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ABSTRACT 

 

 

 

 

Sophisticated digital video editing tools has made it easier to tamper real videos 

and create perceptually indistinguishable fake ones. Even worse, some post-processing 

effects, which include object insertion and deletion in order to mimic or hide a specific 

event in the video frames, are also prevalent. Many attempts have been made to detect 

such as video copy-move forgery to date; however, the accuracy rates are still 

inadequate and rooms for improvement are wide-open and its effectiveness is confined 

to the detection of frame tampering and not localization of the tampered regions. Thus, 

a new detection scheme was developed to detect forgery and improve accuracy. The 

scheme involves seven main steps. First, it converts the red, green and blue (RGB) 

video into greyscale frames and treats them as images. Second, it partitions each frame 

into non-overlapping blocks of sized 8x8 pixels each. Third, for each two successive 

frames (S2F), it tracks every block’s duplicate using the proposed two-tier detection 

technique involving Diamond search and Slantlet transform to locate the duplicated 

blocks. Fourth, for each pair of the duplicated blocks of the S2F, it calculates a 

displacement using optical flow concept. Fifth, based on the displacement values and 

empirically calculated threshold, the scheme detects existence of any deleted objects 

found in the frames. Once completed, it then extracts the moving object using the same 

threshold-based approach. Sixth, a frame-by-frame displacement tracking is 

performed to trace the object movement and find a displacement path of the moving 

object. The process is repeated for another group of frames to find the next 

displacement path of the second moving object until all the frames are exhausted. 

Finally, the displacement paths are compared between each other using Dynamic Time 

Warping (DTW) matching algorithm to detect the cloning object. If any pair of the 

displacement paths are perfectly matched then a clone is found. To validate the 

process, a series of experiments based on datasets from Surrey University Library for 

Forensic Analysis (SULFA) and Video Tampering Dataset (VTD) were performed to 

gauge the performance of the proposed scheme. The experimental results of the 

detection scheme were very encouraging with an accuracy rate of 96.86%, which 

markedly outperformed the state-of-the-art methods by as much as 3.14%. 
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  Kecanggihan alat penyuntingan video digital telah membuat lebih mudah 

untuk mengubah video gangguan sebenar dan memalsukannya supaya ia tidak dapat 

dibezakan. Lebih buruk lagi, terdapat beberapa kesan pasca-pemprosesan, yang 

berleluasa termasuk sisipan dan penghapusan objek untuk meniru atau 

menyembunyikan peristiwa tertentu dalam bingkai video. Pelbagai cubaan telah dibuat 

untuk mengesan pemalsuan video salinan-langkah sehingga kini; walau 

bagaimanapun, kadar ketepatan masih tidak mencukupi dan ruang untuk 

penambahbaikan adalah terbuka luas dan keberkesanannya terbatas kepada 

pengesanan bingkai dan kawasan setempat yang tidak diganggu. Oleh itu, satu skim 

pengesanan baru telah dibangunkan untuk mengesan pemalsuan dan meningkatkan 

ketepatan. Skim ini melibatkan tujuh langkah utama. Pertama, ia menukarkan video 

merah, hijau dan biru (RGB) ke dalam bingkai skala kelabu dan menganggap mereka 

sebagai imej. Kedua, ia menyekat setiap bingkai ke dalam blok bukan pertindihan 

piksel setiap satu bersaiz 8x8. Ketiga, bagi setiap dua bingkai berturut-turut (S2F), ia 

menjejaki dua salinan setiap blok dengan menggunakan teknik pengesanan dua 

peringkat yang dicadangkan dan melibatkan carian Berlian dan Pengubah Slantlet 

untuk mencari blok pendua. Keempat, bagi setiap pasangan blok pendua daripada S2F, 

ia mengira anjakan menggunakan konsep aliran optik. Kelima, berdasarkan nilai-nilai 

