4.1	Categori	es of WMA	25
		2.4.1.1	Foaming Technique	26
		2.4.1.2	Organic Additives	28
		2.4.1.3	Chemical Additives	29
	2.4.2	Benefits	s of WMA	30
2.5	Evalua	tion of As	phalt Binder Modification	31
	2.5.1	Workab	ility Evaluation	33
	2.5.2	Rheolog	gy Characterization	35
	2.5.3	Chemic	al Properties Investigation	36
2.6	Evalua	tion of As	phalt Mixture Modification	38
	2.6.1	Modifica	tion of Asphalt Mixture Containing	
		RAP		38
	2.6.2	Modifica	tion of Asphalt Mixture Containing	
		RAP and	WEO	39
	2.6.3	Modifica	tion of Asphalt Mixture Containing	

2.2.3

2.2.4

Rejuvenator

2.3.1

2.3.2

2.3.3

2.3

Summary and Remarks on Research Gap 2.7 45

RAP and WMA

43

RES	EARCH	H METHODOLOGY	47
3.1	Introdu	action	47
3.2	Materi	als	48
	3.2.1	Base Binder	49
	3.2.2	Aggregate	49
	3.2.3	Reclaimed Asphalt Pavement (RAP)	50
	3.2.4	Waste Engine Oil (WEO)	54
	3.2.5	Warm Mix Additive	56
3.3	Resear	ch Framework	57
	3.3.1	Phase One: Determination of the Optimum	
		Content WEO	57
	3.3.2	Phase Two: Investigation on the Properties	
		Asphalt Binder containing WEO, Aged	
		Binder and Warm Asphalt Additives	58
	3.3.3	Phase Three: Investigation of WMA Mixture	
		Performance at Different Mixing and	
		Compaction Temperature	61
	3.3.4	Phase Four: Developing of the Correlation	
		between the Modified Asphalt Binder	
		Properties and WMA Mixture Performance	62
3.4	Aspha	lt Binder Blending Procedure	62
3.5	Exper	imental Procedures for Asphalt Binder	63
	3.5.1	Penetration	63
	3.5.2	Softening Point	64
	3.5.3	Viscosity	66
	3.5.4	Storage Stability	67
	3.5.5	Dynamic Shear Rheometer (DSR)	68
	3.5.6	Surface Energy	70
	3.5.7	Fourier Transform Infrared Spectroscopy	
		(FTIR)	73
	3.5.8	Aging Procedures	74
3.6	Super	pave Mix Design	74
	3.6.1	Volumetric Properties	77

3

	3.6.2	Prepara	tion of Mixture Containing RAP	79
3.7	Experi	mental Pro	ocedures for Asphalt Mixture	80
	3.7.1	Indirect	t Tensile Resilient Modulus Test	80
	3.7.2	Moistu	re Susceptibility Test	82
	3.7.3	Asphalt	t Pavement Analyzer (APA)	85
3.8	Summa	ry		86
RES	ULTS A	ND DISC	CUSSIONS	87
4.1	Introdu	ction		87
4.2	Phase 1	: Determin	nation of the Optimum Content	
	WEO			88
	4.2.1	Effect of	of WEO on Penetration	88
	4.2.2	Effect of	of WEO on Softening Point	89
	4.2.3	Effect of	of WEO on Viscosity	90
	4.2.4	Verifica	ation of WEO	92
4.3	Phase 2	2: Investig	ation of the Properties of Modified	
	Binder	containin	g WEO, Aged Binder and Warm	
	Asphal	t Additive	es	96
	4.3.1	Effect of I	Modified Binder on Storage Stability	96
	4.3.2	Effect of	Modified Binder on Viscosity	97
	4.3.3	Dynamic	e Shear Rheometer	98
		4.3.3.1	Effect of Modified Binder on	
			Complex Modulus	99
		4.3.3.2	Effect of Modified Binder on	
			Phase Angle	102
		4.3.3.3	Effect of Modified Binder on	
			Rutting Resistance	105
		4.3.3.4	Effect of Modified Binder on	
			Failure Temperature	108
		4.3.3.5	Effect of Modified Binder on	
			Aging Index	109
		4.3.3.6	Effect of Modified Binder on	
			Creep and Recovery	110

