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ABSTRACT

Software change is inevitable for software product to remain relevant and
reusable. As software evolves over time due to specific changes at any point in time
during software development and maintenance, the managing aspect of changes may
get more complicated and risky. The outdated links would cause the affected artefacts
to be not updated timely and effectively. Most of the existing traceability approaches
and tools are dedicated and limited to high level artefacts such as requirements and
fewer capability made available to address the lower level artefacts such as classes and
codes. Most maintainers limit their links to begin at the requirement perspective but
there is no valid traceability link being made to support the fine grained level involving
testing components. This thesis proposes a new traceability approach to manage
changes with the emphasis on the integration of the development artefacts and testing
artefacts. The working artefacts cover requirements, packages, classes, methods,
test case, and codes. The proposed approach provides a know-how solution to the
IEEE 829:2010 standards associated to testing that demands for the support at testing
perspective. This approach has the capability to horizontally and vertically manage
artefacts from requirement down to code and vice versa. The proposed traceability
approach was applied to a case study of a software development project called On-
Board Automobile (OBA) with a complete set of documentation including test cases.
The evaluation results prove that the proposed traceability approach is significant and
useful in managing software changes involving testing artefacts.
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ABSTRAK

Pindaan perisian tidak dapat dielakkan bagi produk perisian untuk ianya kekal
berfungsi dan berkebolehan untuk diguna semula. Oleh kerana perisian berubah
sepanjang masa disebabkan wujudnya pindaan tertentu pada mana-mana tempat
semasa pembangunan perisian dan penyenggaraan, aspek pengurusan pindaan boleh
menjadi lebih rumit dan berisiko. Jalinan yang luput mungkin menyebabkan artifak
yang terlibat tidak dapat dikemaskini dalam masa yang ditetapkan dan menjadikannya
tidak berkesan. Kebanyakan pendekatan jejak semasa dan alatan adalah khusus
dan terhad kepada artifak aras tinggi seperti keperluan berbanding sokongan untuk
menangani artifak aras lebih rendah seperti kelas dan kod. Kebanyakan penyenggara
menghadkan jalinan jejak untuk bermula pada perspektif keperluan tetapi tiada jalinan
jejak yang sah untuk menyokong aras butiran halus yang melibatkan komponen
pengujian. Tesis ini mencadangkan pendekatan jejak yang baharu untuk menguruskan
pindaan dengan penekanan kepada integrasi terhadap artifak pembangunan dan artifak
pengujian. Artifak yang diusahakan merangkumi keperluan, pakej, kelas, kaedah,
kes pengujian dan kod. Pendekatan yang dicadangkan menyediakan penyelesaian
pengetahuan untuk IEEE 829: 2010 standard berkaitan dengan pengujian yang
memerlukan sokongan pada perspektif pengujian. Pendekatan ini mempunyai
keupayaan untuk menguruskan secara jalinan mendatar dan jalinan menegak untuk
urusan artifak daripada fasa keperluan ke kod dan sebaliknya. Pendekatan jejak
yang dicadangkan ini diaplikasikan dengan bantuan kajian kes projek pembangunan
perisian yang dipanggil On-Board Automobile (OBA) termasuk satu set dokumentasi
yang lengkap bagi kes-kes pengujian. Keputusan penilaian membuktikan bahawa
keberkesanan pendekatan yang dicadangkan adalah signifikan dan berguna dalam
menguruskan perubahan perisian yang melibatkan artifak pengujian.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter introduces the research and elaborates its background in detail and
subsequently describes the problem statement, research objectives, research scopes and
the significance of this study.

1.2 Background Problem

It is inevitable for the software to evolve in order to cope with emerging
changes. Changes in software could mostly would occur due to internal or external
requests i.e. user's requests. User change requirements can occur after the delivery
of the complete software artefacts such as a system, documentations, or during the
progression of the software development phases involving requirement, design and
testing. Hence it is widely accepted within software engineering community that
software changes or software evolution is a part of software maintenance process.
The term software evolution and software maintenance are used interchangeably
and in short practitioners classify it as maintenance (Bennett and Rajlich, 2000).
In maintenance process, traceability is important. Facilitating the changes during
maintenance using traceability is a crucial step in ensuring the affected artefacts across
software development phases, are well maintained (Rochimah et al., 2009; Shahid and
Ibrahim, 2013).

During the maintenance phase, some activities needs to be managed. These
activities are maintaining traceability, change management, and maintaining affected
software artefacts. Prior to implementing any changes, ones need to comprehend
before and after changes take place. For example, changes made at testing level
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or any other level throughout software development phases, often occurred without
updating the relevant documentations (Mäder and Egyed, 2012). Due to this
negligence, it automatically causes the traceability link between the affected artefacts
becoming obsolete. In addition, some organizations are neglecting the traceability
implementation due to laborious works that need to be considered (Lormans et al.,
2004). In spite of the existence of change management tools to update the traceability
link, the maintenance routine they need to incur, is not practical and time consuming
(Heindl and Biffl, 2005). Most of the change management tools support either at
file structure or at source code file level and whenever an update gets introduced at
either level, the traceability links that supposed to be maintained, are left forgotten and
outdated. Hence, updating the traceability link upon changes among the artefacts at
higher and lower level are often a failure whenever there is a change occurred (Cleland-
Huang et al., 2003).