anjakan dan ambang pengiraan empirikal, skim ini mengesan kewujudan sebarang 

objek terpadam yang dijumpai di dalam bingkai. Setelah selesai, ia kemudiannya 

mengekstrak objek yang bergerak menggunakan pendekatan berasaskan ambang-

sama. Keenam, pengesanan anjakan bingkai demi bingkai dilakukan untuk mengesan 

pergerakan objek dan mencari laluan anjakan objek yang bergerak. Proses ini diulangi 

untuk satu lagi kumpulan bingkai bagi mencari jalan anjakan seterusnya untuk objek 

kedua yang bergerak sehingga kesemua bingkai habis. Akhirnya, laluan anjakan 

dibandingkan antara satu sama lain dengan menggunakan algoritma sepadan 

Lengkungan Masa Dinamik (DTW) yang hampir sama untuk mengesan objek 

pengklonan. Jika mana-mana pasangan daripada laluan anjakan merupakan bandingan 

yang sempurna maka pengklonan akan ditemui. Bagi mengesahkan proses ini, satu siri 

eksperimen berdasarkan set data dari Perpustakaan Universiti Untuk Analisis Forensik 

(SULFA) dan Video Mengganggu Set Data (VTD) telah dijalankan untuk mengukur 

prestasi skim yang dicadangkan. Keputusan eksperimen skim pengesanan sangat 

menggalakkan dengan kadar ketepatan 96.86%, yang ketara mengatasi kaedah terkini 

sebanyak 3.14%. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview  

 

 

In the last of few years, with the advent of digital media such as video, images 

and audio through internet, the means and the incentive to create digital forgeries have 

also multiplied with it.  As a matter of fact, powerful tamper media or editing software 

and tools allow the creation of perceptually persuasive digital forgeries techniques. 

Evolutions in visual digital video technologies such as digital transmission, 

compression, storage, and video-conferencing have supported society in many ways. 

Compared with digital image, the tampering of digital video is often more 

sophisticated and time-consuming (Richao et al., 2014) although it is becoming easier 

with the popularity of video editing tools, such as Video Editor and Adobe Photoshop. 

 

 

The video processing software is commonly used to delete or incorporate 

moving objects and change the forged regions with information garnered from their 

neighbouring areas (Su et al., 2015).  In this background video authentication refers to 

a process that confirms the authenticity of a specific video as captured by camera 

through searching and detecting various forensic types as to the tampering method.  In 

this regard, a video sequence can be modified through several forensic methods like 
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modification, combination or create of new video contents.  The aim behind video 

manipulation is to tamper, doctor or fake an authentic video.  The real videos may be 

utilized as sources of their tampered counterparts, and such tampering can be 

conducted on a single video source or on many sources (Upadhyay and Singh, 2012).   

 

 

Video forgeries mainly fall into two types of techniques that can be used for 

video tampering detection: active forgeries and passive forgeries.  In active forgeries, 

(Di Martino and Sessa, 2012; Ram et al., 2009), the tampered region can be extracted 

using a pre-embedded information such as watermark and fingerprint.  However, this 

scheme must have source files to embed the watermark first otherwise the detection 

process will fail (Ng et al., 2006). 

 

 

In passive approaches, techniques can be divided into three categories (C.-S. 

Lin and Tsay, 2013) namely, source identification (sensor type of camera such as 

noise), splicing techniques (multiple video-based forgery), and copy-move detection 

techniques (single video-based forgery). 

 

 

Source camera identification (C.-C. Hsu et al., 2008; Kang et al., 2012) is a 

crucial issue that focuses on many issues that are linked to camera that is concerned 

with identifying the source of a digital device; for example, mobile phones, 

camcorders, and cameras.  On the other hand, in splicing techniques forgery (Wahab 

et al., 2014), two videos are combined to create one tampered video or a composite of 

two or more videos are combined to create a fake video.  Furthermore, splicing 

tampering becomes difficult if the directions and lighting conditions are different 

during recording with a dynamic camera (He et al., 2012; Y.-F. Hsu and Chang, 2007). 