	4.3.4	Interfacia	al Bonding	112
		4.3.4.1	Effect of Modified Binder on	
			Contact Angle	112
		4.3.4.2	Effect of Modified Binder on	
			Surface Energy	113
		4.3.4.3	Effect of Modified Binder on	
			Work of Cohesion	115
	4.3.5	Effects of	Modified Binder on Fourier	
		Transform	m Infrared Spectroscopy	116
	4.3.6	Determina	tion Optimum Content of Additives	119
4.4	Phase 3	: Investiga	tions of WMA Mixture Performance	
	at Diffe	erent Mixi	ng and Compaction Temperature	121
	4.4.1	Volume	tric Properties of Mixtures	122
	4.4.2	Effects of	of Modified Binder and Compaction	
		Temper	ature on Resilient Modulus Results	123
	4.4.3	Effects of	of Modified Binder and Compaction	
		Temper	ature on Moisture Susceptibility	126
	4.4.4	Effects of	of Modified Binder and Compaction	
		Temper	ature on Rutting	128
4.5	Phase 4	4: Correlat	ion between Modified Binder	
	Proper	ties and Pe	erformance Mixture	130
	4.5.1	Correlat	tion between Modified Binder	
		Properti	es and Resilient Modulus	131
	4.5.2	Correlat	tion between Modified Binder	
		Properti	es and ITS _{dry}	134
	4.5.3	Correlat	tion between Modified Binder	
		Properti	es and Rut Depth	136
	4.5.4	Determi	ine the Optimum Temperature for	
		Modifie	ed Asphalt Mixture	138
4.6	Summa	ry		139
	4.6.1	Optimu	m WEO	139
	4.6.2	Effect o	f Additives to the Modified Binder	140

		4.6.3	Performance of WMA Mixture under	
			Different Mixing and Compaction	
			Temperatures	141
		4.6.4	Correlation of Asphalt Binder Properties and	
			Mixture Performance	142
5	CON	NCLUSI	ONS AND RECOMMENDATIONS	143
	5.1	Conclus	sions	143
	5.2	Conclu	ding Remarks on Research Contribution	144
	5.3	Recom	nendations for Future Work	145
REFERENC	CES			146

Appendices A – E	160 - 171
------------------	-----------

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Types of rejuvenator (NCAT, 2014)	18
2.2	Basic properties of WEO	21
2.3	Regulation for WEO (MoEF, 2008 ; Pelitli et al., 2017)	22
2.4	Allowable limit for using WEO as fuel (UNEP, 2012)	23
2.5	Details of foam WMA products (Rubio et al., 2012)	27
2.6	Details of organic WMA products (Rubio et al., 2012)	28
2.7	Details of chemical WMA products (Rubio et al., 2012)	29
2.8	Summary of materials and testing for asphalt binder	
	modification	32
2.9	Summary of previous research on RAP and WEO	46
3.1	Physical and viscoelastic properties of base binder	49
3.2	Properties of aggregate	50
3.3	Properties of aged binder after extraction and recovery	
	from RAP	53
3.4	Description of WEO	55
3.5	Physical properties of WEO	56
3.6	Elemental analysis of WEO	56
3.7	Physical properties of WMA additive (Xiao et al., 2012)	57
3.8	Testing parameters for DSR	69
3.9	Mixing and compaction temperature (Abdullah, 2014)	76
3.10	The criteria of mix design for determining optimum	
	asphalt content of NMAS 9.5 mm (Asphalt Institute,	
	2001)	78
3.11	Parameter setting for APA (AASHTO, 2003b)	85
4.1	Parameter for optimum content WEO assessment	92

