BEHAVIOUR OF INDUSTRIALISED BUILDING SYSTEM MODEL IN FLUID-SOLID INTERACTION

OMOLBANIN FARAHMANDPOUR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2016

For my beloved father and mother and my husband, Parham Forouzani

ACKNOWLEDGEMENT

I wish to express my deepest appreciation to all those who helped me, in one way or another, to complete this project. First and foremost I thank God almighty who provided me with strength, direction and purpose throughout the project. Special thanks to my project supervisor Associate Professor Dr. Abdul Kadir bin Marsono for all his patience, guidance and support during the execution of this project. Through his expert guidance, I was able to overcome all the obstacles that I encountered in these enduring my project.

I wish to thank my husband, Parham Forouzani for all his support, encouragement and guidance.

ABSTRACT

The IBS block-work building system is the invention of a Universiti Teknologi Malaysia researcher. The system is targeted towards resisting earthquakes of up to 10 points on the Richter scale. During a recent tsunami after earthquakes, many reinforced concrete buildings that were engineered to resist earthquakes damaged due to the unexpected magnitude of the tsunami's forces. Currently, there is significant disagreement on existing empirical formulae for the calculation of tsunami-induced force components. In this research, a 1:5 scale IBS model was developed, according to the Buckingham Pi Theorem and Similitude Theory. The behaviour of the 1:5 scale IBS model, when subjected to tsunami bore of ranges from 0.3 m to 1.2 m bore height and debris impact, was investigated experimentally and through dynamic nonlinear finite element analysis. The tsunami bore was simulated in a laboratory by performing a dam break test. Interactions between simulated tsunami bores and the IBS model were investigated experimentally by measuring bore-depth variations, bore velocity, force exerted on the structural models and variations of pressure on the upstream-face of the structure. The structure was assessed based on different performance levels of Operational, Immediate Occupancy, Life Safety and Collapse Prevention, according to FEMA 356. An increase in the impounding water depth led to an increase in the maximum inundation depth downstream at the location of the IBS model, and a proportional increase in the bore front velocity. The hydrostatic pressure distribution of bore impact on the structure was observed throughout the fluid-structure interaction. The impulsive and hydrodynamic forces, obtained from the experimental data, were in agreement with the Japan Cabinet Office guideline (2005) (SMBRT) and the Coastal Construction Manual (FEMA P-55), respectively. From the experimental and numerical study, the IBS structure showed an Operational Performance during tsunami bore, ranging from 0.3 m to 0.6 m height. The scaled structure had an Immediate Occupancy performance level up to 0.9m water bore height. The Life Safety performance level for the IBS structure was 1.2m tsunami bore height (equivalent to 6 metres in the real world). During the debris impact, the IBS column performed very well when impacted by a family car size and wooden log debris. Therefore, the obtained results indicate that this type of IBS model is safe to resist the tsunami.

ABSTRAK

Model IBS kerja-blok adalah ciptaan penyelidik Universiti Teknologi Malaysia. Sistem ini disasarkan untuk merintang gempa bumi sehingga 10 skala Richter. Semasa tsunami baru-baru ini, banyak bangunan konkrit bertetulang yang direkabentuk untuk menahan gempa bumi telah rosak kerana magnitud daya tsunami yang tidak dijangka. Pada waktu ini juga, terdapat perbezaan pendapat mengenai formula empirik untuk pengiraan komponen-komponen daya yang disebabkan oleh tsunami. Dalam kajian ini, satu sistem IBS berskala 1:5 telah dibina mengikut Teori Buckingham, Pi dan Teori Kesamaan. Kelakunan model sistem IBS berskala 1:5 yang dikenakan tsunami dengan julat ketinggian air antara 0.3 m hingga 1.2 m, dan kesan puing banjir telah diselidik secara eksperimen dan analisis dinamik unsur terhingga tak linear. Ketinggian tsunami disimulasi dalam makmal dengan melakukan ujian pecah-empangan. Interaksi antara ketinggian tsunami dan model sistem IBS di ukur melalui ukuran variasi kedalaman air, halaju air, daya yang bertindak ke struktur sistem IBS dan variasi tekanan pada permukaan binaan. Prestasi struktur kemudiannya dinilaikan berdasarkan FEMA 356 pada tahap Operasi, Penghunian Segera, Keselamatan Hayat dan Pencegahan Runtuhan. Peningkatan kedalaman air yang terbendung membawa kepada peningkatan kedalaman banjir di model sistem IBS, dan berkadar terus dengan peningkatan halaju air. Taburan tekanan hidrostatik ke atas struktur berlaku sepanjang tempuh interaksi antara struktur-cecair. Kuasa-kuasa impulsif dan hidrodinamik yang diperolehi dari data eksperimen adalah bertepatan dengan garis panduan Pejabat Kabinet Jepun, 2005 (SMBRT) dan Manual Pembinaan Persisir Pantai (FEMA P-55). Hasil kajian makmal dan berangka, menunjukkan struktur sistem IBS adalah pada tahap Prestasi Beroperasi sewaktu ketinggian tsunami dalam julat 0.3 m sehingga 0.6 m. Struktur tersebut berada pada tahap prestasi Penghunian Segera pada ketinggian air 0.9 m. Tahap prestasi Keselamatan Hayat untuk struktur IBS adalah ketinggian tsunami 1.2 m (bersamaan dengan 6 meter dalam keadaan nyata). Semasa ujian banjir dan puing, tiang sistem IBS memberi prestasi yang sangat baik ketika dihentam oleh sebuah kereta saiz keluarga dan serpihan kayu balak. Oleh itu, keputusan yang diperolehi menunjukkan bahawa model IBS ini adalah selamat dan dapat menahan tsunami.

TABLE OF CONTENTS

CHAPTI	ER TITLE	PAGE
	DECLARATION	ii
CHAPTER DE DE DE AC AB AB TA LIS LIS LIS LIS LIS LIS LIS LIS	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
	LIST OF ABBREVIATIONS	XXV
	LIST OF SYMBOLS	xxvi
	LIST OF APPENDIX	xxviii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Importance of Study	3
	1.3 Problem Statements	4
	1.4 Aim and Objectives of Study	4
	1.5 Scope and Limitation of Study	5
	1.6 Significant of Research	5
	1.7 Thesis Organization	6
2	LITERATURE REVIEW	9
	2.1 Introduction	9
	2.2 Behaviours and Characteristics of Tsunami	9
	2.3 Dam Break Wave	11
	2.3.1 Analytical Solutions for Dam Break Wave	12

		1 -
a f	2.3.2 Experimental Study of Dam Break	15
2.4	Hydraulic Bore of Tsunami	17
2.5	Tsunami Bores; Analogy with Dam-Break Flow	18
2.6	Tsunami-Induced Force	20
2.7	Debris Impact Force	33
2.8	Behavior of Structure due to Tsunami Forces	44
2.9	Response of Structure to Tsunami Forces with Experimental	
	and Numerical Method	52
2.10	Tsunami Design Code Review	67
	2.10.1 Design and Construction Standard for Residential	
	Construction in Tsunami- Prone Areas in Hawaii	
	(Dames and Moore, 1980)	67
	2.10.2 Development of structural Standards in Flood and	
	Tsunami Areas for the Island of Hawaii (Bretschider,	
	1974)	68
	2.10.3 City and County of Honolulu Building Code (CCH,	
	2000)	68
	2.10.4 1997 Uniform Building Code (UBC, 1997)	68
	2.10.5 2003 International Building Code (IBC, 2003)	68
	2.10.6 SEI/ASCE 7-02 (ASCE 7, 2010)	69
	2.10.7 ASCE 24-98 (ASCE 24, 1998)	69
	2.10.8 Structural Design Method of Buildings for Tsunami	
	Resistance (SMBTR)	69
	2.10.9 Federal Emergency Management Agency Coastal	
	Construction Manual (FEMA, 2000)	70
	2.10.10 Federal Emergency Management Agency	
	Coastal Construction Manual (FEMA 55)	70
	2.10.11 Federal Emergency Management Agency	
	Coastal Construction Manual (FEMA P646, 2008)	
	and (FEMA P646, 2012)	71
2.11	l Industrialized Building System	71
	2.11.1 Conventional Building System versus Industrialized	
	Building System	72
	2.11.2 Concrete Block Work System	73

ME	THODOLOGY	76
3.1	Introduction	76
3.2	Tsunami Induced Bores and Analogy with Dam-Break Flow	76
3.3	Physical Modeling	77
	3.3.1 Dimensional Analysis	78
	3.3.2 Theory of Similarity	79
	3.3.3 Determination of π Values for the Research	80
3.4	Facilities of Dam Break Test	82
3.5	Instrumentation for Data Acquisition	86
	3.5.1 Load Cells	87
	3.5.2 Pressure Cell Gauge	87
	3.5.3 Accelerometer	88
	3.5.4 High Speed Camera	89
	3.5.5 Water Level Data Logger	89
	3.5.6 Linear Variable Differential Transducer (LVDT)	90
	3.5.7 Data Logger System	90
3.6	Experimental Test Program	90
	3.6.1 Experiment 1: Experimental set up for dam break test	
	without structure	91
	3.6.2 Experiment 2. Experimental set up for bore impact on	
	brick structure	91
	3.6.3 Experiment 3: Experimental set up for bore impact on	
	IBS model	93
	3.6.4 Experiment 4: Debris impact on IBS model	93
3.7	Description of IBS Models	95
	3.7.1 Column Assembly	97
	3.7.2 Beam Component	99
	3.7.3 Slab Component	100
	3.7.4 Wall Component	100
3.8	Reinforcement Details	101
	3.8.1 Column Block Reinforcement	101
	3.8.2 Beam Reinforcement	102