 

 

One of the major challenges that are faced by digital forensics is video copy-

move forgery or digital content tampering (Li and Huang, 2014).  More recently, there 

have been various types of forgery methods developed by hackers, with operation 

duplication operation or copy-move on top of the list. In the context of cloning, the 
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main objective is to hide or incorporate an object from the same video scene to develop 

a new scene.  This process has become widely used as a malicious way of hiding 

evidence (Qadir et al., 2012).   

 

 

 

 

 

 

 

 

 

       (a)                                                                   (b) 

 

Figure 1.1 Example of video Copy-Move forgery (a) Original video (b) Tampered 

video from VTD dataset  

 

 

Figure 1.1 illustrates an example of video copy-move forgery, where (a) the 

original video and (b) the tampered video.  For example, the ducks are recorded in the 

video twice by taking part of the video (e.g., white car) and pasting it in another region 

within the same video.  It is challenging to detect this type of video forgery if the copy-

move procedure is carefully and actually carried out.  Therefore, it is necessary to have 

reliable and efficient methods to detect copy-move forgery for applications in law 

enforcement, particularly forensics (Milani et al., 2012). 

 

 

 

 

1.2 Background of Research 

 

 

Dynamic developments in digital technologies and extensively utilized digital 

video recording systems along with sophisticated video editing software, high quality 
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processing tools and algorithms, and low cost accessibility as well as easy to operate 

digital multimedia devices have led to the increased video tampering and the challenge 

of video authentication.  

 

 

Video copy-move forgery has been identified as a vital form of forgery as it 

utilizes the same video frames sources and destination-apart from this, the video frame 

is copied and pasted on another part of the same video.  In fact there are more subtle 

cases found in the standard dataset video copy-move forgery whereby copied frames 

are pasted on several places on the same video (many-to-many).  Figure 1.2 illustrates 

the above cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Sample of video copy-move forgery (a) Original video (b) Tampering 

video from VTD dataset  

 

 

In the beginning, the problem of copy-move lies in appointing video 

authentication that plays a key role in detecting and determining region duplication, 

frame duplication or object duplication of video forgery, and locating the factors that 

affect video forgery (Richao, et al., 2014). 
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Pioneering methods depend on intrinsic features such as pixel value and 

statistical features as well as video files characteristics.  Among the many methods that 

are considered for video forgery detection are those that are based on the identification 

of acquisition device and detection of whether or not two video clips stem from the 

one source.  In relation to this, (Kot and Cao, 2013) stated that owing to the statistical 

source features sensitive nature towards tampering and modifications, it is suitable to 

be used in addressing tampering.  

 

 

A majority of the previous works (Pathak and Patil, 2014; D'Amiano, et al., 2015; 

Bestagini et al., 2013) have used Local Binary Patterns (LBP)-based features to identify 

duplicated image regions. Though LBP is effective against distortions, scaling, JPEG 

compression, blurring and noise adding, it however becomes ineffective when forged 

areas are small. This failure may lead to inadvertent errors in the subsequent important 

processes such as detection of moving objects and deleting objects. This is to 

emphasise that precise duplicated region detection is utmost important in video copy-

move forgery detection. Failure which will result in low detection accuracy.  

 

 

Beside the duplicated region, detection of moving objects, which traverse from 

frame to frame, is also important. Most of the previous works (Pathak and Patil, 2014; 

D'Amiano, et al., 2015; Bestagini et al., 2013) used LESH (Local Energy based Shape 

Histogram) along with lexicographical sorting to determine objects’ trajectory similarity. The 

method is similar to shape-based image retrieval approach. The method has a good efficiency 

in detecting copy-move. However, the efficiency falls as the quality of the video frames 

degrades.  Video tampering refers to the generation of faked videos by adding, deleting 

or altering new video object.  It usually consists of detection/tracking, video 

manipulation, video in-painting and video layer fusion (Kot and Cao, 2013). 

