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ABSTRACT 

The IBS block-work building system is the invention of a Universiti 

Teknologi Malaysia researcher. The system is targeted towards resisting earthquakes 

of up to 10 points on the Richter scale. During a recent tsunami after earthquakes, 

many reinforced concrete buildings that were engineered to resist earthquakes 

damaged due to the unexpected magnitude of the tsunami’s forces. Currently, there is 

significant disagreement on existing empirical formulae for the calculation of 

tsunami-induced force components. In this research, a 1:5 scale IBS model was 

developed, according to the Buckingham Pi Theorem and Similitude Theory. The 

behaviour of the 1:5 scale IBS model, when subjected to tsunami bore of ranges from 

0.3 m to 1.2 m bore height and debris impact, was investigated experimentally and 

through dynamic nonlinear finite element analysis. The tsunami bore was simulated 

in a laboratory by performing a dam break test. Interactions between simulated 

tsunami bores and the IBS model were investigated experimentally by measuring 

bore-depth variations, bore velocity, force exerted on the structural models and 

variations of pressure on the upstream-face of the structure. The structure was 

assessed based on different performance levels of Operational, Immediate 

Occupancy, Life Safety and Collapse Prevention, according to FEMA 356. An 

increase in the impounding water depth led to an increase in the maximum 

inundation depth downstream at the location of the IBS model, and a proportional 

increase in the bore front velocity. The hydrostatic pressure distribution of bore 

impact on the structure was observed throughout the fluid-structure interaction. The 

impulsive and hydrodynamic forces, obtained from the experimental data, were in 

agreement with the Japan Cabinet Office guideline (2005) (SMBRT) and the Coastal 

Construction Manual (FEMA P-55), respectively. From the experimental and 

numerical study, the IBS structure showed an Operational Performance during 

tsunami bore, ranging from 0.3 m to 0.6 m height. The scaled structure had an 

Immediate Occupancy performance level up to 0.9m water bore height. The Life 

Safety performance level for the IBS structure was 1.2m tsunami bore height 

(equivalent to 6 metres in the real world). During the debris impact, the IBS column 

performed very well when impacted by a family car size and wooden log debris. 

Therefore, the obtained results indicate that this type of IBS model is safe to resist 

the tsunami.  

. 
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ABSTRAK 

Model IBS kerja-blok adalah ciptaan penyelidik Universiti Teknologi 

Malaysia. Sistem ini disasarkan untuk merintang gempa bumi sehingga 10 skala 

Richter. Semasa tsunami baru-baru ini, banyak bangunan konkrit bertetulang yang 

direkabentuk untuk menahan gempa bumi telah rosak kerana magnitud daya tsunami 

yang tidak dijangka. Pada waktu ini juga, terdapat perbezaan pendapat mengenai 

formula empirik untuk pengiraan komponen-komponen daya yang disebabkan oleh 

tsunami. Dalam kajian ini, satu sistem  IBS berskala 1:5 telah dibina mengikut Teori 

Buckingham, Pi dan Teori Kesamaan. Kelakunan model sistem IBS berskala 1:5 

yang dikenakan tsunami dengan julat ketinggian air antara 0.3 m hingga 1.2 m, dan 

kesan puing banjir telah diselidik secara eksperimen dan  analisis dinamik unsur 

terhingga tak linear. Ketinggian tsunami disimulasi dalam makmal dengan 

melakukan ujian pecah-empangan. Interaksi antara ketinggian tsunami dan model 

sistem IBS di ukur melalui ukuran variasi kedalaman air, halaju air, daya yang 

bertindak  ke struktur sistem IBS dan variasi tekanan pada permukaan binaan. 

Prestasi struktur kemudiannya dinilaikan berdasarkan FEMA 356 pada tahap 

Operasi, Penghunian Segera, Keselamatan Hayat dan Pencegahan Runtuhan. 

Peningkatan kedalaman air yang terbendung membawa kepada peningkatan 

kedalaman banjir di model sistem IBS, dan berkadar terus dengan peningkatan halaju 

air. Taburan tekanan hidrostatik ke atas struktur berlaku sepanjang tempuh interaksi 

antara struktur-cecair. Kuasa-kuasa impulsif dan hidrodinamik yang diperolehi dari 

data eksperimen adalah bertepatan dengan garis panduan Pejabat Kabinet Jepun, 

2005 (SMBRT) dan Manual Pembinaan Persisir Pantai (FEMA P-55). Hasil kajian 

makmal dan berangka, menunjukkan struktur sistem IBS adalah pada tahap Prestasi 

Beroperasi sewaktu ketinggian tsunami dalam julat 0.3 m sehingga 0.6 m. Struktur 

tersebut berada pada tahap prestasi Penghunian Segera pada ketinggian air 0.9 m. 