4.2	ANOVA results of rutting resistance for different	
	sources of WEO before aging	94
4.3	ANOVA results for rutting resistance of different types	
	of WEO after aging	94
4.4	Optimum amount of WEO to achieve the target asphalt	
	binder grade	95
4.5	The designation for the asphalt binder	96
4.6	Storage stability of asphalt binder measured by softening	
	point	97
4.7	Work of cohesion values	115
4.8	The ranking of modified binder	120
4.9	Designation and description of mixture sample	121
4.10	Content of each materials and respective designations of	
	mixture	121
4.11	Mixture volumetric properties	122
4.12	Factorial ANOVA analysis for resilient modulus of	125
	mixture	
4.13	Factorial ANOVA analysis for indirect tensile strength	
	(ITS) of mixture	128
4.14	Factorial ANOVA analysis for rutting of mixture	130
4.15	Pearson correlation matrix for independent and	
	dependent variables (resilient modulus)	132
4.16	Pearson correlation matrix for independent and	134
	dependent variables (ITS _{dry})	
4.17	Pearson correlation matrix for independent and	
	dependent variables (rut depth)	136
4.18	Classification of the correlation between binder	
	properties and WMA mixture performance for each	
	compaction temperature	138
4.19	Final ranking for compaction temperature	139

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Costs involve in pavement construction (Hansen, 2013)	12
2.2	Aging mechanisms of asphalt pavement (Moghaddam	
	and Baaj, 2016)	14
2.3	Mechanism blending of RAP binder and virgin binder	
	(Bowers, 2013)	15
2.4	Comparison between new oil and waste engine oil	20
2.5	Categories of asphalt mixes (Prowell and Hurley, 2007)	25
2.6	Asphalt binder viscosity at 135°C for virgin and RAP	
	modified binder (Colbert and You, 2012)	33
3.1	Flowchart of research methodology	47
3.2	RAP stored in a container	51
3.3	Extraction unit bowl equipment	52
3.4	RAP binder recovery apparatus	53
3.5	Gradation of RAP aggregate	54
3.6	Determination process of optimum WEO	59
3.7	Laboratory tests of the modified binder	60
3.8	Performance of mixture	61
3.9	Silverson high shear mixer	63
3.10	Penetrometer equipment	64
3.11	Softening point test setup with (a) sample preparation in	
	the ring (b) automated softening point equipment	64
3.12	Rotational viscometer equipment	67
3.13	Aluminium foil tube for storage stability test	68
3.14	Dynamic shear rheometer equipment	69
3.15	Component of goniometer device	71

3.16	Contact angle theory (Wei and Zhang, 2010)	72
3.17	Example of contact angle between distilled water and	
	binder captured by software	72
3.18	Fourier Transform Infrared equipment with ATR	
	mechanism	73
3.19	Aggregate gradation NMAS 9.5 mm	75
3.20	Configuration of gyratory compactor	77
3.21	Resilient modulus equipment	81
3.22	Mechanism of ITS test	84
3.23	APA equipment	86
4.1	Results of penetration tests with increasing content of	89
	WEO	
4.2	Results of softening point tests with increasing content	90
	of WEO	
4.3	Results of viscosity tests with increasing content of	91
	WEO	
4.4	Rutting resistance of modified asphalt with different	
	source of WEO	93
4.5	Viscosity values of binder with (a) wax-based additive	
	(b) oil-based additive	98
4.6	Complex modulus of wax-based asphalt binder for (a)	
	before aging (b) after aging	100
4.7	Complex modulus of oil-based asphalt binder for (a)	
	before aging (b) after aging	101
4.8	Phase angle of wax-based asphalt binder for (a) before	
	aging (b) after aging	103
4.9	Phase angle of oil-based asphalt binder for (a) before	
	aging (b) after aging	104
4.10	Rutting resistance of un-aged asphalt binder for (a) wax-	
	based additive (b) oil-based additive	106
4.11	Rutting resistance of short-term aged asphalt binder for	
	(a) wax-based additive (b) oil-based additive	107
4.12	Failure temperature of asphalt binders	108

4.13	Aging indexes of asphalt binder	109
4.14	Results of non-recoverable compliance	110
4.15	Contact angle values of asphalt binder	113
4.16	Surface energy of asphalt binder	114
4.17	Sulfoxide absorbance value for wax-based additive	
	before and after aging	117
4.18	Carbonyl absorbance value for wax-based additive	
	before and after aging	117
4.19	Sulfoxide absorbance value for oil-based additive before	
	and after aging	118
4.20	Carbonyl absorbance value for oil-based additive before	
	and after aging	118
4.21	Resilient modulus of mixes at pulse repetition period	
	during loading time for (a) 1000 ms (b) 2000 ms (3)	124
	3000 ms	
4.22	Tensile strength ratio (TSR) values of HMA and WMA	
	mixtures	126
4.23	Indirect tensile strength (ITS) values for dry and wet	
	conditioned	127
4.24	Rut depth results of mixes	129
4.25	Rate of rutting of mixes	130
4.26	Relationship of modified asphalt binder properties with	
	resilient modulus	133
4.27	Relationship of modified asphalt binder properties with	
	ITS _{dry}	135
4.28	Relationship of modified asphalt binder properties with	
	rut depth	137