 

 

The detection methods in passive blind video copy-move forgeries can be 

categorized into four and they are pixel-based approach, format-based approach, 

camera-based approach and geometric-based approach (Lin and Tsay, 2014). 
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1.2.1 Pixel-Based Approach  

 

 

According to (Wang and Farid, 2007), pixel-based approaches make use of 

high correlation between authentic and forged areas in video frames for the detection 

of copy-paste forgery.  The drawback lies in the fact that high correlation between 

frames is common in normal videos rendering the method useless if the copied regions 

are in use from other video frames.  In (G.-S. Lin et al., 2011) proposed a video 

detection method known as a coarse-to-fine grained method that uses the variation in 

colour histograms of adjacent frames that are similar spatially and temporally – it 

makes use of the macro-block based correlation algorithm to identify duplication. 

However, their method is not able to determine region forgery.  

 

 

In a similar study, (Zhang et al., 2009) brought forward a method that uses 

ghost shadow artefacts presented by the consistencies in painting in order to detect 

forged moving object region.  Their approach differentiates static background from 

moving foreground through block matching that is sensitive to the noise property 

(illumination alterations), but due to its inaccuracy, the tampered region in each frame 

cannot be identified by their method. 

 

 

 

 

1.2.2 Format-Based Approach 

 

 

An appearance of format-based approach in the video makes up part of the 

forgery chain-of-evidence.  A study of high MPEG is usually initialized with 

compression video coding standard since some of the research in MPEG video 

forgeries focus on the properties of the frames compression efficiency and how it is 

affected when a video is tampered. 
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In this background, (Wang and Farid, 2006), proposed spatio-temporal domain 

artefacts of doubly compressed MPEG video frames in type of I-frame that is like a 

frame sequence of JPEG compressed image although there is considerable correlation 

among frames in GOP (Group of Pictures).  In relation to this, the determination of 

predictive coded I-frame double compression is akin to double compression detection, 

and in the case of GOP, insertion or removal of frames will increase the error of motion 

estimation.  Their method effectively works in detecting frame manipulation but not 

in locating tampered object regions.  In (Luo et al., 2008) study, the authors brought 

forward a new method using the temporal blocking artefacts patterns to detect whether 

deletion or insertion has been done on MPEG video prior to recompression with 

different GOP structures.  Their approaches are effective in frame-level forgery but 

not in region-level tampering and localization. 

 

 

 

 

1.2.3 Camera-Based Approach 

 

 

The main steps of this approach is extracting different types of fingerprints 

based on a set of videos then applying pattern recognition techniques in order to detect 

forgery.   Some fingerprints recognition, which can be used in these techniques include 

noise patterns, lens distortion, and inconsistence-related artifacts (Kancherla and 

Mukkamala, 2012). 

 

 

As aforementioned, another set of video source camera identification method 

is based on the extraction and measurement of noise characteristics that stem from 

camera sensors.  Noise is generally random, unwanted and variation of pixel values in 

digital file (e.g., videos and images) that are sensors-generated.  According to (Bayram 

et al., 2005), the noise patterns are mostly utilized as a part of identification process 

source owing to their deterministic properties that stem from CCD sensors.  
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(Kobayashi et al., 2010) proposed photon approach shot noise to detect 

tampered level regions by using noise characteristics. Their method exploited the 

inconsistencies of photon shot noise caused by various video source cameras to detect 

between the original and forgery regions.  But, their methods approach can merely 

detect forgery regions in static scene videos and not suspicious level regions in videos 

captured by a moving camera. 

 

 

 

 

1.2.4 Geometric-Based Approach 

 

 

Geometric-based approaches make use of measurements of objects in the video 

and their positions relative to the moving video camera.  Based on (Conotter et al., 

2011) study, a forgery technique approach to detect physically inconsistent 

implausible trajectory of objects in video frame sequences was employed. However, 

their technique can detect manipulation regions in a video sequence and limits the form 

of the video frame (i.e., de-interlaced or interlaced). 

 

 

The research questions regarding automatic video copy-move forgery 

detection that are answered in this thesis are: 

 

 

1. What different techniques for video forgery copy-move detection have been 

proposed to date and where does state-of-the-art methods stand today in terms 

of detection rates? 