2.12 Summary

3

74

3.8.3 Slab Reinforcement	103
3.9 Molding the Models	105
3.10 Design Mixes for Model Concrete	108
3.10.1 Choice of Model Material Scale	108
3.10.2 Concrete Mixed Used to Create Models	109
3.11 Numerical Modeling Program	110
3.11.1 Execution of FE Explicit Dynamic Analysis	110
3.11.1.1 Module 1: Making Parts	111
3.11.1.2 Module 2: Material Properties	115
3.11.1.3 Module 3: Assemblies	117
3.11.1.4 Module 4: Steps	118
3.11.1.5 Module 5: Interaction	119
3.11.1.6 Module 6: Load and Boundary Conditions	120
3.11.1.7 Modules 7: Mesh	121
3.11.1.8 Modules 8: Job	122

4 LABORATORY PHYSICAL MODEL AND TEST DEVELOPMENT

DEVELOPMENT	123
4.1 Introduction	123
4.2 Concrete Material Characteristics	123
4.2.1 Concrete Compressive Strength Test	124
4.2.2 Elastic Modulus of Concrete	125
4.3 Reinforcing Bar Characteristics Strength	126
4.4 Casting the IBS Model	128
4.4.1 Molding of IBS Model	129
4.4.2 Casting Procedure	130
4.5 Assembly of IBS Block to become a Structural System	133
4.6 Experimental Test in Hydroulic Laberatory	136
4.6.1 Test Series 1: Water bore development test	138
4.6.2 Test Series 2: Structure positioning test	139
4.6.3 Test Series 3: IBS model performance test	141
4.6.4 Test Series 4: IBS model performance with debris	
load	142

5	RE	SULTS AND DISCUSSION OF EXPERIMENTAL	
	WC 5 1	DRK Introduction	144 144
	5.1	Test Series 1: Water hore development test (Flow Analysis)	145
	5.2	5.2.1 Pore Velocities	145
		5.2.1 Bore Profile	143
	52	Tast Sories 2: Structure position test	149
	5.5	5.2.1 Dore Dorth Time History	150
		5.3.1 Bore Depui-Time History	150
	5 1	5.5.2 Brick Structure Model Response to Hydraulic Bore	152
	5.4	1 est Series 3: IBS structure performance test	153
		5.4.1 Bore Induced Pressures on IBS Model	154
		5.4.2 Loading History of Tsunami Load	158
		5.4.3 Vertical Pressure Distribution	159
		5.4.3.1 Bore Pressure Distribution Analysis and	
		Approximate Equation for Pressure	1 0
		Distribution	163
		5.4.4 Tsunami Force Estimation on IBS Model and	
		Comparison with Design Guidelines	168
		5.4.4.1 FEMA 55 (2011)	168
		5.4.4.2 FEMA P646 (2012)	169
		5.4.4.3 SMBRT	170
		5.4.4.4 Estimated Tsunami Force	171
		5.4.5 Dynamic Properties of Two Storey IBS Model	175
		5.4.6 Response of IBS Structure Subjected to Bore Impact	178
		5.4.7 Acceleration of IBS Model due to Bore Impact	180
	5.5	Test Series 4: IBS model performance with debris load	181
		5.5.1 Debris Impact Load	182
		5.5.2 Behavior of IBS Model due to Debris Impact	186
	5.6	Summary	188

6 NONLINEAR FINITE ELEMENT ANALYSIS OF IBS MODEL

190

6.1	Introduction	190
6.2	Types of Analysis	190
	6.2.1 Modal Analysis	191
	6.2.2 Dynamic Explicit Analysis	191
6.3	Result of the Modal Analysis and Comparison with	
	Experimental Result	191
	6.3.1 Structural Natural Periods and Frequencies	191
	6.3.2 Mode of Shapes	192
6.4	Nonlinear Explicit Dynamic Analysis of IBS Model due to	
	Tsunami Loads	195
	6.4.1 Scaled IBS Structural System Behavior due to	
	Tsunami Bore Impact of 0.3 m, 0.5 m, 0.6 m bore	
	heights	196
	6.4.1.1 Simulated Tsunami Loads of 0.3 m, 0.5 m and	
	0.6 m bore heights	196
	6.4.1.2 Time History Displacement of NLFEA of IBS	
	Structure in Comparison with Experimental	
	Results	200
	6.4.1.3 Deformation Pattern of IBS Model due to	
	Tsunami Loads (0.3m. 0.5m, 0.6m bore	
	heights)	202
	6.4.1.4 Damages of IBS Model due to Tsunami Loads	
	of 0.3 m, 0.5 m and 0.6 m bore heights	204
	6.4.2 Evaluation of IBS model for Bigger Tsunami Loading	
	(0.7 m, 0.8 m, 0.9 m, 1 m and 1.2 m bore heights)	208
	6.4.2.1 Simulated Tsunami Loads of 0.7 m, 0.8 m, 0.9	
	m, 1m and 1.2 m bore heights	208
	6.4.2.2 Deformation of IBS Structural System due to	
	Tsunami Loads (0.7 m. 0.8 m, 0.9 m, 1 m	
	and 1.2 m bore heights)	209
	6.4.2.3 Damage of IBS Structure System due to	
	Tsunami Bore (0.7m. 0.8m, 0.9m, 1m and	
	1.2m heights)	214

6.	5 Correlation between Tsunami Bore Height and Level of	
	Damage	225
6.	6 The Impact Analysis of IBS model under the Influence of	
	Tsunami Generated Debris	227
	6.6.1 Simulation of Debris Impact Force in ABAQUS	
	Software	227
	6.6.2 Behavior of IBS Component Due to Debris Impact	229
6.	7 Summary	234
7 C	ONCLUSION AND RECOMMENDATIONS	235
7.	1 Conclusions	235
7.	2 Recommendations for future study	238
REFERENC	ES	240
Appendices A	A-J	254-293

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Normalized pressure ($P_i/\rho gh$) at position PF0, PF1 and PF2-	-
	square model with different openings)	32
2.2	Specimen Information	54
2.3	Experimental Summary	55
2.4	Five types of IBS structure (CIDB, 2003)	73
3.1	Variables relevant for dimensional analysis of this research	81
3.2	Scaling of components for this research	82
3.3	Mass and dimensions of waterborne debris	94
3.4	The value of materials and admixture in final mixture design	
	for one cubic meter of concrete	110
4.1	Average of E value and Poisson's ratio of concrete	126
4.2	Characteristics strength of bars 1.5 mm	127
4.3	Characteristics strength of bars 3 mm	128
4.4	Characteristics strength of bars 5 mm	128
4.5	Summary of experimental program	137
5.1	Calculated bore-front velocity and non-dimensional time and space variables.	148
5.2	Experimental and estimated bore induced forces	173
5.3	Dynamic property of IBS model	177
5.4	Maximum acceleration during different tsunami bore heights	181
5.5	Estimated water born debris-induced forces	185
6.1	Natural periods and frequency of IBS model	192
6.2	Magnitude of tsunami bore component	197
6.3	Input parameters for calculated tsunami loads	209
6.4	Correlation Observed between tsunami bore height and Leve	1
	of Damage	226

LIST OF FIGURES

FIGURE NO.	. TITLE	PAGE
1.1	Summary of chapter	8
2.1	Different terms related to tsunami (Nayak et al., 2013)	10
2.2	Sketch of a bore and photo of the 1983 Nihonkai-Chubu	
	Tsunami showing the formation of a bore offshore (photo from	n
	Knill, 2004).	11
2.3	Sketch of a surge and photo of the 1983 Nihonkai-Chubu	
	Tsunami showing the formation of a bore offshore (photo from	n
	Knill, 2004).	11
2.4	Dam break wave in horizontal channel (Chanson, 2005b).	14
2.5	The location of wave front for fixed dry bed bottom channel	el;
	comparison with experimental results sets (symbols) with	th
	proposed formulae (lines) (Leal et al., 2006)	17
2.6	Advancing mud and debris surge in Banda Aceh (26 December	er
	2004 tsunami) at (a)t=8.48s, (b) t=13.12s, (c) t=16s, (d)t=39s	s. 19
2.7	(a)Water depth time history of tsunami surge (b) Comparison	
	between analytical result of Equation 2.4 and obtained data of	f
	tsunami	20
2.8	Experimental set-up for bore and dry bed surges in horizontal	
	tank (Ramsden, 1993)	22
2.9	Experimental setup: (a) Elevation (b) Plan view (Gomez-	
	Gesteira and Dalrymple, 2004).	25
2.10	Distribution of pressure on upstream face of structure for dry	
	bed and wet bed (Gomez-Gesteira and Dalrymple, 2004).	25
2.11	Elevation view of experimental set-up (Arnason, 2005)	26
2.12	Time variation of force on a square obstacle owing to differen	t 26

bores (Arnason, 2005).