LIST OF ABBREVIATIONS

AASHTO	-	American Association of State and Highway Transportation
		Officials
APA	-	Asphalt Pavement Analyzer
ARRA	-	Asphalt Recycling and Reclaiming Association
ASTM	-	American Society for Testing and Materials
ATR	-	Attenuated Total Reflectance
DSR	-	Dynamic Shear Rheometer
EAPA	-	European Asphalt Pavement Association
FTIR	-	Fourier Transform Infrared Spectroscopy
HMA	-	Hot Mix Asphalt
ITRM	-	Indirect Tensile Resilient Modulus
ITS	-	Indirect Tensile Strength
LVDT	-	Linear Variable Displacement Transducer
NAPA	-	National Asphalt Pavement Association
NMAS	-	Nominal Maximum Aggregate SRTize
RAP	-	Reclaimed Asphalt Pavement
RTFO	-	Rolling Thin Film Oven
TSR	-	Tensile Strength Ratio
UTM	-	Universal testing machine
UV	-	Ultraviolet
VFA	-	Voids filled with asphalt
VMA	-	Voids in mineral aggregates
WEO	-	Waste Engine Oil
WMA	-	Warm Mix Asphalt

LIST OF SYMBOLS

δ	-	Phase angle
$^{\circ}C$	-	Degree Celsius
ст	-	Centimeter
g	-	Gram
G^*	-	Complex shear modulus
G*/sin δ	-	Rutting resistance
G_{mb}	-	Bulk specific gravity of compacted mixture
$G_{ m mm}$	-	Maximum specific gravity of loose mixture
G_{sb}	-	Bulk specific gravity of total aggregate
$\mathbf{J}_{\mathbf{nr}}$	-	Non-recoverable compliance
kPa	-	Kilopascal
mJ/m^2	-	Millijoule per square meter
mL	-	Milliliter
mm	-	Millimeter
MPa	-	Megapascal
N _{des}	-	Design number of gyrations
N_{ini}	-	Initial number of gyrations
N _{max}	-	Maximum number of gyrations
Pa.s	-	Pascal second
P_{be}	-	Effective Asphalt Content
r	-	Correlation Coefficient
rpm	-	Revolution per minute
S	-	Second
V_a	-	Volume of air voids

LIST OF APPENDICES

APPENDIX	ENDIX TITLE	
А	Estimation of Initial Asphalt Binder Content	152
В	Strain Sweep Results for Base Binder and Modified	
	Binder	154
С	Graph of Creep and Recovery	155
D	FTIR Results for wavelength 600cm ⁻¹ to 4000cm ⁻¹	158
E	List of Publications	162

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays, environmental issues have become a significant challenge to society due to increase population, over-exploitation and depletion of natural resources. These issues have also been highlighted in the field of road construction and rehabilitation. Flexible road infrastructure is a sector that uses a sizeable amount of aggregate and asphalt binder which are categorized as non-renewable materials. The fast depletion of these natural non-renewable materials and their escalating price have urged the asphalt industries to look for other alternatives to achieve sustainable pavement, which is defined by Miller and Bahia (2009) as:

"....a pavement that minimizes environmental impacts through the reduction of energy consumption, natural resources and associated emissions while meeting all performance conditions and standards." Therefore, the recycling of end-service life asphalt pavement has become a viable solution to the aforementioned scenario. Generally, the material is known as reclaimed asphalt pavement (RAP). It can be produced through the milling process, demolition process (breaking and lifting up pavement in slabs), waste of asphalt production plant and unwanted loads return from the laying site (Hunter *et al.*, 2015). Recycling pavement materials have some advantages to the environmental, economic and engineering aspects. They help to offset the increased initial cost, conserve natural resources and avoid disposal problems (Jamshidi *et al.*, 2012).