 

2. Which type of features can be extracted to characterizing the video frames? 

 

3. Can a new video forgery copy-move detection technique, which could achieve 

better performances in comparison to existing techniques in terms of detection 

rate, be proposed? 
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4. How can the exact location of forged area in video forgery copy-move 

detection be located?  

 

 

 

 

1.3 Problem Statement   

 

 

Malicious manipulations and video tampering without any evidence being left 

behind has become very affordable and highly used, due to existence of extremely 

powerful editing tools such as Adobe Photoshop and video editing software.  

Therefore, there has been a swift augmentation of the digitally altered videos on the 

Internet and mainstream media.  This tendency depicts grave vulnerabilities as well as 

minimizes the reliability of digital video.  For such reasons, upcoming techniques in 

verification of the authenticity and integrity of digital video have been regarded as 

being significant, more so when putting into consideration the videos presented as 

news items, as evidence in forensic investigation, such as murder surveillance, or part 

of video forensics.  From such a perspective, the principal goal in video forensics is to 

determine and detect video forgery forensics (Amerini et al., 2013). 

 

 

There entail a myriad of challenges faced by passive technique of detecting 

video forgeries and equally have their constraints and setbacks.  One of the fascinating 

challenges facing the current scholars and researchers in this field is the reduction of 

counterfeit positive rate of such approaches, in establishing effusive automatic system 

with the capacity to identify image falsification from a wide perspective of video 

formats.  Additionally, the system detecting such falsification is made to increase its 

dependability, robustness, and competence of operation.  The key setback realized in 

passive approaches is their requirement for several initial videos to approximate the 

internal traces, whereas in capable situations there entails nothing else rather than the 

video in query (Chen Moet al., 2008).  Additional studies regarding this analysis can 

be accessed in (Lanjewar et al., 2014). 
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(c) Forged video  

(b) Target part of video  

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Example of video copy-move forgery (Qadir, et al., 2012) 

 

 

Figure 1.3 shows an example of video copy-move forgery in which a region 

from one image is copied and pasted within the same video (Muhammad Ghulam et 

al., 2014).  For instance, there has been a continuous problem in identifying copy-

move areas that have been rotated and scaled from different angles (Lanjewar et al., 

2014). 

 

 

Against this backdrop, this research therefore concludes that existing video 

copy-move detection methods still suffer many drawbacks, which include, among 

others: 

 

 

i. Their performance is mediocre when it comes to video compression, and 

in GOP, where addition or deletion of frame increases the estimation of 

motion error (Dong et al., 2012; Li and Huang, 2014; Shanableh, 2013). 

Their method’s effectiveness is confined to the detection of frame 

tampering and not localization of tampered regions.   

+ 
(a) Original video  
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ii. The presence of homogeneous regions in the tampering video further 

complicates the video copy-move forgery detection, which normally 

increases the false positive and the accuracy rate is far from satisfactory 

(Hyun et al., 2013; Su, et al., 2015; Subramanyam and Emmanuel, 2013). 

 

iii. Notwithstanding the achievements realized by prior studies entailing high 

correlations between original and forged regions in copy-move forgery 

detection (e.g., Hsu et al., 2008; Thakur, 2013; Wang et al., 2014), high 

correlation is known to be common in natural videos and the methods 

proposed are not effective if the copied regions are within-frame object 

tampering calling for more enhancements.  

 

 

Thus, the remaining issues and drawbacks of the previous works, which have 

been mentioned above, compel the author to pursue the research to seek a new 

approach to improve the detection rate of video copy-move forgery.  With that in mind, 

a specific and focused research goal along with its objectives and scope are articulated 

and given in the following sub-sections.  

 

 

 

 

1.4 Research Goal  

 

 

The study aims to design and develop a new video copy-move forgery 

detection scheme with high accuracy based on optical flow methods.   
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1.5 Research Objectives 

 

 

In order to achieve the goal, this study aims to fulfil the following main 

objectives: 

 

i. To develop a new method to trace duplicated blocks from each pair of 

successive frames of a video using a two-tier approach comprising 

Diamond search and Slantlet transform. 