2.13	Time variation of force on a circular obstacle owing to	
	different bores (Arnason, 2005).	27
2.14	Schematic diagram of test setup (Lukkunaprasit et al., 2009)	27
2.15	Temporal variation of forces: solid line (measured), dotted line	
	(prediction by the drag forces Equation. (2.15)) (Lukkunaprasit	
	et al., 2009).	29
2.16	Comparison of the measured maximum forces with the	
	prediction made by Equations (2.15) and (2.16) (Lukkunaprasit	
	et al., 2009)	29
2.17	Experimental setup (Fujima et al., 2009).	31
2.18	Pressure gauge on the model (Fujima et al, 2009).	31
2.19	Configurations of the front and back panels of building model	
	with sensor locations (Lukkunaprasit et al., 2009).	32
2.20	Typical normalized pressure at different instants of time at	
	different levels (Nominal wave height=80mm) (Lukkunaprasit	
	et al., 2009).	32
2.21	Impact of single debris element with a structure (Haehnel and	
	Daly, 2004)	34
2.22	Impact forces due to wood logs carried by bores and surges	
	(Matsutomi, 1999)	37
2.23	Impact of container on rigid column	
2.24	Impact of container on RC column	
2.25	a)Longitudinal impact of rod b)Transverse impact of a beam	
	(Riggs et al., 2013)	39
2.26	Wood utility pole in pendulum test setup (Kobayashi et al.,	
	2012).	40
2.27	Shipping container in pendulum test setup (Kobayashi et al.,	
	2012).	41
2.28	Aluminium specimen for in-water tests showing guide wires.	
	View is toward wave maker (Kobayashi et al., 2012).	41
2.29	Comparison of impact loads for in-air and in-water test at same	
	impact speed (Kobayashi et al., 2012)	42

2.30	Debris impact force: (a) in the horizontal plane and (b) in the	
	vertical direction.	43
2.31	Degrees of building damage vs. tsunami run-up height. Marks	
	filled in black are data for the 1993 Okushiri Tsunami; hollow	
	marks are data from earlier tsunami incidents, Shuto (1991)	
	and Yeh et al. (2005).	45
2.32	(a) Typical wood frame residential hose in Banda Ache (b)	
	Debris and remains of the wood frame hoses left by water	
	Non-engineered concrete construction	47
2.33	Non-engineered lightly reinforced concrete building	48
2.34	Well-constructed building that survived the earthquake and	
	tsunami in Banda Aceh	49
2.35	Second-floor concrete column damaged by impact of debris in	
	Banda Aceh	49
2.36	Buildings in Rikuzen-Takada (tsunami height 12 to 16 m): (a)	
	Store with minor structural damage and extensive nonstructural	
	damage; (b) Factory with extensive structural and nonstructural	
	damage; (c) Collapsed and dislocated school gymnasium; (d)	
	Twisted beam from a; (e) Distorted panel zone from b; and (f)	
	Gymnasium from c with original foundation on close side and	
	dislocated structure on far side. (Midorikawa and Okazaki,	
	2012).	50
2.37	Instrumentation for testing at Testing Wave Basin (Wilson et	
	al., 2009).	52
2.38	Orientation and load cell locations with respect to wave	
	direction (a) 90^{0} ; (b) 0^{0} (Wilson et al., 2009)	53
2.39	The maximum lateral deformations recorded during wave	
	impact (Wilson et al., 2009)	53
2.40	Typical transverse-wall setup with instrumentation	55
2.41	(a) Photograph of case study building (front view normal to	
	flow (b) Setup of reaction frame for field load test.	56
2.42	Lateral load vs lateral displacement relation at the roof level of	
	Frames A, B, and C	57

2.43	3-dimensional model of the building	58
2.44	The force and displacement relationship of building model	58
2.45	Comparison of the roof displacement of each frame.	59
2.46	Building model and tsunami force acting on columns.	60
2.47	Force and maximum roof displacement under tsunami.	60
2.48	View of case study structure and corresponding 2D model	
	(Garcia et al 2014).	61
2.49	CFRP strengthening cases analysed (Jiffry et al., (2015))	62
2.50	Comparison of peak displacements of bare frame and	
	strengthened frame (Jiffry et al., (2015))	63
3.1	Tsunami bore characteristics (Robertson et al., 2013)	77
3.2	Dam break tank facility at faculty of civil engineering, UTM	83
3.3	Outline of the dam break tank: (a) Side view; (b) Plan view	84
3.4	Motorize torsional derive to rotate water reservoir.	85
3.5	Rotational water reservoir and flume (a) Front view (b) Side	
	view	85
3.6	Instrumentation for testing in dam break tank attach to IBS	
	block work building model	86
3.7	Load cells on top of column	87
3.8	Water proofing pressure cells	88
3.9	USB Accelerometer X6-1	88
3.10	Water level logger	89
3.11	Location of brick structure in experiment 2. (a) 1.5m from	
	adjustable gate (b) 2.5m from the gate.	92
3.12	The 4 kg, 5 kg, 6 kg wooden logs and 12 kg aerated concrete	95
3.13	One to five scale of IBS double story block house	96
3.14	IBS column configuration	97
3.15	Dimension of column foot blocks (a) Short block, (b) Long	
	block	98
3.16	Dimension of column capital blocks (a) Short block, (b) Long	
	block	98
3.17	Dimension of column body blocks (a) Square block, (b)	
	Rectangular block	99

3.18	IBS beam model	99
3.19	Configuration of IBS slab	100
3.20	Configuration of IBS infill wall component clamped by beam	
	element and column assembly	101
3.21	Reinforcement details (a) Rectangular (b) T- shape (big block)	
	(c) L- shape (big block), (d) Square, (e) T- shape (small block),	
	(f) L-shape (small block)	102
3.22	Configuration of IBS beam reinforcement	103
3.23	Configuration of IBS slab reinforcement (a) Slabs Type A (b)	
	Slab Type B	104
3.24	Mold assembly for casting (a) Square column block (b)	
	Rectangular column block	105
3.25	Mold assemblies for casting capital block (a) Small capital	
	block (b) Big capital block	106
3.26	Mold assembly for casting foot block (a) Small base block (b)	
	Big base block	106
3.27	Mold assembly for casting beam	107
3.28	Mold assemblies for casting (a) Slab (b) Wall	107
3.29	Flow chart of complete ABAQUS analysis	111
3.30	Modeling of concrete parts in Abaqus/CAE (a) Beam (b) Short	
	block for column foot (c) Long block for column foot (d)	
	Square block (e) Rectangular block (f) Short block for column	
	capital (g) Long block for column capital (h) Slab part (type B)	
	(i) Slab Part (type A)	113
3.31	Modeling of steel parts in Abaqus/CAE (a) Reinforcement for	
	short block of column foot (b) Reinforcement for long block of	
	column foot (c) Reinforcement for square block (d)	
	Reinforcement for rectangular block (e) Reinforcement for	
	short block of column capital (f) Reinforcement for long block	
	of column capital (g) Beam reinforcement (h) Column bolt (i)	
	Bolt and nut for connection between beam and column block	114
3.32	Concrete damaged plasticity option	116
3.33	Concrete compression and tensile nonlinear behavior curves	117

for ABAQUS FEM input

3.34	Assembly of 1:5 scale of IBS block work system in					
	ABAQUS/CAE	118				
3.35	Embedded reinforcement in Concrete					
3.36	Modelling a pre-tensioned bolt					
3.37	Mesh configuration of FE model of IBS structural system	122				
4.1	Sieve analysis grading results with ASTM grading					
	requirements for fine aggregate	124				
4.2	Interpolation curve of compressive strength and age of					
	concrete	125				
4.3	Stress strain curve for different of bars sample	127				
4.4	Mold for IBS block work component (a) Rectangular column					
	block (b) Beam component	129				
4.5	Electrically operated concrete mixer	130				
4.6	Operation procedure for casting (a) Weighting of material (b)					
	Concrete mixing (c) Pouring in the mold (d) Manual					
	compaction	131				
4.7	Wooden molds on casting	132				
4.8	(a) IBS product after concrete casting (b) Concrete cured in the					
	curing tank (c) Painting and packing of IBS component	132				
4.9	Assembly operation procedure of IBS block work structure					
	(a)Steel foundation with bolts (b) Base column components					
	(c) Base of ground floor of IBS system (d)Beam and column of					
	ground floor (e) Ground floor of IBS structural system					
	assembly (f) Ground floor and first floor columns	134				
4.10	Connection between beam and L shape block component	135				
4.11	Completed IBS structure	136				
4.12	Test series 1 of dam break test without structure (a) Location					
	of high speed camera (b) Location of water level logger (c)					
	Bore front view corresponding to the 2000 mm impoundment					
	depth	139				
4.13	Assembled brick structure in wave tank: (a) 1.5 m distance					
	from rotation reservoir (b) 2.5m distance from rotation	140				

reservoir

4 I 4 H	voraune dore at brick structure in wave tank at impoundment	
		1.40
de	pth of 2 meter (a) Rear view (b) Front view	140
4.15 IB	S block work structure performance test instrumentation	142
4.16 De	ebris impact testing: a) Initial setup; and b) Debris impacting	
IB	S structural model	143
5.1 Bo	ore front crossing gridlines on the tank floor for 2 m	
im	pounding water depth	146
5.2 Bo	ore front velocities for three impoundment depth	147
5.3 Bo	ore front location in non-dimensional space	148
5.4 Bo	ore depth-time histories for three impounding water levels	
rec	cording at location of the structure model	150
5.5 Bo	ore depth-time histories for three impounding water levels	
rec	corded at the location of the brick model (2.5m from gate)	151
5.6 Hy	ydraulic bore for brick model interaction: a) Initial impact; b)	
Ru	un-up c) Quasi-steady flow	152
5.7 Da	amaged brick wall due to bore impact (location of structure	
2.2	25 m from rotational water reservoir) (a) Damage of 1.5 m	
im	pounding water depth (b) Damage of 2 m impounding water	
de	pth	153
5.8 Da	amaged brick wall due to bore impact (structure located at	
3.2	25 m from rotational tank and at 2 m impounding water	
de	epth)	153
Bo	ore impact on IBS structure (a) or 1 m impounding water	
5.9 de	epth (b) for 1.5 m impounding water depth (c) for 2 m	
im	pounding water depth	154
5.10 Pr	ressure gauge time histories a) for 1 meter impounding water	
de	with b) for 1.5 meter impounding water depth; and c) for 2	
me	eter impounding water depth	156
5.11 Pr	essure gauge time histories of PC1 for three impounding	
Wa	ater depths	157
5.12 Sin	mplified time history functions of the tsunami load	
со	omponents	158

