
TRACEABILITY APPROACH FOR MANAGING CHANGES INVOLVING
SOFTWARE TESTING ARTEFACTS

OTHMAN MOHD YUSOP

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

FEBRUARY 2017



iii

ALHAMDULILLAH Praise be to Allah, and may His peace and blessings be upon

Muhammad s.a.w,

For my beloved parents Hjh Asmah Basir, Haji Mohd Yusop Nami, Hjh Sainah

Dahlan, my beloved wife, Noraini binti Shaari and my bubbly little daughter, Dhia

Humaira’ binti Othman who have given me the strength and courage.



iv

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my main supervisor, Prof.
Dr. Suhaimi Ibrahim for his encouragement, advice and inspiration throughout this
research. Special thanks go to colleges and staff of Advanced Informatics School,
Universiti Teknologi Malaysia for your constant support, technical guidance and
constructive review of this research work, who involved directly or indirectly in the
project.

A special thanks to Haji Azri Haji Azmi, Saiful Adli Ismail, Mdm Haslina
Sarkan, Dr. Mohd Nazri Kama, Dr. Norziha Megat Tajuddin, Dr. Suriayati
Chuprat, Mdm Yazriwati Yahya, Dr. Ganthan for motivational words, expertises, and
relentlessly persuading me for this project submission. Your invaluable advices are
highly appreciated.

I would like to extend my many thanks to Prof. Dr. Abdul Samad Haji Ismail
the Dean of Faculty of Computing, Prof. Madya Dr. Norfidah Ithnin and management
team of Faculty of Computing on your efforts and patience for allowing myself to
complete this project.

A great gratitude also goes to the Universiti Teknologi Malaysia and
Kementerian Pengajian Tinggi for sponsoring my three year PhD study.

OMY, Presint 18, Putrajaya



v

ABSTRACT

Software change is inevitable for software product to remain relevant and
reusable. As software evolves over time due to specific changes at any point in time
during software development and maintenance, the managing aspect of changes may
get more complicated and risky. The outdated links would cause the affected artefacts
to be not updated timely and effectively. Most of the existing traceability approaches
and tools are dedicated and limited to high level artefacts such as requirements and
fewer capability made available to address the lower level artefacts such as classes and
codes. Most maintainers limit their links to begin at the requirement perspective but
there is no valid traceability link being made to support the fine grained level involving
testing components. This thesis proposes a new traceability approach to manage
changes with the emphasis on the integration of the development artefacts and testing
artefacts. The working artefacts cover requirements, packages, classes, methods,
test case, and codes. The proposed approach provides a know-how solution to the
IEEE 829:2010 standards associated to testing that demands for the support at testing
perspective. This approach has the capability to horizontally and vertically manage
artefacts from requirement down to code and vice versa. The proposed traceability
approach was applied to a case study of a software development project called On-
Board Automobile (OBA) with a complete set of documentation including test cases.
The evaluation results prove that the proposed traceability approach is significant and
useful in managing software changes involving testing artefacts.



vi

ABSTRAK

Pindaan perisian tidak dapat dielakkan bagi produk perisian untuk ianya kekal
berfungsi dan berkebolehan untuk diguna semula. Oleh kerana perisian berubah
sepanjang masa disebabkan wujudnya pindaan tertentu pada mana-mana tempat
semasa pembangunan perisian dan penyenggaraan, aspek pengurusan pindaan boleh
menjadi lebih rumit dan berisiko. Jalinan yang luput mungkin menyebabkan artifak
yang terlibat tidak dapat dikemaskini dalam masa yang ditetapkan dan menjadikannya
tidak berkesan. Kebanyakan pendekatan jejak semasa dan alatan adalah khusus
dan terhad kepada artifak aras tinggi seperti keperluan berbanding sokongan untuk
menangani artifak aras lebih rendah seperti kelas dan kod. Kebanyakan penyenggara
menghadkan jalinan jejak untuk bermula pada perspektif keperluan tetapi tiada jalinan
jejak yang sah untuk menyokong aras butiran halus yang melibatkan komponen
pengujian. Tesis ini mencadangkan pendekatan jejak yang baharu untuk menguruskan
pindaan dengan penekanan kepada integrasi terhadap artifak pembangunan dan artifak
pengujian. Artifak yang diusahakan merangkumi keperluan, pakej, kelas, kaedah,
kes pengujian dan kod. Pendekatan yang dicadangkan menyediakan penyelesaian
pengetahuan untuk IEEE 829: 2010 standard berkaitan dengan pengujian yang
memerlukan sokongan pada perspektif pengujian. Pendekatan ini mempunyai
keupayaan untuk menguruskan secara jalinan mendatar dan jalinan menegak untuk
urusan artifak daripada fasa keperluan ke kod dan sebaliknya. Pendekatan jejak
yang dicadangkan ini diaplikasikan dengan bantuan kajian kes projek pembangunan
perisian yang dipanggil On-Board Automobile (OBA) termasuk satu set dokumentasi
yang lengkap bagi kes-kes pengujian. Keputusan penilaian membuktikan bahawa
keberkesanan pendekatan yang dicadangkan adalah signifikan dan berguna dalam
menguruskan perubahan perisian yang melibatkan artifak pengujian.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF APPENDICES xviii