Over the years, RAP was used in the conventional method of hot mix asphalt (HMA) since the production and road construction using RAP require high temperature (Sondag *et al.*, 2002; Widyatmoko, 2008; McDaniel *et al.*, 2012; Izaks *et al.*, 2015). HMA is usually produced at the temperature between 160°C and 170°C. This range of temperature of HMA encourages the asphalt binder within the RAP to undergo a secondary ageing that causes compatibility and workability issue during compaction (Tao and Mallick, 2009; Guo *et al.*, 2016). The soft binder grades were expected to reduce the stiffness in mixtures with high RAP (Sabouri *et al.*, 2015; Ekblad and Lundström 2017). Waste engine oil (WEO) is one of the rejuvenators that is able soften the aged binder in RAP.

Additionally, warm mix asphalt (WMA) is the recent advanced technology which allows the reduction of temperature, reduces energy consumption, increases RAP content usage and has certain environmental benefit, spurring the interest of engineers and practitioners in the pavement industry (Rubio *et al.*, 2012). However, the effects of WMA on reclaimed asphalt binder are depending on the types of additives (Rogers, 2011; Buss *et al.*, 2015; Sabouri *et al.*, 2016). The term 'sustainability' has sparked the interest of industries and researchers to continuously support and promote the utilization of waste materials in construction materials without compromising the performance. This study explored the usage of WEO as rejuvenator for RAP with WMA technology. Both WEO and RAP may encourage innovative application of waste materials in pavement when they are used simultaneously with WMA at a low temperature. In particular, there is a scarcity of

information in understanding the effect of those materials on the binder and mixture properties. Therefore, this study was extensively conducted to explore the potential of waste material in sustainable development.

1.2 Problem Statement

Most studies on the modification of mixture containing RAP point out that the stiffness of the RAP binder is one of the intrinsic properties which restricts a higher percentage of RAP. The stiffness causes loss of flexibility, workability problem (Zaumanis *et al.*, 2013a), susceptible to crack failure (Zaumanis *et al.*, 2015), reduced fatigue life (Tao and Mallick, 2009), lowered strain tolerance (Tran *et al.*, 2012) and physical change (Chen *et al.*, 2007). These problems can be mitigated effectively by the WEO. Their appearance similarity, high availability due to increasing number of vehicles and the recoverable of the flexibility of RAP binder which is similar to rejuvenating agent, have led to the usage of WEO in pavement.

WEO is a material that is capable to soften the oxidative aged binder (Zamhari *et al.*, 2009 ; Oliveira *et al.*, 2013; DeDene and You, 2014). In Malaysia, there is an estimation of 27 million registered vehicles with around 12 million of motorcars (JPJ, 2016). Consequently, it has contributed to high amount of waste oil disposal. Figure 1.1 shows the numbers of registered motorcars per year. After a certain period of usage, the vehicles need to be serviced. In a single automotive oil change, 4 to 5 liters of WEO will be disposed. Without proper handling, it can lead to environmental problems. WEO can be used as a recycled material in pavement through asphalt binder modification. Alternatively, it could be recycled as pavement materials through asphalt binder strength of virgin asphalt binder (Borhan *et al.*, 2009) and the strength of asphalt mixture in the hot mix asphalt (DeDene and You, 2014).

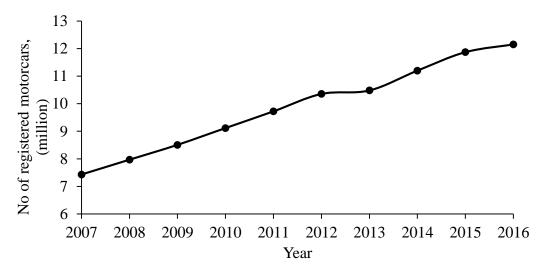


Figure 1.1 Number of registered motorcars from 2007 to 2016 (JPJ, 2016)

On the other hand, the RAP binder is reported to have larger influence compared to WMA additive and thus, limits the incorporation of higher recycled asphalt materials (Buss *et al.*, 2015). The identified problem is due to the temperature and binder factor. These issues have led to the motivation in conducting this study; the mergence of WEO, RAP and WMA. Therefore, a thorough investigation of the modified binder properties and mixture performance was conducted in a well-controlled laboratory.