 

ii. To propose a new method to detect and localise both deleted objects and 

moving objects using block displacements. 

 

iii. To propose a new cloning object detection method based on displacement 

paths of moving objects using Dynamic Time Warping (DTW) matching 

algorithm. 

 

 

 

 

1.6 Research Scope 

 

 

The scope of this research is limited to the following: 

 

 

i. Datasets: two sets of datasets namely, SULFA (Surrey University Library 

for Forensic Analysis) (Qadir, et al., 2012) and VTD (Video Tampering 

Dataset) are employed to evaluate the performance of the proposed scheme.  

The former is a standard dataset obtained from 

http://sulfa.cs.surrey.ac.uk/forged.php. On the other hand, the latter is a self  

-created dataset which can be found at: 

https://www.youtube.com/channel/UCZuuu-iyZvPptbIUHT9tMrA. 
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ii. Performance evaluation:  This study’s only concern is the accuracy rate, 

while the computational complexity is beyond its domain. 

 

iii. Type of forgery: This study only focus on copy-move or copy-paste-move 

forgery, while other kinds are out of scope of this study. 

 

 

 

 

1.7 Significance of the Study 

 

 

It is strongly believed that several applications like video copy-move forgery 

detection investigations of digital video for forensic investigation such as in the case 

of video surveillance, and presenting video evidence in courts of law need more 

advanced detection and authentication techniques to prove the trustworthiness of 

digital video.  In light of the above mentioned issues, the results of this research are 

expected to contribute to what is currently known about video copy-move forgery 

detection.  Nonetheless, the significance of this study is not only limited to forgery 

detection, but also to the development of a new method that can be used in the future 

in many applications in the field of computer vision. 

 

 

 

 

1.8 Thesis Outline 

 

 

The organization of this thesis is given in this section.  The rest of the chapters 

in this thesis begin with brief sections that highlight the aims of each section of the 

chapter, and sums up with a short conclusion. Chapter 1, provides an overview of the 

research problem and a brief background.  The objectives of the research are also 

described in this chapter. 

 



14 

 

In Chapter 2, an in-depth review of the existing literature on authentication of 

video digital processing on the whole, as well as passive methods in attaining the 

study’s objective, specifically are presented.  The currently employed approaches and 

criteria within the context of counterfeit digital video recognition are highly defined in 

this chapter.   A review of a current study is conducted inclusive of recent techniques 

and methods employed in sensing video forgery tampering.  This study area is 

moderately novel hence the meagre sources relative to the study topic.  Therefore, the 

reviewed and availed approaches relate to extensive processing of digital videos, but 

only somewhat related to forgery detection in videos forensic.  All the chapters are 

independent but a flow and coherency of ideas throughout the entire thesis are ensured.   

 

 

Chapter 3, presents a clear roadmap of this study to guide the reader to achieve 

a quick grasp of the detailed research framework.  The advantages of using the popular 

dataset in the newly developed methods are emphasised.  The layout of the entire 

research framework, strategies, and procedures are highlighted. This is followed by 

Chapter 4, where a detailed design of the proposed method is provided along with the 

step-by-step processes and the proposed algorithms employed in it.  The chapter also 

provides a discussion of the proposed methods entailing the proposed method’s 

implementation on video copy-move forgery detection. 

 

 

The next chapter (Chapter 5), provides the results of the proposed method used 

on two datasets SULFA and the VTD dataset of video copy-move forgery detection, 

along with the experimental results, detailed analyses, and discussion.  It explains the 

qualitative and quantitative measurements that are carried out for the performance 

evaluations and implementation of the method for every phase with the inclusion of 

the detection of the tampered videos and localisation of the forgery region.  The 

qualitative measurements are based on visual human inspection, while the quantitative 

measurements are performed using standard approaches. Lastly, Chapter 6 concludes 

the study by emphasizing the major contributions, enumerating the major 

achievements achieved and providing recommendations for future studies. 
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