1 INTRODUCTION 1
1.1 Overview 1
1.2 Background Problem 1
1.3 Problem Statement 3
1.4 Objectives of the Study 5
1.5 Scope of the Study 5
1.6 Significant of the Study 6
1.7 Thesis Outline 7

2 LITERATURE REVIEW 9
2.1 Overview 9
2.2 Software Configuration Management 9

2.2.1 Definitions of Software Configuration
Management 9

2.2.2 Fundamental of SCM Process to Control
Baseline and Evolution 10

2.2.3 SCM 11
2.2.3.1 Configuration Identification 13
2.2.3.2 Configuration Change Control 14



viii

2.2.3.3 Configuration Status
Accounting 17

2.2.3.4 Configuration Auditing 18
2.2.4 A Scenario of How Change Management

Works in SCM Process 18
2.2.5 Change Management in Supporting Fine

Grained Artefacts Involving Traceability
Approach 20
2.2.5.1 Component-Based Software

Configuration Management
Approach 21

2.2.5.2 Unified Modeling Language
(UML)-based Version Control
System 21

2.2.5.3 Fine-grained Version Control
Software - PHOCA 23

2.2.5.4 Software Configuration
Management to Improve
Software Architectural
Traceability 24

2.2.5.5 Software Configuration
Management for Test-Driven
Development (TDD) 25

2.2.5.6 Effective Version Management
Method for Test Case 26

2.2.5.7 Light Weight Traceability
Management Approach in
Scrum 28

2.2.6 What Limits These Fine-Grained Change
Management Approaches 29

2.2.7 Discussion of Fine-Grained Change
Management Approaches 31

2.3 Software Testing 32
2.3.1 Definitions of Software Testing 32
2.3.2 Challenges in Software Testing 34
2.3.3 Controlling Evolution in Software Testing

as A Challenge 36
2.3.4 Level of Software Testing 37

2.3.4.1 Component Testing 37



ix

2.3.4.2 Integration Testing 37
2.3.4.3 System Testing 38
2.3.4.4 Acceptance Testing 38
2.3.4.5 Maintenance Testing 39

2.3.5 Why There are Levels of Testing and
Summary of Testing Phases 40

2.3.6 Search Result Databases for Current
Trend of Maintenance Testing
Approaches in Supporting Testing
Fine Grained Artefacts 42
2.3.6.1 Regression Test Suite Approach 43
2.3.6.2 Heuristic-Based Framework

Approach 44
2.3.6.3 Keyword-Based Approach 45
2.3.6.4 Graphical User Interfaces

(GUIs) Regression Testing
Approach 46

2.3.6.5 Model-Based Approach 47
2.3.6.6 Test-to-code Recovery via

SCOTCH+ Approach 48
2.3.6.7 Test-to-code Test Links

Recovery via ETUCA
Approach 49

2.3.7 Discussion of Existing Maintenance Test
Approaches 50

2.4 Software Traceability and Its Definition 53
2.4.1 Challenges in Software Traceability 54
2.4.2 Traceability Links Categories 56
2.4.3 Search Results of Existing Traceability

Link Approaches 58
2.4.3.1 Event-Based Traceability

(EBT) 59
2.4.3.2 Information Retrieval Method

(IR) 60
2.4.3.3 Scenario-based Traceability 60
2.4.3.4 Goal-centric Traceability 61
2.4.3.5 Hypertext-Based Traceability 62
2.4.3.6 Rule-Based Traceability 62
2.4.3.7 Traceability Matrix Approach 63



x

2.4.3.8 Multifaceted Requirement
Traceability Approach 64

2.4.3.9 Requirement to Code
Traceability Approach 65

2.4.4 Evaluation and Discussion of The
Traceability Approaches 66

2.4.5 Selection of Features Coverage 69
2.4.5.1 Traceability 69
2.4.5.2 Granularity 71
2.4.5.3 Artefact Formats 71
2.4.5.4 Artefact 71
2.4.5.5 Change Support 71
2.4.5.6 Objectivity 72