1.3 Aim and Objectives of Study

The aim of this study was to investigate the feasibility of reclaimed asphalt pavement (RAP) containing waste engine oil (WEO) with warm mix asphalt (WMA) technology. Four objectives were formulated as follows.

 To determine the amount of waste engine oil (WEO) required to rejuvenate the aged binder

- To investigate the effect of different percentages of wax-based and oil-based additives on the properties of the aged binder containing WEO
- To investigate the mechanical performance of pavement mixture with modified binder in terms of stiffness, moisture resistance and rutting at different mixing and compaction temperatures.
- To develop a correlation between the properties of modified binder with warm mix asphalt (WMA) mixture performances

1.4 Scope of Study

The main focus of this research is the characterization of the recycled asphalt binder modification with WEO in WMA for wearing course. The methods were specified according to the American Society for Testing and Materials (ASTM) and American Association of State Highway and Transportation Officials (AASHTO).

The laboratory works consisted of binder and mixture evaluations. Base binder of penetration grade 80/100 was used as the control binder. WEO was obtained from local service center. Two types of WMA additives were used in this study: wax-based and oil-based. The RAP sample was obtained from a resurfacing project by milling process at Jalan Batu Pahat. In the first phase, five sources of WEO were tested. Only one source was used for the second phase due to no significant difference between the sources of WEO. The selected WEO was blended with various percentages of waxbased and oil-based additives, respectively. The best amount of each type of additive was further used in phase three. Since the trigger was the intrinsic property of asphalt binder, the laboratory tests were conducted to determine the modified asphalt binder properties and mixture performance. The purpose of performing the tests was to understand the interaction between the materials in the pavement in an early aged-stage. Early aged stage refers to the condition after manufacturing and construction of pavement which is influenced from the asphalt binder properties.

1.5 Significance of Study

WEO with high compatibility with asphalt binder was used in the pavement modification. However, the modification could not be done indiscriminately. There is a need for a detailed study to propose this waste material to be used in pavement sustainably without adversely affecting the pavement performance. Therefore, this research was mainly conducted to develop a better understanding of the WEO modification in high RAP binder with WMA from a fundamental point of view.

The application of WMA technology during the rejuvenation process of recycled mixture containing WEO was considered as a "green-on-green" concept. This technology could be an alternative to reduce waste disposal to the environment, and decrease the production temperature and energy consumption by improving the mechanical performance of the final mixture. The objective of using recycled technology was to ensure that the material can perform better or at least comparable to other conventional materials. The findings of this study could be of interest to the asphalt industry as well as to support the target of Malaysian Public Work Department Strategic Framework that focuses on sustainable infrastructure and asset development.

This thesis is divided into five chapters. A brief description of each chapter is provided as follows:

Chapter 1: Introduction - This chapter includes a brief background of this study. The research chronology is divided into problem statement, research objectives, scope and significance of the study.

Chapter 2: Literature Review - This chapter presents the fundamental about reclaimed asphalt pavement (RAP). The intrinsic properties in RAP binder lead to the modification. The evaluation of the modification is reviewed. Concluding remarks are presented at the end of this chapter regarding the modification of RAP, WEO and WMA.

Chapter 3: Research Methodology - This chapter describes the experimental framework, details of the apparatus, sample preparation and testing procedure. Four phases are involved in the methodology. Each phase represents each objectives.

Chapter 4: Results and Discussions - This chapter discusses the findings according to the four phases as outlined in Chapter 3. Each chapter is interrelated in order to achieve the objectives.

Chapter 5: Conclusions and Recommendations - This chapter presents 1 summary of the findings and recommendations for future studies.