5.13	Vertical distribution of pressure at the front face of IBS	
	structural system (bore generated with impoundment depth of	
	h=2 m)	160
5.14	Vertical distribution of Pressure at the front face of IBS	
	structure	161
5.15	Vertical distribution of pressure at the front face of IBS	
	structure (bore generated with impoundment depth of h=1m)	162
5.16	Dimensionless impulsive pressure distribution in vertical	
	direction (a) Impoundment depth of h=2m (b) Impoundment	
	depth of h=1.5 m (c) Impoundment depth of h=1m	164
5.17	Distribution of dimensionless hydrodynamic Pressure for (a)	
	2m impoundment water depth (b) 1.5 m impoundment water	
	depth (c) 1 m impoundment water depth	167
5.18	Inland-location structure and momentum flux estimation	
	parameters (FEMA P646, 2012)	170
5.19	Triangular pressure distribution on the structure	171
5.20	Estimated (FEMA P646 and SMBTR) and experimentally	
	recorded for Impulsive forces	174
5.21	Estimated (FEMA P-646 and FEMA P-55) and experimentally	
	recorded for hydrodynamic forces	175
5.22	Free vibration Test	176
5.23	The FFT diagram of structure	177
5.24	Lateral displacement of top of first story for (a) 2 m	
	impoundment water depth (b) 1.5 m impoundment water depth	
	(c) 1 m impoundment water depth	179
5.25	Time history acceleration of IBS structure for (a) 2 m	
	impoundment water depth (b) 1.5 m impoundment water depth	
	(c) 1 m impoundment water depth	181
5.26	Snapshot from of 4 kg wooden bore debris impact on structure	183
5.27	Snapshot of 6 kg Wooden bore debris impact on structure	184
5.28	Movement of wall due to debris and bore impact (a) Initial	
	state (b) After two times 5kg debris impact (c) After 6kg debris	
	impact	186

5.29	Thin cracks in surface of wall with 12 kg debris impact	187
5 30	Separation between wall blocks due to 12 kg debris impact	187
61	Modes of shapes	194
6.2	Tsunami pressure on frontal face of IBS structure	198
6.3	Modeling of hydrodynamic pressure in Abagus software	199
6.4	Comparison of time history and lateral displacement at top of	
	structure for (a) 0.6 m bore height (b) 0.5 m bore height (c) 0.3	
	m bore height	201
6.5	Deformation of IBS model (a) 0.6 m bore height (b) 0.5 m bore	201
	height (c) 0.3 m bore height	203
6.6	Time history at center point of ground floor wall at different	
	bore height	204
6.7	Maximum principal stress contour of IBS structure during	
	impulsive pressure at 0.6m tsunami bore height	205
6.8	Minimum principle stress contour of IBS structure in (a) front	
	view (b) side view	206
6.9	(a) Compressive damage plot (b) Tensile damaged plot at	
	0.6m bore height	207
6.10	Time history of top first floor and top ground floor	
	displacement during different tsunami bore (a)0.7 m, (b) 0.8 m,	
	(c) 0.9m, (d) 1m, (e) 1.2 m.	212
6.11	Time history of bottom ground floor wall in direction water	
	flow displacement during different tsunami bore height in	
	NLFEM.	213
6.12	Displacement of ground floor wall in direction of water flow	213
6.13	Tensile damage of IBS structure due to 0.7m bore height	
	during impulsive pressure (step 1)	214
6.14	Tensile damage pattern of IBS structure due to 0.7m bore	
	height at final step	215
6.15	Tensile damage pattern of IBS structure due to 0.8 m bore	
	height at t=0.4 s	216
6.16	Tensile damage pattern of IBS structure due to 0.8 m bore	
	height at final step	216

6.17	Tensile damage of IBS structure due to 0.9 m bore height at	
	t=0.3 s of impulsive force	217
6.18	Tensile damage of IBS structure due to 0.9m bore height at	
	final step (a) Left side (b) Right side	218
6.19	Compressive damage of IBS structure due to 0.9 m bore height	
	at final step	219
6.20	Tensile damage of IBS structure due to 1m bore height during	
	impulsive force	220
6.21	Tensile damage pattern of IBS structure due to 1m bore height	
	at final step	221
6.22	Tensile damage pattern of IBS structure due to impulsive	
	forces of 1.2 m bore height	222
6.23	Compressive damage pattern of IBS structure due to 1m bore	
	height during impulsive forces	222
6.24	Tensile damage pattern of IBS structure due to impulsive	
	forces of 1.2m bore height	223
6.25	Simulated stress of column bolts	224
6.26	Stress distribution of U-shaped steel plate of beam	225
6.27	Amplitude of debris loading exploited for FE model	227
6.28	Possibility of different locations of debris impact on column	228
6.29	Deformation of IBS column due to debris impact at (a) Top of	
	column (b) Middle of column (c) Bottom of column	229
6.30	Horizontal displacement at impacted section of IBS column	
	due to debris impact	230
6.31	Reaction forces in columns for different location of impact	230
6.32	Principle Stress of concrete for debris impact at middle	
	location (point 1) of column (1) minimum (b) maximum	231
6.33	Principle stress of concrete for debris impact at middle location	
	(point 2) of column (a) minimum (b) maximum	232
6.34	Principle stress of concrete for debris impact at top location	
	(point 3) of column (a) minimum (b) maximum	232
6.35	Displacement of IBS wall due to debris impact at bottom of	
	wall and 0.6 m bore height	233

LIST OF ABBREVIATIONS

AC	-	Accelerometer
ACI	-	American Concrete Institute
ASCE	-	American Society Civil Engineers
ASTM	-	American Society for Testing and Materials
LC	-	Load Cell
LVDT	-	Linear variable Displacement Transducer
ССН	-	City County of Honolulu Building Code
СР	-	Collapse Prevent
FEA	-	Finite Element Analysis
FEMA	-	Federal Emergency Management Agency
FFT	-	Fast Fourier Transform
IBS	-	Industrial Building System
ΙΟ	-	Immediate Occupancy
LS	-	Life Safety
NLFEA	-	Nonlinear Finite Element Analysis
PC	-	Pressure Cell
RF	-	Reaction Force
SMBRT	-	Structural Design of Building for Tsunami Resistance

LIST OF SYMBOLS

d_s	-	initial standing water level
h_j	-	jump height
h_b	-	bore depth
ρ	-	density of water
μ	-	dynamic viscosity of water
σ	-	surface tension of water
E _b	-	bulk modulus of elasticity of water
g	-	acceleration of gravity
F _r	-	Froude number
E_u	-	Euler number
R _e	-	Reynolds number
W_e	-	Weber number
M_a	-	Sarrau- Mach number
Es	-	Young's modulus of elasticity
θ	-	Poisso's ratio
f_c'	-	compressive strength of concrete
f_y	-	steel yield strength
σ_y	-	Yield strength
ε_y	-	Yield strain
σ_u	-	Ultimate strength
ε _u	-	Ultimate strain
Р	-	Impulsive pressure
P'	-	Hydrodynamic pressure
F _i	-	Impulsive force
F_d	-	Hydrodynamic force
$ ho_s$	-	fluid density

	•	٠
XX	VI	1

C_D	-	drag coefficient
Q_x	-	tsunami horizontal force
Ζ	-	height of pressure action
A _s	-	cross section area of bar

LIST OF APPENDICES

APPENDIX.	TITLE	PAGE
А	Scaling for Concrete Structure and Tsunami Bore	254
В	Material Tests and Results	262
С	Calibration for Load Cells and Pressure Cells	279
D	Background Information on Impact Load Calculation	281
E	Fast Fourier Transform Algorithm For IBS Structure	287
F	Damage Control and Building Performance Level	290
J	List of Publications	292

CHAPTER 1

INTRODUCTION

1.1 Introduction

A tsunami is defined as an ocean wave generated when a disturbance occurs that vertically displaces a column of seawater (Kramer, 1996). There are various kinds of disturbances that can trigger a tsunami. These include eruption on a volcanic island, earthquakes, and submarine landslides. However, prior experiences are evident of the fact that the majority of the tsunamis are caused by earthquakes. These include the Chile earthquake (1960), Alaska earthquake (1964), Indonesia earthquake (2004), and Tohoku earthquake (2011). Therefore, it is essential to design coastal structures against earthquakes as well as tsunami loads. The extensive destruction caused in the last ten years owing to the Indian Ocean Tsunami of 2004 and the Japan Tsunami of 2011 has compelled policy makers, political leaders, engineers, and economists to give a serious thought to tsunami-resistant designs.