2.4.6 Overall Evaluation Summary on The
Existing Approaches 72

2.4.7 Chapter Summary 74

3 RESEARCH METHODOLOGY 75
3.1 Overview 75
3.2 Research Design Strategies and Procedure 75
3.3 Theoretical Framework 76
3.4 Research Procedures and Activities 77

3.4.1 Phase 1 - Observation 78
3.4.2 Phase 2 - Conceptual Approach 79

3.4.2.1 Mathematical Model Using
Relational Algebra 80

3.4.3 Phase 3 - Construction 80
3.4.3.1 Instrumentation 81
3.4.3.2 Case Study 81

3.4.4 Phase 4 - Evaluation 81
3.4.4.1 Measurement Metrics -

Precision, Recall and F-
measure 82

3.4.4.2 Justification on Measurement
Metrics 84

3.4.5 Research Activities 85
3.5 Operational Framework 87
3.6 Assumptions and Limitations 89
3.7 Chapter Summary 89



xi

4 THE VERSIO TRACEABILITY APPROACH 90
4.1 Overview 90
4.2 Motivations of Research 90
4.3 The Versio Approach 91

4.3.1 Indexing Test Elements 93
4.3.2 Change Management 93
4.3.3 Test Elements Viewer 94
4.3.4 Repository 95

4.4 The Flowchart of Versio Approach 96
4.4.1 Extracting and Storing the Artefacts 96
4.4.2 How Generating Traceability Works -

Horizontal Traceability 98
4.4.2.1 Set Link Between Test Cases

and Requirements - TCR 99
4.4.2.2 Set Link Between

Requirements and Classes
- RC 102

4.4.2.3 Set Link Between Test Cases
and Classes - TCC 103

4.4.2.4 Set Link Between Packages and
Classes - PC 105

4.4.2.5 Set Link Between Classes and
Methods - CM 107

4.4.2.6 Set Link Between Methods and
Data Elements - MD 109

4.4.2.7 Generating The Horizontal
Traceability Link 111

4.4.3 How Generating Traceability Works -
Vertical Traceability 113
4.4.3.1 Set Link Between Classes to

Classes - CC 113
4.4.3.2 Set Link Between Packages to

Packages - PP 115
4.4.3.3 Set Link Between Methods to

Methods - CC 117
4.4.3.4 Generating Vertical Traceability

Link 120



xii

4.4.4 Change Management Process and
Relational Algebra Based
Algorithms 120

4.4.5 Test Elements Viewer and Transitive
Relationships 123
4.4.5.1 Explicit Traceability and

Conceptual Visualisation Using
Digraph 124

4.4.5.2 Implicit Traceability and
Conceptual Visualisation Using
Digraph 127

4.5 The Versio Notational Languages and Its
Instrumentation 130
4.5.1 Instrumentation for Generating

Traceability and Visualising
Elements 134

4.5.2 Instrumentation for Change Management 136
4.6 Versio Structural Architecture and Entity Relational

Database 138
4.7 Mapping Design and Implementation to The Versio

Approach 141
4.8 Chapter Summary 143

5 EVALUATION 144
5.1 Introduction 144
5.2 Evaluating the Versio Approach 144

5.2.1 How the Case Study is Applied - A Series
of Flowcharts 145

5.3 Case Study 150
5.3.1 On Board Automobile 151

5.3.1.1 The Extracted Case Study
Dataset 152

5.4 Experimental Result with Venn Diagram 156
5.4.1 TestCases(tc) vs Classes(c) Tuples - tcc 156
5.4.2 TestCases vs Requirements Tuples - tcr 162
5.4.3 Requirements vs Classes Tuples - rc 163
5.4.4 Classes vs Methods Tuples - cm 165
5.4.5 Packages vs Classes Tuples - pc 167
5.4.6 Methods vs Data Elements Tuples -mde 169



xiii

5.4.7 Classes vs Classes Tuples -cc 170
5.4.8 Packages vs Packages Tuples - pp 172
5.4.9 Methods vs Methods Tuples - mm 174

5.5 Averaging Precision and Comparative Results 176
5.6 Discussion on the Evaluation Results 179
5.7 Summary 180

6 CONCLUSION 181
6.1 Research Objectives and Achievements 181
6.2 Summary of The Contribution 183
6.3 Research Limitation and Future Work 184