REFERENCES

- AASHTO (2003). AASHTO T283: Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage, Washington, DC, United States: American Association of State Highway and Transportation Officials.
- Abdullah, M.E. (2014). Performance of Warm Mix Asphalt (WMA) Mixture Using Nanoclay Modified Asphalt Binder. PhD Thesis. Universiti Tun Hussein Onn Malaysia.
- Abdullah, M.E., Zamhari, K.A., Nayan, N., Hainin, M.R. and Hermadi, M. (2011). Storage Stability and Physical Properties of Asphalt Modified with Nanoclay and Warm Mix Asphalt Additives. *World Journal of Engineering.*, 3–4.
- Abro, R., Chen, X., Harijan, K., Dhakan, Z.A. and Ammar, M. (2013). A Comparative Study of Recycling of Used Engine Oil Using Extraction by Composite Solvent, Single Solvent, and Acid Treatment Methods. *ISRN Chemical Engineering*. 2013, 1–5.
- Ai, A., Yi-qiu, T. and Talib, A. (2011). Starch as a Modifier for Asphalt Paving Materials. *Construction and Building Materials*. 25, 14–20.
- Aja, O.C., Al-Kayiem, H.H., Zewge, M.G. and Joo, M.S. (2016). Chapter 5 Overview of Hazardous Waste Management Status in Malaysia. In *Management of Hazardous Wastes*. Intech, pp.69–87.
- Akisetty, C., Xiao, F., Gandhi, T. and Amirkhanian, S. (2011). Estimating Correlations between Rheological and Engineering Properties of Rubberized Asphalt Concrete Mixtures Containing Warm Mix Asphalt Additive. *Construction and Building Materials*. 25(2), 950–956.
- Al-Qadi, I.L., Carpenter, S.H., Roberts, G., Ozer, H., Trepanier, J., Aurangzeb, Q. and Elseifi, M. (2009). *Determination of Usable Residual Asphalt Binder in RAP*. *FHWA-ICT-09-031*, Illinois, United States: Illinois Department of Transportation.

- Ali, A.W., Mehta, Y.A., Nolan, A., Purdy, C. and Bennert, T. (2016). Investigation of the Impacts of Aging and RAP Percentages on Effectiveness of Asphalt Binder Rejuvenators. *Construction and Building Materials*. 110, 211–217.
- Aman, M.Y., Shahadan, Z., Ruhani, M. and Buhari, R. (2014). Effects of Aging on the Physical and Rheological Properties of Asphalt Binder Incorporating Rediset. *Jurnal Teknologi*. 70(7), 111–116.
- Anderson, R., Baumgardner, G., May, R. and Reinke, G. (2008). Engineering Properties, Emissions, and Field Performance of Warm Mix Asphalt Technologies. *Interim Report*.
- Anwar, N., Ali, S.S., Anwar, Z., Khattak, J.Z.K., Jabbar, A., Ansari, T.M. and Naqvi, S.S.R. (2012). Recycling of Automotive Lubricating Waste Oil and Its Quality Assessment for Environment-Friendly Use. *Research Journal of Environmental* and Earth Sciences. 4(10), 912–916.
- Arega, Z., Bhasin, A., Motamed, A. and Turner, F. (2011). Influence of Warm-Mix Additives and Reduced Aging on the Rheology of Asphalt Binders with Different Natural Wax Contents. *Journal of Materials in Civil Engineering*. 23(10), 1453– 1459.
- Asphalt Institute (2003). Performance Graded Asphalt: Binder Specifications and Testing, Superpave Series No 1 (SP-1), Lexington, KY, USA.: The Asphalt Institute.
- Asphalt Institute (2001). Superpave Mix Design. Superpave Series No. 2 (SP-2), Lexington, KY.
- Asphalt Recycling and Reclaiming Association (2001). *Basic Asphalt Recycling Manual*, United States.
- ASTM (1982). ASTM D4123: Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixture, West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2000). ASTM D5976: Standard Specification for Type 1 Polymer Modified Asphalt Cement for Use in Pavement Construction, West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2006). ASTM D5: Standard Test Method for Penetration of Bituminous Materials, West Conshohocken, PA, United States.: American Society for Testings and Materials.