On 26 December 2004, an earthquake measured at 9.3 on the Richter scale occurred near the northwest coast of Indonesia's Aceh region. The earthquake then triggered several huge tsunamis, killing nearly 250,000 people, including 68 in Malaysia. Since this disaster, Malaysia has keenly taken up research on certain elements of tsunamis, such as numerical simulations of tsunamis and improving the condition of structures so as to ensure minimal damage from such hazards. As far as structural damages are concerned, the Kuala Muda district in Kedah suffered the highest losses, primarily because the area which was impacted is basically a settlement area and the majority of the damaged dwellings were non-engineered structures. The height of the tsunami waves in Kuala Muda reached up to 3.8 meters and the inundation distance from the coast was said to be 100.524 meters (Koh et

al., 2009). Considering the abovementioned problem, the need for shelters within the flat coastland, which are able to resist and stay stable in front of tsunami loads is inevitable.

"Safe house" is a garrisoned room set up in public or private structures in order to safeguard occupants from natural disasters and other such hazards. The basic idea behind the safe house is derived from the safe room or hurricane shelter built by Federal Emergency Management Agency (FEMA) in United States. Such safe house has adequate space to stockpile enough human supplies. It is equipped with telecommunication equipment, kept ready well before the rescue team arrives at the site of disaster.

Researchers from Universiti Teknologi Malaysia have developed a new IBS structural system tested for seismic performance. The structure has been built using reinforced concrete block work system. It can be expanded vertically up to double story. The structural system can be assembled as well as disbanded quickly prior to and after a natural disaster occurs. Its structural components can be instantaneously replaced following the disaster. This dwelling acts as an interim shelter for people while they are rebuilding their houses. The structure can be constructed internally for new buildings or set up externally for existing buildings. Given the hostile social needs, this structure can be designed to match the engineering requirements for different kinds of loads, including projectile, torsion, as well as extended flood levels which can be triggered due to certain natural disasters.

Current research investigated the utility of IBS structural system in tsunami prone area. The force exerted of tsunami bore impact and waterborne debris impact on structure were considered in this study because according to filed survey of previous tsunami, this loads caused mostly damage on structures specially reinforced concrete structure (Suppasri et al., 2013).

This research has made a significant contribution with regard to following aspects:

 This research develop the understanding of tsunami induced force on structure using large scale of dam break flow in laboratory. This research thoroughly analysed the behaviour of IBS structural system owing to tsunami loads.

1.2 Importance of Study

The infrastructure of hundreds of cities and villages in countries may severely affected by impact of tsunami waves. The devastating effects raised public concern and revealed deficiencies that exist with the current design, implementation and warning systems against tsunamis, and highlighted the need for constructing tsunami shelters.

One important element that needs significant improvement is the estimation of lateral resistance of onshore structures against tsunami-induced forces and also the quantification of impact forces generated by water borne debris. Proper attention must be paid to the detailed design of structural members exposed to the above mentioned forces.

The design of coastal structures such as breakwaters, jetties, groins, and quay walls, against waves, is typically governed by the effect of breaking waves and their associated forces, and is well established in the literature (Nouri et al., 2007). However, unlike coastal structures, the evaluation and impact of tsunami-induced hydrodynamic forces on structure, which used for habitation and/or economic activity, has received little attention by researchers and designers.

The poor performance of structures during the tsunami and shortcomings of structural design codes may indicate that designers had assumed that there was no need to design structures against tsunami-induced forces due to economy reason. Lessons learned from the previous tsunami revealed that tsunami-induced forces should be accounted in the design of structures built within a certain distance from the shoreline in tsunami prone areas.

1.3 Problem Statements

Until very recently, reinforced-concrete structure engineered to withstand seismic loads were assumed to withstand tsunamis. This assumption did not hold for the Japan. During Tohoku, 2011 event, many engineered reinforced concrete buildings failed due to the unexpected magnitude of tsunami forces (Yeh et al., 2013).

Currently, there are no clearly established procedures that address tsunamiinduced forces for the design of buildings located in the vicinity of the shoreline in tsunami prone areas. Moreover, significant disagreement on the existing empirical formulae for the calculation of tsunami-induced force components has fostered new research interest in an effort to properly address both tsunami-induced forces and the impact of floating debris within design code.

1.4 Aim and Objectives of Study

The aim of this research is to investigate the utility of IBS structural system due to tsunami forces. In this study a three-dimensional dam-breaking wave interacting with one to five scale of two story three-dimensional IBS structural system are simulated. The objectives of this research are:

- 1. To develop the experimental modelling of tsunami bore characteristics.
- 2. To determine the exert pressure generated by tsunami bore on structure.
- 3. To estimate the lateral resistance of IBS structure against tsunami by quantification of displacement of structure component, and estimate the structural failure due to bore impact.

 To measure exerted force generated by debris on structure, and investigate the behaviour of IBS concrete building and estimate the structural failure due to debris impact.

1.5 Scope and Limitation of Study

The scope and limitation of this research consider as following:

- This study was performed to investigate the tsunami-induced force in two parts:
 - a) Hydrodynamic force on the structure due to tsunami bore.
 - b) Impact load on the structure consist of waterborne debris.
- 2) The effect of two aforementioned loads measured on displacement and acceleration of IBS structure.
- 3) The assessment of IBS structure conducted to determine the building performance based on horizontal story drift and damage of 1 to 5 scale of two story block work system.

1.6 Significant of Research

The research significance towards the following issues:

- 1. This research investigates novel system to create dam break flow for simulating tsunami bore.
- 2. It improves estimation of tsunami forces on structure.

- 3. This study enhances the estimation of vertical distribution of tsunami force on structure.
- 4. This study is completely aligned with IBS system.
- 5. This research investigates the performance of IBS structural system during tsunami event across the world.
- 6. It can reduce catastrophic structural vulnerability due to tsunami event.

1.7 Thesis Organization

The components of the research contribute to the study on the behaviour of the IBS structural system due to tsunami loads. This contribution are presented in seven chapters and are briefly illustrated in Figure 1.1 and described as follows:

Chapter 1 describes the back ground of the research, problem statements and its aim and objectives. It also discussed the significance of the research, the scope of research, and ended with brief summary of the structure of the thesis.

Chapter 2 presents the findings of the literature review. It focuses on the dam break flow and analogy between dam break flow and tsunami bore. This chapter reviewed the analytical, experimental and numerical studies of dam break flow and exerted forces of tsunami bore and water born debris on structures. The behaviour of structures based on damage data from previous tsunami cases, and the experimental studies are summarized in this chapter. This chapter followed by introducing the available codes for tsunami and flooding loads on structure. Finally the summary of IBS structural systems and major differences between conventional structure and IBS structural system are presented.

Chapter 3 introduces the operational framework of research. In this chapter the characteristic of tsunami and analogy between tsunami and dam break flow are discussed. The physical modelling, laboratory facilities, the measurement devices and the experimental programs are describe in this chapter. At the end, the numerical modelling of IBS model are described.

Chapter 4 describes the construction and assembly process of three dimensional scale model according to IBS block work system and the empirical program for finding the characteristics of material. Furthermore, the experimental tests performed in a dam break tank at hydraulic laboratory are described in this chapter.

Chapter 5 presents and discusses the data obtained for four test models with varying inundation water depths. The competition between existing structural cods that address tsunami-induced forces and the experimental result of this study are presented in this chapter.

Chapter 6 presents the results of numerical IBS model analysis. In this chapter, the numerical result of modal analysis of IBS model are presented. Experimental results and modal analysis results were compared in natural frequencies. After that, the series of models with different loads of different tsunami bore height and debris impact are simulated and utilized for finding the dynamic behaviour of IBS model due to tsunami.

Chapter 7 concludes the results of the research. The recommendation for future study are presented in this chapter.

REFERENCES

- AASHTO, (1998). *LRFD Bridge Design Specifications*. Second edition. American Association of State Highways and Transportation Officials, 26–27.
- ABAQUS (2014). ABAQUS manual, Version 6.14, Pawtucket, R. I.
- ACI Committee 444 (1982). *Models of Concrete Structures*. American Concrete Institute.
- Agus, M. R. (1997). Urban Development and Housing Policy in Malaysia. International Journal for Housing Science and Its Application. 21(2), 97–106.
- Al -Faesly, T. Q., Palermo, D., Nistor, I. and Cornett, A. (2012). Experimental Modeling of Extreme Hydrodynamic Forces on Structural Models. International Journal of Protective Structures. 3(4), 477-505
- Arikawa, T. (2009). Structural behaviour under impulsive tsunami loading. Journal off Disaster Res., 4(6), 377–381.
- Arnason, H. (2005). Interactions between an Incident Bore and a Free Standing Coastal Structure, Doctor of Philosophy Thesis (Civil Engineering), University of Washington, Seattle, Washington.
- Asakura, R., Iwase, K. and Iketani, T. (2000). Experimental research about wave force by the tsunami which overflow the revement. Proceeding of the Coastal Engineering of JSCE. 47, 911-915.
- ASTM A615 (2011) Standard specification for deformed and plan billet-steel bars for concrete reinforcement.
- ASTM C33/C33M-11a (2011), Standard Specification for Concrete Aggregates.
- ASTM C39 / C39-11a (2011). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,
- ASTM C469.61 (2010), Standard Test Method for Static Moudulus of Elasticity and Poisson's Ratio of Concrete in Compression.