In the context of the bigger system, there are possibly a lot of artefacts need
to be managed and tested. Each of the changes made has to be retested and verified
to ensure changes realisation. Traceability ensures the right artefacts get amended
and tested. Poorly maintenance of the traceability link due to an increase of testing
activities as an example, can affect negatively on the cost of maintenance (Sherba,
2005; Tamai and Kamata, 2009). Freese (2003), stated the expenditure for software
maintenance can increase to as much as 80% of the total lifecycle cost of a software
system. In addition, traceability maintenance requires consistent updating and due
to the nature of larger system having many artefacts to maintain, improper and
imprecise traceability approach could happen (Sherba, 2005). Therefore traceability
link maintenance is considered as an essential element of software development
lifecycle (Cleland-Huang et al., 2014).

Changes can span from coarse artefacts (i.e. SDP, SRS, SDD, STD, and STR)
to fine-grained artefacts (i.e. test objects, classes, methods) (Omar, 2013; Shahid and
Ibrahim, 2016). The problem may arise while doing maintenance if software changes
impacting more than a single software artefact. Thus, it causes more than one artefacts
need to be amended accordingly. The number of software changes can grow from
single artefacts to many artefacts. In order to manage and resolve many changed
artefacts, managing via traceability must be implemented. Currently, many works
have been done on focusing changes from requirement perspective (Ibrahim et al.,
2005; Rochimah et al., 2009; Omar, 2013; Shahid and Ibrahim, 2013). There are other
works too that focusing changes from other phases in software development lifecycle
i.e. component level (Mei et al., 2002), modelling language (Murta et al., 2008a),
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methods and classes level (Junqueira et al., 2008), architectural level (Nguyen et al.,
2005), and test-driven (Freese, 2003). The latter was focusing on broader perspective,
specifically at process level instead of file structure or fine-grained artefacts. (Cleland-
Huang et al., 2014) even added in their research studies on the current trend of software
traceability, in which they quoted the USA Federal Aviation Administration (FAA) and
USA Food and Drug Administration (FDA) are emphasising on software traceability
from source code to software requirement and therefore it is clear indication of the
current traceability trend, there is still a lack of consideration from testing artefacts
perspective.

From traceability issues, some challenges that are related to tracing the prospect
impacting software artefacts can occur as pointed out by this study (Ibrahim et al.,
2005). The main problem to maintainer is that seemingly small changes can ripple-
effect throughout the system to cause substantial impact elsewhere. Besides tracing
the changes from one artefact to another across entire software development lifecycle,
establishing traceability itself is rarely done (Grechanik et al., 2007).

Based on the above scenarios, it is evident at the time of this research was
conducted, there are fewer efforts done to manage affected testing artefacts via
traceability. Implementing changes can be exhaustive, frustrating and costly due to
the amount of laborious manual works and the issues will worsen if the software
developers are clueless of how to identify the affected artefacts due to poor traceability
practices and undesirable change management. Therefore, it is an important necessary
to establish traceability link to manage changes made from any phases of software
development process that particularly might affect testing artefacts as well. The
traceability establishment could span from the requirement to testing phases and vice
versa and the link will not be limited to different phases but the establishment of
the traceability link will accommodate artefacts within the same phase of software
development lifecycle.

1.3 Problem Statement

In maintenance process, managing changes through traceability link will ensure
the affected artefacts i.e. functional and non-functional requirements, design model
and component, and test artefacts get amended accordingly as the new change was
introduced. In the real process, the work will be more simplified if the developers or
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maintainers can find their own way to establish the traceability link between the high
level and lowest level artefacts.

Current traceability approaches as discussed in section 1.2, have shown limited
coverage of traceability links whereas changes could happen from a testing perspective.
Due to highlighted issues, extending the traceability coverage is essential and will
be made helpful to support changes from testing standpoint as well. Therefore this
research will focus on finding support through traceability approach whilst managing
the affected artefacts from testing perspective.

This research is intended to deal with the lack of traceability support on test
artefacts as discussed in previous section. The support will cover artefacts from a
higher level of abstraction to the lowest level of abstraction. It will be done through
the establishment of traceability either horizontally (across different phases of the
lifecycle) or vertically (within a phase in the lifecycle) and the output of this research
is expected of an improvement of managing involving test artefacts via traceability
approach. Hence the hypothesis leads to this research question:

"How affected test artefacts due to changes across and within phases of software

development lifecycle could be managed effectively through traceability approach?"

To be able to answer the above questions, a set of sub-questions is formed
below to provide detail insight of the outlining research problem:

RQ1: Why current traceability approaches do not satisfy the developer/tester
during software testing lifecycle?

RQ2: How to facilitate changes that are potentially affected and propagated to
other artefacts during managing the evolving test artefacts?

RQ3: How traceability approach will improve the developers/testers tasks in
coping up with changes across the entire phases and within the same phase of software
development lifecycle?