REFERENCES 186
Appendices A – B 196 – 199



xiv

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Elements of Configuration Identification (Kasse and A. MC-
Quaid, 2000) 15

2.2 PCR Sample Form (MIL-STD-498, 1995) 16
2.3 Summary of Search Results for Related Articles 20
2.4 Conventional vs. Component Based Change Management 20
2.5 Comparative Results of Change Management Approaches 30
2.6 Summary of Software Testing Phases 41
2.7 Summary of Search Results for Maintenance Testing Related

Approaches 42
2.8 Comparative Studies of Maintenance Testing Approaches 51
2.9 Summary of Search Results for Traceability Link Approaches 59
2.10 Comparative Results of Traceability Link Approaches 67
2.11 Evaluation of Existing Approaches - Research Gap Result 73
3.1 Confusion Matrix (Powers, 2011) 83
3.2 Measurement Metrics - (Gotel et al., 2012) 84
3.3 Operational Framework 88
4.1 Indexing Test Elements Component 93
4.2 Traceability Generator Component 94
4.3 Managing Element Changes 94
4.4 Visualising Component 95
4.5 List of Tuples 98
4.6 Managing Element Changes 121
4.7 Visualising Component 123
4.8 Mapping Algorithms to Subsections 131
4.9 Mapping the Approach to Design and Implementation 141
5.1 OBA Group Members 152
5.2 Mean Average Precision 176
5.3 Comparative - Coverage of Software Development Phases 178
5.4 The Comparative Result Against the Existing Approaches 179



xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Software Configuration Management Process (MIL-HDBK-
61A, 1997) 11

2.2 Functional Element of SCM (Keyes, 2004) 12
2.3 Branching and Merging (Larsson et al., 2000) 14
2.4 Software Project Baseline (Ren et al., 2010) 14
2.5 Software Configuration Control Board [SCCB] (Overmyer,

1990) 16
2.6 Sample of Change Management in SCM Process 19
2.7 Relationship between Odyssey-VCS and UML (Murta et al.,

2008a) 23
2.8 PHOCA Architecture (Junqueira et al., 2008) 24
2.9 Test-Driven Development Lifecycle (Freese, 2003) 26
2.10 Test Case Versioning (Cai et al., 2012) 27
2.11 Parallel test strategy (Cai et al., 2012) 27
2.12 Scrum Development Process with Creation and Maintenance

of Traceability Links (Gayer et al., 2016) 29
2.13 W-Model (Spillner et al., 2006) 33
2.14 Software Testing Roadmap (Bertolino, 2007) 35
2.15 Case Study Process (Skoglund and Runeson, 2004) 44
2.16 Keyword-Based Approach (Wissink and Amaro, 2006) 46
2.17 GUI Regression Testing Approach (Memon and Soffa, 2003) 47
2.18 Managing Test Suite using Traceability Recovery (Qusef

et al., 2014) 49
2.19 Managing Test Suite using Traceability Recovery (Rafati

et al., 2015) 50
2.20 Traceability Links Categories (Mäder et al., 2007) 57
2.21 Traceability Modes (Pinheiro, 2004) 58
2.22 Meta-model of Traceability Approach (Ibrahim et al., 2005) 64
2.23 MRTA Conceptual Framework (Rochimah et al., 2009) 65



xvi

2.24 Proposed Requirements to Code Traceability Model (Shahid
and Ibrahim, 2013) 66

2.25 Selection of Features Coverage 70
3.1 Traceability Theoretical Framework - (Gotel et al., 2012) 77
3.2 Trace Link Directional - (Gotel et al., 2012) 77
3.3 Research Phases 78
3.4 Recall and Precision by (Manning et al., 2008) 83
3.5 Research Activities Flowchart 86
4.1 The Architecture of Versio Approach 92
4.2 The Flowchart of Versio Approach 96
4.3 Linking Nodes of Artefacts Under Controlled - Explicit

Traceability 112
4.4 Linking Nodes of Artefacts Under Controlled (Loop Red

Path) - Implicit Traceability 120
4.5 Digraph for Explicit Traceability 126
4.6 Digraph for Implicit Traceability 129
4.7 VERSIO use case 130
4.8 VERSIO Main Menu 132
4.9 VERSIO Sequence Diagram 133
4.10 VERSIO Sub-Menu Indexing Elements 134
4.11 VERSIO Sub-Menu Traceability Matrix i.e. TCes vs REQs