- Badir, Y. F. and Razali, A. (1998). Theory of classification: Its application and Badir
 Razali Building Systems Classification. *Journal of the Institute of Engineering*, Malaysia.
- Bandara, K.M.K., Dias, W.P.S. (2012). Tsunami wave loading on buildings: a simplified approach . Journal of the National Science Foundation Sri Lanka. 40(3), 211-219.
- Barr, D. I. H. and Das, M. M. (1980). Numerical simulation of dam-burst and reflections, with verification against laboratory data. Proceeding Institution Civil Engineers. 69(2), 359-373.
- Bell, S.W., Elliot, R.C. and Chaudhry, M.H. (1992). Experimental results of two dimensional dam-break flows. Jornal of Hydraulic Research, 30(2), 225-252.
- Bretschneider, C. L. (1974). Development of Structural Standards in Flood and Tsunami Areas for the Island of Hawaii. Honolulu: Final Report. Ocean Engineering Consultants, Inctitude. 4. 132
- Briechle, S. and Kotenger, J. (2002). Experimental data for dike-break waves. Proceeding of River Flow, 467-473.
- Bryant, E. (2001). *Tsunami: the underrated hazard*. Second Edition, Praxis publishing Ltd Chichester, UK.
- Bukingham, E. (1915). On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. *Physical Review*. 4(4), 345-376.
- CCH, (2000). Regulations within flood hazard districts and developments adjacent to drainage facilities in the revised ordinances of Honolulu, , City and Country of Honolulu Building Code, Department of Planning and Permitting of Honolulu Hawaii. Chapter 16 Article 11.
- Chan, E. S. (1994). Mechanics of Deep Water Plunging Wave Impacts on Vertical Structures. *Coastal Engineering Journal*. 22, 115-133.
- Chanson, H. (2004). *Environmental Hydraulics of Open Channel Flows*. Elsevier Butterworth-Heinemann.
- Chanson, H. (2005a). Applications of the Saint-Venant equations and method of characteristics to the dam-brak wave problem. Report No. CH55/05, Department of civil Engineering, The University of Queensland, Brisbane, Australia,

- Chanson, H. (2005b). Analytical Solution of Dam Break Wave with Flow Resistance. Application to Tsunami Surges, *Proceeding*. 31st Biennial IAHR Congress, Seoul, Korea, 0137, 3341–3353.
- Chanson, H. (2006). Tsunami surges on dry coastal plains: Application of dam break wave equations. *Coastal Engineering Journal*, 48(4), 355-370.
- CIDB (2003). Industrialised Building System (IBS) Roadmap 2003-2010. In CIDB. Malaysia (Ed.). Kuala Lumpur: CIDB.
- CNN (2007).http://www.cnn.com/interactive/world/0502/gallery.tsunami.photos/ ude.html.
- Como, A., Mahmoud, H (2013). Numerical evaluation of tsunami debris impact loading on wooden structural walls. *Journal of Engineering Structures* 56. 1249–1261
- Consolazio GR, Cowan DR. (2003). Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design. *Jornal of Comput Struct*;81(8-11), 547-57.
- Consolazio GR, Cowan DR. (2005). Numerically efficient dynamic analysis of barge collisions with bridge piers. *ASCE Jornal of Structure Engineering* 131(8), 1256-66.
- Consolazio, G. R., Cook, R. A., McVay, M. C., Cowan, D., Biggs, A. and Bui, L. (2006). Barge impact testing of the St. George Island causeway bridge, Final Report, University of Florida.
- Consolazio, G. R., Cowan, D. R., (2005). Numerically efficient dynamic analysis of barge collisions with bridge piers. *Journal of Structural Engineering*, 131(8), 1256-1266.
- Consolazio, G. R., Getter, D. J., and Davidson, M. T., (2009). A static analysis method for barge-impact design of bridges with consideration of dynamic amplification. Final Repot, University of Florida, Department of Civil and Coastal Engineering.
- Cox, D. C. and Mink, J.F. (1963). The tsunami of 23 May 1960 in the Hawaiian Islands. *Bulletin of the Seismological Society of America*. 53, 1191-1209.
- Cross, R. H. (1967). Tsunami Surge Forces. Journal of the Waterways and Harbor Division, ASCE, 93(4), 201-231.
- Cumberbatch, E. (1960). The impact of a water wedge on a wall. Jornal of Fluid Mechanics 7, 353-374.

- Dames and Moore. (1980). *Design and construction standards for residential construction in tsunami prone areas in Hawaii*. Prepared for the Federal Emergency Management Agency.
- Davletshin, V. KH., and Lappo, D.D. (1986). Mechanical Action of Tsunami on Vertical Cylindrical Obstacles, Izv. VNII Gidrotekhniki 170, 89.
- Dias, P., Dissanayake, R., and Chandratilake, R. (2006). Lessons learned from tsunami damage in Sri Lanka. Proceedings of Institution of Civil Engineers (ICE) 159(2), 74-81.
- Dias, W.P.S., Bandara, K.M.K. (2012), Tsunami Wave Loading on Buildings: A Simplified Approach, Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka,
- Dressler, R. F. (1954). Comparison of theories and experiments for the hydraulic dam-break wave. *Proceeding International Association Scientific Hydrology*, Rome, Italy. 38, 319-328.
- Durmisevic, E. (2006). Transformable Building Structures: Design for Disassembly as a Way to Introduce Sustainable Engineering to Building Design & Construction. Netherlands: Cedris M&CC.
- Federal Emergency Management Agency (1995). Engineering principles and practices for retrofitting flood prone residential buildings.
- FEMA (2011). Coastal Construction Manual. Federal Emergency Management.
- FEMA (2000). *Determining site-specific loads*, Federal Emergency Management Agency chapter 11.
- FEMA 356 (2000). Prestandard and Commentary for the Seis- mic Rehabilitation of Buildings. Federal Emergency Management Agency, Washington DC.
- FEMA 55, (2005). Coastal Construction Manual. Report, Edition 3, Federal Emergency Management Agency, Washington, D.C.
- FEMA P646, (2008). Guidelines for Design of Structures for Vertical Evacuation from Tsunamis. Federal Emergency Management Agency.
- FEMA P646, (2012). Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, Federal Emergency Management Agency. Washington, D.C., USA.
- Ferrer B, Ivorra S, Segovia E, Irles R. (2010). Tridimensional modelization of the impact of a vehicle against a metallic parking column at a low speed. *Jornal* of Engineering structure 32(8), 1986-92.

- Foytong, P. and Ruangrassamee, A (2007). Fragility curves of reinforced concrete building damaged by a tsunami for tsunami risk analysis. Proc. Twentieth KKCNN Symp. Civil Engineering, 4-5 October 2007, Jeju, Korea.
- Foytonga . P, Ruangrassameeb. A, Lukkunaprasitb, P and Thanasisathitc. N (2015). Behaviours of reinforced-concrete building under tsunami loading. *The IES Journal Part A: Civil & Structural Engineering*. 8(2). 101-110.
- Fraccarollo, L., and Capart, H. (2002). Riemann wave description of erosional dambreak flows. *Journal of Fluid Mechanics*, 461, 183–228.
- Franco, A. B. (1996). Modelacao computacional e experimental de escoamentos provocadospela rotura de barragens. PhD thesis, Instituto Superior Tecnico, Lisbon, Portugal.
- Fujima, K., Achmad, F., Shigihara, Y. and Mizutani, N. (2009). A Study on Estimation of Tsunami Force Acting on Structures. *Journal of Japan Society* of Civil Engineers, Ser. B2 (Coastal Engineering), 65(1), 321–325.
- Fukui, Y., Nakamura, M., Shiraishi, H., and Sasaki, Y. (1963). Hydraulic study on tsunami. *Journal of Coastal Engineering*. 6, 67-82.
- Garcia, R., Hajirasouliha, I., Guadagnini, M., Helal, Y., Jemaa, Y., Pilakoutas, K. et al. (2014) Full-scale shaking table tests on a substandard RC building repaired and strengthened with Post- Tensioned Metal Straps. *Journal Earthquake Engineering*, 18(2), 187-213.
- Ghobarah, A., Saatcioglu, M. and Nistor, I. (2006). The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure. *Jornul of Engineering Structure*. 28, 312–326.
- Gomez-Gesteira, M., and Dalrymple. R.A., (2004). Using a 3D SPH Method for Wave Impact on a Tall Structure, *Jornal of Waterways*, *Port, Coastal, Ocean Engineering*, ASCE, 130(2), 63-69.
- Haehnel, Robert B. and Daly, Steven F. (2004). Maximum Impact Force of Woody Debris on Floodplain Structures. *Journal of Hydraulic Engineering*, 130(2), 112-120.
- Haehnel, Robert. B. and Daly, Steven. F. (2002). Maximum impact force of woody debris on floodplain structures. US Army Corp of Engineers, Engineer Research and Development Center.
- Harris, H. G. and Sabnis, G. (1999). *Structural Modling and Experimental Techniques*. 2nd. NewYork. CRC Press.