- ASTM (2008). ASTM D7175: Standard Test Method for Determining the Rheological Properties of Asphalt Binder using a Dynamic Shear Rheometer, West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2010). ASTM D7405: Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer, West Conshohocken, PA, United States.: American Society for Testings and Materials.
- ASTM (2011a). ASTM D2041: Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures, West Conshohocken, PA, United States.: Americal Society for Testing and Materials.
- ASTM (2011b). ASTM D2172: Standard Test Methods for Quantitative Extraction of Bitumen From Bituminous Paving Mixtures, West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2011c). ASTM D2726: Standard Test Method for Bulk Specific Gravity and Density of Non-absorptive Compacted Bituminous Mixture, West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2012a). ASTM D2872: Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test), West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2012b). ASTM D36: Standard Test Method for Softening Point of Bitumen (Ring and Ball Apparatus), West Conshohocken, PA, United States.: American Society for Testing and Materials.
- ASTM (2012c). ASTM D5404: Standard Practice for Recovery of Asphalt from Solution Using the Rotary Evaporator, West Conshohocken, PA, United States.: American Society for Testings and Materials.
- ASTM (2013). ASTM D4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer, West Conshohocken, PA, United States.: American Society for Testing and Materials.
- Borhan, M.N., Suja, F., Ismail, A. and Rahmat, R.A. (2009). The Effects of Used Cylinder Oil on Asphalt Mixes. *European Journal of Scientific Research*. 28(3), 398–411.
- Borhan, M.N., Suja, F., Ismail, A. and Rahmat, R.A. (2007). Used Cylinder Oil Modified Cold-Mix Asphalt Concrete. *Journal of Applied Science*. 7(22), 3485– 3491.

- Botas, J.A., Moreno, J., Espada, J.J., Serrano, D.P. and Dufour, J. (2017). Recycling of Used Lubricating Oil: Evaluation of Environmental and Energy Performance by LCA. *Resources, Conservation and Recycling*. 125, 315–323.
- Boughton, B. and Horvath, A. (2004). Environmental Assessment of Used Oil Management Methods. *Environmental Science and Technology*. 38(2), 353–358.
- Bowers, B.. (2013). Investigations of Asphalt Pavement Mixture Blending Utilizing Analytical Chemistry Techniques. PhD Thesis. University of Tennessee.
- Brown, E.R., Kandhal, P.S., Roberts, F.L., Kim, Y.R., Lee, D.-Y. and Kennedy, T.W. (2009). *Hot Mix Asphalt Materials, Mixture Design and Construction* 3rd ed., Lanham, Maryland: NAPA Research and Education Foundation.
- Brownridge, J. (2010). The Role of an Asphalt Rejuvenator in Pavement Preservation: Use and Need for Asphalt Rejuvenation. In *Compendium of Papers from the First International Conference on Pavement Preservation on 13-15 April.* New Port Beach, California, pp.351–364.
- Buss, A., Williams, R.C. and Schram, S. (2015). The Influence of Warm Mix Asphalt on Binders in Mixes That Contain Recycled Asphalt Materials. *Construction and Building Materials*. 77, 50–58.
- Chen, J.S., Chu, P.Y., Lin, Y.Y. and Lin, K.Y. (2007). Characterization of Binder and Mix Properties to Detect Reclaimed Asphalt Pavement Content in Bituminous Mixtures. *Canadian Journal of Civil Engineering*. 34(5), 581–588.
- Chen, J.S., Huang, C.C., Chu, P. and Lin, K. (2007). Engineering Characterization of Recycled Asphalt Concrete and Aged Bitumen Mixed Recycling Agent. *Journal* of Materials Science. 42, 9867–9876.
- Chen, M., Leng, B., Wu, S. and Sang, Y. (2014). Physical, Chemical and Rheological Properties of Waste Edible Vegetable Oil Rejuvenated Asphalt Binders. *Construction and Building Materials*. 66, 286–298.
- Colbert, B. and You, Z. (2012). The Determination of Mechanical Performance of Laboratory Produced Hot Mix Asphalt Mixtures using Controlled RAP and Virgin Aggregate Size Fractions. *Construction and Building Materials*. 26(1), 655–662.
- Copeland, A. (2011). Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice. *Report No. FHWA-HRT-11-021*. (FHWA), McLean, Virginia.
- D'Angelo, J., Harm, E., Bartoszek, J., Baumgardner, G., Corrigan, M., Cowsert, J., Harman, T., Jamshidi, M., Jones, W., Newcomb, D., Prowell, B., Sines, R. and