(wysiwyg) 135
4.12 VERSIO Traceability Generated - A Visualisation 136
4.13 VERSIO Change Management 137
4.14 VERSIO Architecture - Component Level 138
4.15 VERSIO Meta-Model - Classes Level 139
4.16 VERSIO Entity Relational Database Schema - Post Normali-

sations 140
5.1 Flowchart of Extracting and Indexing Artefacts 145
5.2 Flowchart of Setting Ordered Pairs or Tuples 146
5.3 Flowchart of Set Hextuplet 147
5.4 Flowchart of Set Triplet 148
5.5 Flowchart of Visualisation (Vertically or Horizontally) 149
5.6 Flowchart of Managing Changes 150
5.7 Precision and Recall - Testcases ./ Classes 157
5.8 Test Cases versus Classes - Precision and Recall 161
5.9 Precision and Recall - Testcases ./ Requirements 162
5.10 Test Cases versus Requirements - Precision and Recall 163
5.11 Precision and Recall - Requirements ./ Classes 164



xvii

5.12 Requirements vs Classes- Precision and Recall 165
5.13 Precision and Recall - Classes ./ Methods 166
5.14 Classes vs Methods- Precision and Recall 167
5.15 Precision and Recall - Packages ./ Classes 168
5.16 Packages vs Classes- Precision and Recall 168
5.17 Precision and Recall - Methods ./ DataElements 169
5.18 Methods vs Data Elements- Precision and Recall 170
5.19 Precision and Recall - Classes ./ Classes 171
5.20 Classes vs Classes - Precision and Recall 172
5.21 Precision and Recall - Packages ./ Packages 173
5.22 Packages vs Packages - Precision and Recall 173
5.23 Precision and Recall - Methods ./ Methods 174
5.24 Methods vs Methods - Precision and Recall 175



xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A INPUT DATA EXTRACTION from OBA CASE STUDY 196
B OUTPUT DATA EXTRACTION from OBA CASE STUDY 199



CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter introduces the research and elaborates its background in detail and
subsequently describes the problem statement, research objectives, research scopes and
the significance of this study.

1.2 Background Problem

It is inevitable for the software to evolve in order to cope with emerging
changes. Changes in software could mostly would occur due to internal or external
requests i.e. user's requests. User change requirements can occur after the delivery
of the complete software artefacts such as a system, documentations, or during the
progression of the software development phases involving requirement, design and
testing. Hence it is widely accepted within software engineering community that
software changes or software evolution is a part of software maintenance process.
The term software evolution and software maintenance are used interchangeably
and in short practitioners classify it as maintenance (Bennett and Rajlich, 2000).
In maintenance process, traceability is important. Facilitating the changes during
maintenance using traceability is a crucial step in ensuring the affected artefacts across
software development phases, are well maintained (Rochimah et al., 2009; Shahid and
Ibrahim, 2013).

During the maintenance phase, some activities needs to be managed. These
activities are maintaining traceability, change management, and maintaining affected
software artefacts. Prior to implementing any changes, ones need to comprehend
before and after changes take place. For example, changes made at testing level



2

or any other level throughout software development phases, often occurred without
updating the relevant documentations (Mäder and Egyed, 2012). Due to this
negligence, it automatically causes the traceability link between the affected artefacts
becoming obsolete. In addition, some organizations are neglecting the traceability
implementation due to laborious works that need to be considered (Lormans et al.,
2004). In spite of the existence of change management tools to update the traceability
link, the maintenance routine they need to incur, is not practical and time consuming
(Heindl and Biffl, 2005). Most of the change management tools support either at
file structure or at source code file level and whenever an update gets introduced at
either level, the traceability links that supposed to be maintained, are left forgotten and
outdated. Hence, updating the traceability link upon changes among the artefacts at
higher and lower level are often a failure whenever there is a change occurred (Cleland-
Huang et al., 2003).

In the context of the bigger system, there are possibly a lot of artefacts need
to be managed and tested. Each of the changes made has to be retested and verified
to ensure changes realisation. Traceability ensures the right artefacts get amended
and tested. Poorly maintenance of the traceability link due to an increase of testing
activities as an example, can affect negatively on the cost of maintenance (Sherba,
2005; Tamai and Kamata, 2009). Freese (2003), stated the expenditure for software
maintenance can increase to as much as 80% of the total lifecycle cost of a software
system. In addition, traceability maintenance requires consistent updating and due
to the nature of larger system having many artefacts to maintain, improper and
imprecise traceability approach could happen (Sherba, 2005). Therefore traceability
link maintenance is considered as an essential element of software development
lifecycle (Cleland-Huang et al., 2014).