- Hattori, M. Arami A. and Yui, T. (1994). Wave Impact Pres- sures on Vertical Walls under Breaking Waves of Various Types. *Coastal Engineering Journal*, 22(1-2) 79-114.
- Hibberd, S., and Peregrine, D. H. (1979). Surf and run-up on a beach: A uniform bore. *Jornal of Fluid Mechanic*, 95, 323 -345.
- Hiraishi, T., Haruo, K. and Saitoh, E. (2010). Experimental study on impulsive force of drift body due to tsunami. *Jornal of. Earthquake Tsunami* 4(2), 127–133.
- HoBoware User's Guide (2010). Onset copmutr corporation, Boune, USA
- Iizuka H. and Matsutomi H. (2000). Damage estimation due to tsunami inundation flow. *Proceedings of Coastal Engineering* (47) 381 385.
- Ikeno, M., Mori, N., and Tanak, H. (2001). Experimental research about wave force of a bore and a breaking wave, and the action and impulsive force of drifting timber. *Proceeding*. of the coastal Engineering of JSCE, 48, 846-850.
- International Building Code (IBC). (2003). International Code Council, Inc., Country Club Hills, Illinois.
- Jiffry H, Pilakoutas K, Garica R. (2015). Structural Assessment of Low- rise Reinforced Concrete Frames under Tsunami Loads. *International Journal of Civil, Structural, Construction and Architectural Engineering.* 9 (2). 171-176.
- Keulengan G. H. (1950). Wave Motion (In :Engineering Hydraulics, H. Rouse Ed.). John Wiley &Son, Inc. New York, 711-768.
- Keyvani, A., and Keyvani, L. (2013). Progressive Collapse of RC Frames Due to Heavy Impact Loads of Tsunami. Open Journal of Civil Engineering, 3, 166– 172.
- Kirkgöz, M. S. (1990) An Experimental Investigation of a Vertical Wall Response to Breaking Wave Impact, *Ocean Engineering Journal*, 17(4), 379-391.
- Kirkgöz, M. S. (1992). Influence of Water Depth on the Breaking Wave Impact on Vertical and Sloping Wall. *Coastal Engineering Journal*, 18(34) 297-314.
- Kirkgöz, M. S. (1995). Breaking Wave Impact on Vertical and Sloping Coastal Structures, *Ocean Engineering Journal*, 22(1), 35-48.
- Knill, J., and Knill, J., (2004). <u>http://www.cnn.com/SPECIALS/2004/tsunami.disaster/</u>, Cable News Network.

- Ko, H; Cox, D. T; Riggs, H. R. and Naito, C. J. (2015). Hydraulic Experiments on Impact Forces from Tsunami-Driven Debris. *Journal of Waterway, Port, Coastal, Ocean Engineering.* 141(3).
- Kobayashi, M. H., Genest, R., Riggs, H. R., and Paczkowski, K. (2012). Simple hydroelastic impact models for water-borne debris. *Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment.* 226(2), 170-179.
- Koh, H. L., Teh, S. Y., Liu, P. L. F., Ismail, A. I. M., and Lee, H. L. (2009). Simulation of Andaman 2004 tsunami for assessing impact on Malaysia. *Journal of Asian Earth Sciences*, 36(1), 74–83.
- Kramer, S. L. (1996). *Geotechnical Earthquake Engineering*, Prentice Hall, Upper Saddle River, New Jersey, 254-280.
- Kumagai, K., Oda, K., and Fujii, N. (2006). Applicability of simulation model for drift behavior of containers due to tsunami, *Proceeding. Techno-Ocean /19th* JASNAOE Ocean Engineering Symposium.
- Lauber, G., and Hager, W. H. (1998). Experiments to dambreak wave: Horizontal channel. *Journal of Hydraulic Research*, 36(3), 291–307.
- Leal, J. G. A. B., Ferreira, R. M. L., and Cardoso, A. H. (2002). Dam-break waves on movable bed. *Proceeding. River Flow*, 2, 981-990.
- Leal, J. G. A. B., Ferreria, R. M. L., and Cardoso, A. H. (2006). Dam-break wavefront celerity. *Jornal of Hydraulic Engineering*, 132, 69-76.
- Lekkas, E., Andreadakis, E., Alexoudi, V., Kapourani, E., and Kostaki, I. (2011). The Mw=9.0 Tohoku Japan Earthquake (March 11, 2011) Tsunami Impact on Structures and Infrastructure. *Environmental Geosciences and Engineering* Survey for Territory Protection and Population Safety, (EngeoPro) International conference, Moscow, 97-103.
- Linton D, Gupta R, Cox D, Lindt J, Oshnack M. E and Clauson M. (2013). Evaluation of Tsunami Loads on Wood-Frame Walls at Full Scale. *Journal of Structure Engineering*. 139: 1318-1325.
- LS-DYNA (2007) Keyword User's Manual, Livermore Software Technology Corporation, California.
- Lukkunaprasit, P. and Ruangrassamee, A. (2008), Building damage in Thailand in the 2004 Indian Ocean tsunami and clues for tsunami-resistant design, *The IES Journal Part A: Civil and Structural Engineering*, 1 (1), 17 - 30.

- Lukkunaprasit, P., Ruangrassame, A., Stitmannaithum, B., Chintanapakdee, C. and Thanasisathit, N (2010). Calibration of tsunami loading on a damaged building. *Journal Earthquake Tsunami* 4(2), 105-114.
- Lukkunaprasit, P., Ruangrassamee, A., Thanasisathit, N. (2009). Tsunami loading on buildings with openings. *Science of Tsunami Hazards Journal* 28, 303-310
- Lytton, L. (2008). Deep Impact: Why Post-Tsunami Wells Need a Measured Approach. *Proceedings of ICE, Civil Engineering*, 161(1), 42-48.
- Madurapperuma MAKM. (2011). Performance of columns in gravity-load-designed reinforced concrete buildings impacted by water-borne massive objects. PhD dissertation, Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan;.
- Madurapperuma, M. A. and Wijeyewickrema, A. C. (2012), Inelastic dynamic analysis of an RC building impacted by a tsunami water-borne shipping container, *Journal of Earthquake and Tsunami*, 6 (01).
- Madurapperuma, M. A. K. M. and Wijeyewickrema, A. C. (2013). Performance of reinforced concrete columns impacted by water-borne shipping containers. *Jornal of Advances in Structural Engineering*.
- Mander, J.B., Priestly, M. J. N. and Park, R. (1984). Theoretical Stress-Strain Model for Confind Concrete. *Journal of Structural Engineering*. ASCE. 114(3). 1804-1826.
- Marwan, T. S., Wael, W. E. and Robert, G. D. (2010). Seismic performance parameters for reinforced concrete-block shear wall construction. *Journal of Performance of Constructed Facilities*, 24 (1), 4-18
- Matsutomi, H (1999). A practical formula for estimating impulsive force due to driftwoods and variation features of the impulsive force. *Journal. Hydraulic, Coastal and Environmental Engineering,* JSCE, Japan, 621/II-47, 111-127.
- Matsutomi, H. and Harda, K. (2010). Tsunami-trace distribution around building and its particle use. Proc. 3rd Int. Tsunami Field Symp., 10-11 April 2010, Tohoku University, Sendai, Japan, 117-118.
- Matsutomi, H., (2009). Method for estimating collision force of driftwood accompanying tsunami inundation flow. *Journal of Disaster Research*, 4(6), 435-440.
- Midorikawa, M., and Okazaki, T. (2012). Earthquake and Tsunami Damage to Steel Structures. *Structures Congress* 1045–1056.

- Miller, S., and Chaudhry, M. H. (1989). Dam-break flows in curved channel. *Jornal* of *Hydraulic Engineering*, *ASCE*, 115(11), 1465-1478.
- Mizutani, N., Takagi, Y., Shiraishi, K., Miyajima, S., and Tomita, T. (2005). Study on wave force on a container on apron due to tsunamis and collision force of drifted container," *Annual Journal of Coastal Engineering*, 52, 741-745.
- Mizutani, N., Takagi, Y., Shiraishi, K., Miyajima, S., and Tomita, T. (2006). Forces on a container due to tsunami and collision force by drifted container. *Proceeding Second International Workshop on Coastal Disaster Prevention*, 6371.
- NAASRA, (1990). *Highway Bridge Design Specification*. National Association of Australian State Road Authorities.
- Nakamura, S and Tsuchiya, Y. (1973). On the shock pressure of surge on a wall. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 23(3-4), 47-58.
- Nayak. S., Reddy. M. H. O., Madhavi. R., (2014). Assessing tsunami vulnerability of structures designed, *International Journal of Disaster Risk Reduction*, 7, 28-38.
- Nistor, I., Murty, T., Nirupama, N., and Jinsong, X. (2006). Some physical oceanographic processes in the behavior of the 26th December 2004 tsunami. 15th Congress of the Asia-Pacific Division of IAHR and International Symposium on Maritime Hydraulics, IAHR, 81-90.
- Novak, P., Guinot, V., Jeffrey, A., and Reeve, D. E (2010). *Hydraulic Modelling- An Introduction*. Spon Press, London, UK.
- Ohmori, M., Fuji, N., and Kyotani, O., (2000). The numerical computation of the water level, the flow velocity and the wave force of the tsunami which overflow the perpendicular revetments. *Proceeding of the Coastal Engineering of JSCE*, 47, 3766-380.
- Okada, T., Sugano, T., Ishikawa, T., Ohgi, T., Takai, S., and Hamabe, C. (2005). *Structural design methods of buildings for tsunami resistance. (SMBTR)*, The Building Centre of Japan
- Okada, T., Sugano, T., Ishikawa, T., Takai, S., and Tateno, T. (2006). *Tsunami loads and structural design of tsunami refuge buildings*. The Building Centre of Japan.