RQ4: How to validate the effectiveness of the proposed traceability approach
to some significant level?
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1.4 Objectives of the Study

The research objectives based on the problem statement, are as follows:

(i) To study and investigate the current issues of traceability approaches to
manage changes involving test artefacts.

(ii) To develop a new traceability approach that support affected changes across
phases and within a phase in software development lifecycle as well as from
coarse level to the fine-grained level of artefacts.

(iii) To design and formulate algorithms to support the proposed approach.

(iv) To evaluate the effectiveness of the proposed approach against the existing
approaches through obtained results.

1.5 Scope of the Study

This section describes the boundaries of this research. The scope of this study
covers the following:

(i) This research focuses on existing traceability approaches that relate to
managing affected test artefacts upon changes, either explicitly or implicitly
across or within phases of software development lifecycle.

(ii) This study covers from coarse level artefacts (i.e. SDP, SRS, SDD, STR,
and STD) to fine-grained level (i.e. requirement indexes, objects, classes,
components, packages, methods, test cases, test suites and data elements)
and all artefacts have a unique item identifications which conformed to
(MIL-STD-498, 2005) documentation standard. Even though these research
artefacts seem to bound to a specific documentation but the importance of
this study is more on managing the artefacts via traceability itself.

(iii) A medium size (approximately above 5000 usable line of code/LOC) case
study based on the objected oriented approach will be adopted to address
issues of managing the involving artefacts from testing perspective. The LOC
was measured using an opened source tool, LOCMetrics by McCabe Metric
(McCabe, 1976) and the technique was adopted by Software Engineering
Institute (SEI) for LOC counting standards (Nguyen et al., 2007).
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(iv) The effectiveness of the traceability approach will be quantitatively measured
using precision and recall from Information Retrieval (IR) field. As these
two parameters are used to prove an efficacy of any approach that adopts IR
technique (Buckland and Gey, 1994).

1.6 Significant of the Study

Harrold (2009) stated in her research, the most expensive activities could
occur after software development completion is software retesting during maintenance
testing phase. Further quote, 50% of software maintenance budget will consume by
retesting activities. In software testing alone, a big chunk of budget, at estimation
nearly 80% will spend for retest. Retest is needed to ensure change imposed on
the system, does not propagate to the untouched features. Building up a model
that can trace and foresee the candidate impacted artefacts is crucial during software
maintenance and furthermore, maintenance testing is the most non-trivial part of the
maintenance activities. To build up such a model, there are features needed to be
considered; a traceability features. Traceability is necessary due to its capability to
establish links among the artefacts. Time reduction whilst performing maintenance
testing is an important factor too, hence the automated proposed approach.

Tracing and managing ever grow software artefacts due to changes are
seemingly never ending maintenance activities. Updating the traceability links due
to changes in any phases is making the software system itself growing, expanding,
evolving, etc. Changes are inevitable due to factors namely, outdated software system,
new platform of operating system, change requirements, new project management
approach, new developers'techniques or methodologies, etc.

Poor in identifying which artefacts being affected due to changes indicate that
traceability approach used is weak and poor. The issue gets further worse if the
software artefacts are bigger in volume which involves many lines of source codes,
documents, etc. Hence this study will provide a support for developers at testing
lifecycle specifically maintenance testing, to tracing back which test component or
test objects, test cases are affected due to changes in requirement. Found bugs will
be included and tightly coupled with test cases/test script that initiated the bugs. The
latter will be stored together with the test case inside a repository. In addition, in
order to manage the evolution of the artefacts, the repository will be used to store the



7

traceability links update.

This study is targeting the developer's awareness of how important to keep their
artefacts manageable and traceable right at their finger tips. Thus eliminating time and
cost consuming at the later stage of maintenance testing phases. The test managers and
testers would be having a complete transparent view from tester's perspective (abstract
level) right down into developer's perspective (logical level) i.e. tracing bugs and the
management level can make firm decision over the changes execution.

1.7 Thesis Outline

This thesis discusses on specific issues associated with managing involving test
artefacts via software traceability. It highlights the limitation of current approaches
in resolving the outdated traceability links upon software changes from a testing
perspective. This thesis is organised as follows:

Chapter 2: Discusses the literature review about change management, existing
traceability approaches and managing test artefacts during software change. This
chapter also highlights some limitations of the existing traceability approaches that
support changes from testing perspective. A comparative study was tabulated and
limitations of the existing approaches are highlighted in table form. This study will
lead to an opportunity for improvement in proposing a new software traceability
approach.

Chapter 3: Highlights a research methodology that discusses the research
design, formulation of research procedures and activities and the theoretical
framework. This chapter also discusses on research instruments, evaluation criteria,
assumption and limitation.

Chapter 4: Presents an explanation of the conceptual detailed of the new
traceability approach in managing affected test artefacts during changes. A set of
formal notations is used to represent the conceptual part of the approach. This is
followed by a detailed discussion of the proposed approach. It explains two part
of traceability; horizontal (explicit) traceability and vertical (implicit) traceability.
This chapter explains the design and functionality of a developed tools to support
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