Changes can span from coarse artefacts (i.e. SDP, SRS, SDD, STD, and STR)
to fine-grained artefacts (i.e. test objects, classes, methods) (Omar, 2013; Shahid and
Ibrahim, 2016). The problem may arise while doing maintenance if software changes
impacting more than a single software artefact. Thus, it causes more than one artefacts
need to be amended accordingly. The number of software changes can grow from
single artefacts to many artefacts. In order to manage and resolve many changed
artefacts, managing via traceability must be implemented. Currently, many works
have been done on focusing changes from requirement perspective (Ibrahim et al.,
2005; Rochimah et al., 2009; Omar, 2013; Shahid and Ibrahim, 2013). There are other
works too that focusing changes from other phases in software development lifecycle
i.e. component level (Mei et al., 2002), modelling language (Murta et al., 2008a),



3

methods and classes level (Junqueira et al., 2008), architectural level (Nguyen et al.,
2005), and test-driven (Freese, 2003). The latter was focusing on broader perspective,
specifically at process level instead of file structure or fine-grained artefacts. (Cleland-
Huang et al., 2014) even added in their research studies on the current trend of software
traceability, in which they quoted the USA Federal Aviation Administration (FAA) and
USA Food and Drug Administration (FDA) are emphasising on software traceability
from source code to software requirement and therefore it is clear indication of the
current traceability trend, there is still a lack of consideration from testing artefacts
perspective.

From traceability issues, some challenges that are related to tracing the prospect
impacting software artefacts can occur as pointed out by this study (Ibrahim et al.,
2005). The main problem to maintainer is that seemingly small changes can ripple-
effect throughout the system to cause substantial impact elsewhere. Besides tracing
the changes from one artefact to another across entire software development lifecycle,
establishing traceability itself is rarely done (Grechanik et al., 2007).

Based on the above scenarios, it is evident at the time of this research was
conducted, there are fewer efforts done to manage affected testing artefacts via
traceability. Implementing changes can be exhaustive, frustrating and costly due to
the amount of laborious manual works and the issues will worsen if the software
developers are clueless of how to identify the affected artefacts due to poor traceability
practices and undesirable change management. Therefore, it is an important necessary
to establish traceability link to manage changes made from any phases of software
development process that particularly might affect testing artefacts as well. The
traceability establishment could span from the requirement to testing phases and vice
versa and the link will not be limited to different phases but the establishment of
the traceability link will accommodate artefacts within the same phase of software
development lifecycle.

1.3 Problem Statement

In maintenance process, managing changes through traceability link will ensure
the affected artefacts i.e. functional and non-functional requirements, design model
and component, and test artefacts get amended accordingly as the new change was
introduced. In the real process, the work will be more simplified if the developers or



4

maintainers can find their own way to establish the traceability link between the high
level and lowest level artefacts.

Current traceability approaches as discussed in section 1.2, have shown limited
coverage of traceability links whereas changes could happen from a testing perspective.
Due to highlighted issues, extending the traceability coverage is essential and will
be made helpful to support changes from testing standpoint as well. Therefore this
research will focus on finding support through traceability approach whilst managing
the affected artefacts from testing perspective.

This research is intended to deal with the lack of traceability support on test
artefacts as discussed in previous section. The support will cover artefacts from a
higher level of abstraction to the lowest level of abstraction. It will be done through
the establishment of traceability either horizontally (across different phases of the
lifecycle) or vertically (within a phase in the lifecycle) and the output of this research
is expected of an improvement of managing involving test artefacts via traceability
approach. Hence the hypothesis leads to this research question:

"How affected test artefacts due to changes across and within phases of software

development lifecycle could be managed effectively through traceability approach?"

To be able to answer the above questions, a set of sub-questions is formed
below to provide detail insight of the outlining research problem:

RQ1: Why current traceability approaches do not satisfy the developer/tester
during software testing lifecycle?

RQ2: How to facilitate changes that are potentially affected and propagated to
other artefacts during managing the evolving test artefacts?

RQ3: How traceability approach will improve the developers/testers tasks in
coping up with changes across the entire phases and within the same phase of software
development lifecycle?

RQ4: How to validate the effectiveness of the proposed traceability approach
to some significant level?



5

1.4 Objectives of the Study

The research objectives based on the problem statement, are as follows:

(i) To study and investigate the current issues of traceability approaches to
manage changes involving test artefacts.

(ii) To develop a new traceability approach that support affected changes across
phases and within a phase in software development lifecycle as well as from
coarse level to the fine-grained level of artefacts.

(iii) To design and formulate algorithms to support the proposed approach.