Tahap prestasi Keselamatan Hayat untuk struktur IBS adalah ketinggian tsunami 1.2 

m (bersamaan dengan 6 meter dalam keadaan nyata). Semasa ujian banjir dan puing, 

tiang sistem IBS memberi prestasi yang sangat baik ketika dihentam oleh sebuah 

kereta saiz keluarga dan serpihan kayu balak. Oleh itu, keputusan yang diperolehi 

menunjukkan bahawa model IBS ini adalah selamat dan dapat menahan tsunami. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

A tsunami is defined as an ocean wave generated when a disturbance occurs 

that vertically displaces a column of seawater (Kramer, 1996). There are various 

kinds of disturbances that can trigger a tsunami. These include eruption on a 

volcanic island, earthquakes, and submarine landslides. However, prior experiences 

are evident of the fact that the majority of the tsunamis are caused by earthquakes. 

These include the Chile earthquake (1960), Alaska earthquake (1964), Indonesia 

earthquake (2004), and Tohoku earthquake (2011). Therefore, it is essential to 

design coastal structures against earthquakes as well as tsunami loads. The extensive 

destruction caused in the last ten years owing to the Indian Ocean Tsunami of 2004 

and the Japan Tsunami of 2011 has compelled policy makers, political leaders, 

engineers, and economists to give a serious thought to tsunami-resistant designs. 

On 26 December 2004, an earthquake measured at 9.3 on the Richter scale 

occurred near the northwest coast of Indonesia’s Aceh region. The earthquake then 

triggered several huge tsunamis, killing nearly 250,000 people, including 68 in 

Malaysia. Since this disaster, Malaysia has keenly taken up research on certain 

elements of tsunamis, such as numerical simulations of tsunamis and improving the 

condition of structures so as to ensure minimal damage from such hazards. As far as 

structural damages are concerned, the Kuala Muda district in Kedah suffered the 

highest losses, primarily because the area which was impacted is basically a 

settlement area and the majority of the damaged dwellings were non-engineered 

structures. The height of the tsunami waves in Kuala Muda reached up to 3.8 meters 

and the inundation distance from the coast was said to be 100.524 meters (Koh et 
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al., 2009). Considering the abovementioned problem, the need for shelters within the 

flat coastland, which are able to resist and stay stable in front of tsunami loads is 

inevitable. 

“Safe house” is a garrisoned room set up in public or private structures in 

order to safeguard occupants from natural disasters and other such hazards. The 

basic idea behind the safe house is derived from the safe room or hurricane shelter 

built by Federal Emergency Management Agency (FEMA) in United States. Such 

safe house has adequate space to stockpile enough human supplies. It is equipped 

with telecommunication equipment, kept ready well before the rescue team arrives 

at the site of disaster. 

Researchers from Universiti Teknologi Malaysia have developed a new IBS 

structural system tested for seismic performance. The structure has been built using 

reinforced concrete block work system. It can be expanded vertically up to double 

story. The structural system can be assembled as well as disbanded quickly prior to 

and after a natural disaster occurs. Its structural components can be instantaneously 

replaced following the disaster. This dwelling acts as an interim shelter for people 

while they are rebuilding their houses. The structure can be constructed internally 

for new buildings or set up externally for existing buildings. Given the hostile social 

needs, this structure can be designed to match the engineering requirements for 

different kinds of loads, including projectile, torsion, as well as extended flood 

levels which can be triggered due to certain natural disasters. 

Current research investigated the utility of IBS structural system in tsunami 

prone area. The force exerted of tsunami bore impact and waterborne debris impact 

on structure were considered in this study  because according to filed survey of 

previous tsunami, this loads caused mostly damage on structures specially 

reinforced concrete structure (Suppasri et al., 2013). 

This research has made a significant contribution with regard to following 

aspects: 

1) This research develop the understanding of tsunami induced force on 

structure using large scale of dam break flow in laboratory. 
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2) This research thoroughly analysed the behaviour of IBS structural system 

owing to tsunami loads. 

1.2 Importance of Study 

The infrastructure of hundreds of cities and villages in countries may 

severely affected by impact of tsunami waves. The devastating effects raised public 

concern and revealed deficiencies that exist with the current design, implementation 

and warning systems against tsunamis, and highlighted the need for constructing 

tsunami shelters.  

One important element that needs significant improvement is the estimation 

of lateral resistance of onshore structures against tsunami-induced forces and also 

the quantification of impact forces generated by water borne debris. Proper attention 

must be paid to the detailed design of structural members exposed to the above 

mentioned forces.  

The design of coastal structures such as breakwaters, jetties, groins, and quay 

walls, against waves, is typically governed by the effect of breaking waves and their 

associated forces, and is well established in the literature (Nouri et al., 2007). 

However, unlike coastal structures, the evaluation and impact of tsunami-induced 

hydrodynamic forces on structure, which used for habitation and/or economic 

activity, has received little attention by researchers and designers.  