- OpenSees, (2009). *Open system for earthquake engineering simulation*, Pacific Earthquake Engineering Research Center, Berkeley, CA.
- Packwood, A. R., and Peregrine, D. H. (1981). Surf and run-up on beaches: models of viscous effects. Report No. AM-81-07, School of Mathematics, University of Bristol, Bristol, U.K.
- Paczkowski, K., Riggs, H. R., Naito, C. J., and Lehmann, A.,(2012). A onedimensional model for impact forces resulting from high mass, low velocity debris. *Journal of Structural Engineering and Structural Mechanics*, 42(6), 831-847.
- Paulay, T. and Priestley, M. J. N. (1992). Seismic design of reinforced concrete and masonry building. A Wiley Interscience Publication: John Wiley and Sons, INC.
- Piran Aghl, P., Naito, C. J., and Riggs, H. R. (2014a). Effect of non-structural mass on debris impact demands: Experimental and simulations studies. *Journal of Eng. Struct.*, in press.
- Piran Aghl, P., Naito, C. J., and Riggs, H. R. (2014b). "Full-scale experimental study of impact demands resulting from high mass, low velocity debris." J. Struct. Eng., 10.1061/(ASCE)ST.1943-541X.0000948, 04014006.
- Ramsden, J.D. (1996). Forces on a vertical wall due to long waves, bores, and dry-bed surges. Jornal of Waterways, Port Coasts and Ocean Engineering., 122(3), 134-141.
- Ramsden, J.D. (1993). Tsunamis: Forces on a vertical wall caused by long waves, bores, and surges on a dry bed. Report No. KH-R-54, W.M. Keck Laboratory, California Institute of Technology, Pasadena, California., 251.
- Ramsden, J.D., and Raichlen, F. (1990). Forces on vertical wall caused by incident bores. *Jornal of Waterway, Port, Coastal, and Ocean Engineering,* 116, 592-613.
- Ramsden, J. D.; Raichlen, F.(1990). Forces on Vertical Wall caused by Incident Bores. *Journal of Waterway, Port, Coastal and Ocean Engineering*, 116 (5). 592-613.
- Riggs, H. R, Kobayashi, M, Cox, D., and Naito, C. (2010). A program to determine impact forces from tsunami-driven debris. *Quake Summit, NEES and PEER Annual Meeting,* San Francisco, CA.

- Riggs, H. R., Cox, D. T., Naito, C. J., Kobayashi, M. H., Pairan Aghl, P., Ko, H.T.
 S., and Khowitar, E. (2013). Water-driven debris impact forces on structures:
 Experimental and theoretical program." *Proceedings of the ASME International Conference on Ocean, Offshore and Arctic Engineering*, 1-10
- Ritter, A. (1892). The progration of waterwave. Verene Deutscher Ingenieure Zeitschr, 36(2), 947-954
- Robertson, I. N., Carden, L., Riggs, H. R., Yim, S., Young, Y. L., Paczkowski, K. and Witt, D. (2010a). *Reconnaissance following the September 29, 2009 tsunami in Samoa*. Research report UHM/CEE/10-01, Department of Civil and Envi- ronmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii,
- Robertson, I. N., Paczkowaski, K., Riggs, H. R. (2013). Experimental investigation of tsunami bore forces on vertical walls. *Journal of Offshore Mechanics and Arctic Engineering*. 135(2).
- Robertson, I., Chock, G. and Morla, J. (2010b). *Tsunami effects of the February 27, 2010 Chile earthquake*, EERI preliminary reports, Earthquake Engineering Research Institute, Oakland, CA.
- Ruangrassamee. A and Foytong. P (2012). CORRELATION ANALYSIS OF A REINFORCED-CONCRETE BUILDING UNDER TSUNAMI LOADS AND EFFECT OF MASONRY INFILL WALLS IN TSUNAMI RESISTANCE. Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan.
- Sha Y, Hao H. (2012). Nonlinear finite element analysis of barge collision whith a single bridge pier. Engineering Structure 41. 63-76.
- Shafiei. S. R, Melville. B.W., Beskhyroun. S. and Shamseldin. A.Y. (2014).Preliminary Investigation of the Tsunami-Borne Debris Impact on Structures:A new method for impact force measurement. 5th International Symposium on Hydraulic Structures
- Shahrul, N. (2003). Survey on the Usage of Industrialised Building System (IBS) in Malaysian Construction Industry. Malaysia.
- Sharma H, Hurlebaus S, Gardoni P. (2012) Performance-based response evalution of reinforced concrete columns subject to vehicle impact. *International Jornal Impact Engineering*, 43, 52-62.

- Shuto, N., (1991). Numerical Simulation of Tsunamis. *Tsunami Hazard, Kluwer Academic Publishers*, Dordrecht, Netherlands, 171-191.
- Stansby, P.K., Chegini, A., and Barnes, T.C.D. (1998). Initial stages of dam- break flow. *Jornal of Fluid Mechanic*, 370, 203-220.
- Stoker, J. (1957). *Water waves: The mathematical theory with applications*. Wiley- Interscience, New York.
- Suppasri, A., Imamura, F. and Koshimura, S. (2012a). Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand. *Journal of Earthquake Tsunami* 6, 00124.
- Suppasri, A., Imamura, F. and Koshimura, S. (2012b). Tsunami hazard and casualty estimation in a coastal area that neighbors the Indian Ocean and South China Sea. *Journal of Earthquake Tsunami* 6, 00126.
- Suppasri, A., Imamura, F. and Koshimura, S. (2013a) .Tsunami hazard and building damage assessment in Thailand using numerical model and fragility curves. *Journal Earthquake Tsunami* 7(5), 1–16.
- Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y., Abe, Y. and Imamura, F. (2013b). Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Journal of *Natural. Hazards* 66(2), 319–341.
- Suppasri, A., Koshimura, S., Imamura, F., Ruangrassamee, A., and Foytong, P. (2013c). A Review of Tsunami Damage Assessment Methods and Building Performance in Thailand. *Journal of Earthquake and Tsunami*, 07(05), 1-21.
- Tanimoto, K., Takashi, S., Kaneko, T., and Shioto, K. (1986). Impulsive breaking wave forces on an inclined pile exerted by random waves, *Proceedings of* 20th International Conference on Coastal Engineering, ASCE, 2288-2302.
- U.S. Army Corps of Engineers, (1995). *Flood-proofing regulations*. Engineering Pamphlet 1165-2-314, Washington, D.C. : US Army Corps of Engineer, 1995
 Uniform Building Code (UBC). (1997). Uniform Building Code. California.
- US Army Corps of Engineers. (1960). *floods resulting from suddenly breached dams* Miscellaneous Paper 2(374), Report 1. US Army Engineer Waterways Experiment Station, Crops of Engineers: Vicksburg, Mississippi.
- US Army Corps of Engineers. (1961). Floods resulting from suddenly breached dams-Conditions of high resistance. Miscellaneous Paper 2(374), Report 2.

US Army Engineer Waterways Experiment Station, Corps of Engineers: Vicksburg, Mississippi.

- Whitham, G.B. (1955). The Effects of Hydraulic Resistance in the Dam-Break Problem. *Proceedingc. Royal. Society. of London.* 227, 399-407.
- Wijetunge, J. J. (2006). Tsunami on 26 December 2004: Spatial distribution of tsunami height and the extent of inundation in Sri Lanka, *Jornal of Science of Tsunami Hazards*, 24(3), 225–239.
- Wilson, J. S., Gupta, R., van de Lindt, J. W., Clauson, M., and Garcia, R. (2009). Behavior of a One-Sixth Scale Wood-Framed Residential Structure under Wave Loading. *Journal of Performance of Constructed Facilities*, 23(5), 336–345.
- Yeh, H., and Mok, K. M. (1990). On turbulence in bores. *Physical of Fluids* 2(5), 821-828
- Yeh, H. (1991). Tsunami Bore Runup. Natural Hazard Journal, 4, 209-220.
- Yeh, H. (2006). Tsunami loading. International workshop on fundamentals of coastal effects of tsunamis, Hilo, Hawaii.
- Yeh, H. (2007). Design Tsunami Forces for Onshore Structures. *Journal of Disaster Research*, 2(6), 531-536.
- Yeh, H., Ghazali, A., and Marton, I. (1989). Experimental study of bore runup. Jornal of Fluid Mechanics. 206, 563-578.
- Yeh, H., Robertson, I., and Preuss, J., (2005). Development of Design Guidelines for Structures that Serve as Tsunami Vertical Evacuation Sites, Washington State Department of Natural Resources. Report No.2005-4.
- Yeom, G. S., Nakamura, T., and Mizutani, N., (2009). Collision analysis of container drifted by runup tsunami using drift collision coupled model. *Journal of Disaster Research*, 4(6), 441-449.
- Yi, W. J., He Q. F., Xiao, Y., and Kunnath, S., (2008). Experimental Study on Progressive Collapse-Resistant Behavior of Reinforced Concrete Frame Structures, American Concrete Institude Structural Journal, 105(4), 433-439.
- Yoshihara, H., Kubojima, Y., Nagaoka, K., and Ohta, M., (1998). Meaurement of the shear modulus of wood by static bending tests. *Journal of Wood Science*, 44, 15-20.

- Zainal Abidin, A. R. (2007). Simulation of Industrialised Building System Formation For Housing Construction. Master of Science, Universiti Teknologi Malaysia, Johor, Malaysia.
- Zhu, Y. J., Li, L., and Yang, W. H. (2011). Study on shear bearing capacity of composite reinforced concrete block masonry. *Journal of Applied Mechanics* and Materials, 94(96), 1141-1145.