(iv) To evaluate the effectiveness of the proposed approach against the existing
approaches through obtained results.

1.5 Scope of the Study

This section describes the boundaries of this research. The scope of this study
covers the following:

(i) This research focuses on existing traceability approaches that relate to
managing affected test artefacts upon changes, either explicitly or implicitly
across or within phases of software development lifecycle.

(ii) This study covers from coarse level artefacts (i.e. SDP, SRS, SDD, STR,
and STD) to fine-grained level (i.e. requirement indexes, objects, classes,
components, packages, methods, test cases, test suites and data elements)
and all artefacts have a unique item identifications which conformed to
(MIL-STD-498, 2005) documentation standard. Even though these research
artefacts seem to bound to a specific documentation but the importance of
this study is more on managing the artefacts via traceability itself.

(iii) A medium size (approximately above 5000 usable line of code/LOC) case
study based on the objected oriented approach will be adopted to address
issues of managing the involving artefacts from testing perspective. The LOC
was measured using an opened source tool, LOCMetrics by McCabe Metric
(McCabe, 1976) and the technique was adopted by Software Engineering
Institute (SEI) for LOC counting standards (Nguyen et al., 2007).



6

(iv) The effectiveness of the traceability approach will be quantitatively measured
using precision and recall from Information Retrieval (IR) field. As these
two parameters are used to prove an efficacy of any approach that adopts IR
technique (Buckland and Gey, 1994).

1.6 Significant of the Study

Harrold (2009) stated in her research, the most expensive activities could
occur after software development completion is software retesting during maintenance
testing phase. Further quote, 50% of software maintenance budget will consume by
retesting activities. In software testing alone, a big chunk of budget, at estimation
nearly 80% will spend for retest. Retest is needed to ensure change imposed on
the system, does not propagate to the untouched features. Building up a model
that can trace and foresee the candidate impacted artefacts is crucial during software
maintenance and furthermore, maintenance testing is the most non-trivial part of the
maintenance activities. To build up such a model, there are features needed to be
considered; a traceability features. Traceability is necessary due to its capability to
establish links among the artefacts. Time reduction whilst performing maintenance
testing is an important factor too, hence the automated proposed approach.

Tracing and managing ever grow software artefacts due to changes are
seemingly never ending maintenance activities. Updating the traceability links due
to changes in any phases is making the software system itself growing, expanding,
evolving, etc. Changes are inevitable due to factors namely, outdated software system,
new platform of operating system, change requirements, new project management
approach, new developers'techniques or methodologies, etc.

Poor in identifying which artefacts being affected due to changes indicate that
traceability approach used is weak and poor. The issue gets further worse if the
software artefacts are bigger in volume which involves many lines of source codes,
documents, etc. Hence this study will provide a support for developers at testing
lifecycle specifically maintenance testing, to tracing back which test component or
test objects, test cases are affected due to changes in requirement. Found bugs will
be included and tightly coupled with test cases/test script that initiated the bugs. The
latter will be stored together with the test case inside a repository. In addition, in
order to manage the evolution of the artefacts, the repository will be used to store the



7

traceability links update.

This study is targeting the developer's awareness of how important to keep their
artefacts manageable and traceable right at their finger tips. Thus eliminating time and
cost consuming at the later stage of maintenance testing phases. The test managers and
testers would be having a complete transparent view from tester's perspective (abstract
level) right down into developer's perspective (logical level) i.e. tracing bugs and the
management level can make firm decision over the changes execution.

1.7 Thesis Outline

This thesis discusses on specific issues associated with managing involving test
artefacts via software traceability. It highlights the limitation of current approaches
in resolving the outdated traceability links upon software changes from a testing
perspective. This thesis is organised as follows:

Chapter 2: Discusses the literature review about change management, existing
traceability approaches and managing test artefacts during software change. This
chapter also highlights some limitations of the existing traceability approaches that
support changes from testing perspective. A comparative study was tabulated and
limitations of the existing approaches are highlighted in table form. This study will
lead to an opportunity for improvement in proposing a new software traceability
approach.

Chapter 3: Highlights a research methodology that discusses the research
design, formulation of research procedures and activities and the theoretical
framework. This chapter also discusses on research instruments, evaluation criteria,
assumption and limitation.

Chapter 4: Presents an explanation of the conceptual detailed of the new
traceability approach in managing affected test artefacts during changes. A set of
formal notations is used to represent the conceptual part of the approach. This is
followed by a detailed discussion of the proposed approach. It explains two part
of traceability; horizontal (explicit) traceability and vertical (implicit) traceability.
This chapter explains the design and functionality of a developed tools to support



REFERENCES

Aizenbud-Reshef, N., Nolan, B. T., Rubin, J. and Shaham-Gafni, Y. (2006). Model
traceability. IBM Syst. J. 45(3), 515–526.