The poor performance of structures during the tsunami and shortcomings of 

structural design codes may indicate that designers had assumed that there was no 

need to design structures against tsunami-induced forces due to economy reason. 

Lessons learned from the previous tsunami revealed that tsunami-induced forces 

should be accounted in the design of structures built within a certain distance from 

the shoreline in tsunami prone areas. 
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1.3 Problem Statements 

Until very recently, reinforced-concrete structure engineered to withstand 

seismic loads were assumed to withstand tsunamis. This assumption did not hold for 

the Japan. During Tohoku, 2011 event, many engineered reinforced concrete 

buildings failed due to the unexpected magnitude of tsunami forces (Yeh et al., 

2013). 

Currently, there are no clearly established procedures that address tsunami-

induced forces for the design of buildings located in the vicinity of the shoreline in 

tsunami prone areas. Moreover, significant disagreement on the existing empirical 

formulae for the calculation of tsunami-induced force components has fostered new 

research interest in an effort to properly address both tsunami-induced forces and the 

impact of floating debris within design code. 

1.4 Aim and Objectives of Study 

The aim of this research is to investigate the utility of IBS structural system 

due to tsunami forces.  In this study a three-dimensional dam-breaking wave 

interacting with one to five scale of two story three-dimensional IBS structural 

system are simulated. The objectives of this research are: 

1. To develop the experimental modelling of tsunami bore characteristics. 

2. To determine the exert pressure generated by tsunami bore on structure.  

3. To estimate the lateral resistance of IBS structure against tsunami by 

quantification of displacement of structure component, and estimate the 

structural failure due to bore impact. 
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4. To measure exerted force generated by debris on structure, and investigate 

the behaviour of IBS concrete building and estimate the structural failure due 

to debris impact. 

1.5 Scope and Limitation of Study 

The scope and limitation of this research consider as following: 

1) This study was performed to investigate  the tsunami-induced force in two 

parts: 

a) Hydrodynamic force on the structure due to tsunami bore. 

b) Impact load on the structure consist of waterborne debris. 

2) The effect of two aforementioned loads measured on displacement and  

acceleration of IBS structure.  

3) The assessment of IBS structure conducted to determine the building 

performance based on horizontal story drift and damage of 1 to 5 scale of two 

story block work system. 

1.6 Significant of Research 

The research significance towards the following issues: 

1. This research investigates novel system to create dam break flow for 

simulating tsunami bore. 

2. It improves estimation of tsunami forces on structure. 
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3. This study enhances the estimation of vertical distribution of tsunami force 

on structure. 

4. This study is completely aligned with IBS system. 

5. This research investigates the performance of IBS structural system during 

tsunami event across the world. 

6. It can reduce catastrophic structural vulnerability due to tsunami event. 

1.7 Thesis Organization 

The components of the research contribute to the study on the behaviour of 

the IBS structural system due to tsunami loads. This contribution are presented in 

seven chapters and are briefly illustrated in Figure 1.1 and described as follows: 

Chapter 1 describes the back ground of the research, problem statements and 

its aim and objectives. It also discussed the significance of the research, the scope of 

research, and ended with brief summary of the structure of the thesis. 

Chapter 2 presents the findings of the literature review. It focuses on the dam 

break flow and analogy between dam break flow and tsunami bore. This chapter 

reviewed the analytical, experimental and numerical studies of dam break flow and 

exerted forces of tsunami bore and water born debris on structures.  The behaviour 

of structures based on damage data from previous tsunami cases, and the 

experimental studies are summarized in this chapter. This chapter followed by 

introducing the available codes for tsunami and flooding loads on structure. Finally 

the summary of IBS structural systems and major differences between conventional 

structure and IBS structural system are presented.  

Chapter 3 introduces the operational framework of research. In this chapter 

the characteristic of tsunami and analogy between tsunami and dam break flow are 

discussed. The physical modelling, laboratory facilities, the measurement devices 
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and the experimental programs are describe in this chapter. At the end, the 

numerical modelling of IBS model are described. 

Chapter 4 describes the construction and assembly process of three 

dimensional scale model according to IBS block work system and the empirical 

program for finding the characteristics of material. Furthermore, the experimental 

tests performed in a dam break tank at hydraulic laboratory are described in this 

chapter. 

Chapter 5 presents and discusses the data obtained for four test models with 

varying inundation water depths. The competition between existing structural cods 

that address tsunami-induced forces and the experimental result of this study are 

presented in this chapter. 

Chapter 6 presents the results of numerical IBS model analysis. In this 

chapter, the numerical result of modal analysis of IBS model are presented. 

Experimental results and modal analysis results were compared in natural 

frequencies. After that, the series of models with different loads of different tsunami 

bore height and debris impact are simulated and utilized for finding the dynamic 

behaviour of IBS model due to tsunami. 

Chapter 7 concludes the results of the research. The recommendation for 

future study are presented in this chapter.  
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