Al-Kilidar, H., Cox, K. and Kitchenham, B. (2005). The use and usefulness of the
ISO/IEC 9126 quality standard. In Empirical Software Engineering, 2005. 2005

International Symposium on. IEEE, 7–pp.

Anderson, K. M., Sherba, S. A. and Lepthien, W. V. (2002). Towards large-scale
information integration. In Proceedings of the 24th International Conference on

Software Engineering. Orlando, Florida: ACM. ISBN 1-58113-472-X, 524–534.
doi:10.1145/581339.581403.

Antoniol, G., Canfora, G., Casazza, G., Lucia, A. D. and Merlo, E. (2002). Recovering
Traceability Links between Code and Documentation. IEEE Trans. Softw. Eng.

28(10), 970–983.

Beizer, B. (1990). Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.
ISBN 0-442-20672-0.

Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and evolution: a
roadmap. In Proceedings of the Conference on The Future of Software Engineering.
ACM. ISBN 1-58113-253-0, 73–87. doi:10.1145/336512.336534.

Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams.
In 2007 Future of Software Engineering. IEEE Computer Society. ISBN 0-7695-
2829-5, 85–103.

Boehm, B. W. (1979). Software engineering. In Classics in software engineering. (pp.
323–361). Yourdon Press. ISBN 0-917072-14-6.

Booch, G., Rumbaugh, J. and Jacobson, I. (1996). The unified modeling language.
Unix Review. 14(13), 5.

Booth, Haas, McCabe, Newcomer, Champion, Ferris and Orchard (2005). Web

Services Architecture - W3C Working Group Note.

Briand, L. C., Labiche, Y. and Yue, T. (2009). Automated traceability analysis for
UML model refinements. Inf. Softw. Technol. 51(2), 512–527.



187

Buckland, M. K. and Gey, F. C. (1994). The relationship between recall and precision.
JASIS. 45(1), 12–19.

Buckley, J., Mens, T., Zenger, M., Rashid, A. and Kniesel, G. (2005). Towards a
taxonomy of software change. Journal of Software Maintenance and Evolution:

Research and Practice. 17(5), 309–332. ISSN 1532-0618. doi:10.1002/smr.319.

Burnstein, I. (2003). Practical Software Testing. Springer Professional Computing.
Springer. ISBN 978-0-387-95131-7.

Cai, J.-p., Lu, W.-l. and Xu, W.-y. (2012). A New Method of Version Management for
Test Case. In Zhu, R. and Ma, Y. (Eds.) Information Engineering and Applications.
(pp. 530–537). No. 154 in Lecture Notes in Electrical Engineering. Springer
London. ISBN 978-1-4471-2385-9 978-1-4471-2386-6.

Choices, C. (2000). Marketing Technology to Software Practitioners. IEEE Computer

Society Press Los Alamitos, CA, USA. Volume 17(Issue 1), Pages: 27 – 33. ISSN
ISSN:0740-7459.

Cleland-Huang, Dekhtyar, A., Hayes, J. and Antoniol, G. (2006). Grand challenges in

traceability. Technical Report Technical Report COET-GCT-06-01-0.9.

Cleland-Huang, J., Chang, C. and Christensen, M. (2003). Event-based traceability for
managing evolutionary change. IEEE Transactions on Software Engineering. 29(9),
796–810. ISSN 0098-5589. doi:10.1109/TSE.2003.1232285.

Cleland-Huang, J., Gotel, O. C., Huffman Hayes, J., MÃd’der, P. and Zisman, A.
(2014). Software traceability: trends and future directions. In Proceedings of the on

Future of Software Engineering. ACM, 55–69.

Cleland-Huang, J., Hayes, J. H. and Domel, J. M. (2009). Model-based traceability.
In Proceedings of the 2009 ICSE Workshop on Traceability in Emerging Forms of

Software Engineering. IEEE Computer Society. ISBN 978-1-4244-3741-2, 6–10.

Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E. and Christina, S.
(2005). Goal-centric traceability for managing non-functional requirements. In
Proceedings of the 27th international conference on Software engineering. St. Louis,
MO, USA: ACM. ISBN 1-59593-963-2, 362–371.

Collins-Sussman, Fitzpatrick, B., B.W. and Pilato (2004). C.M. Version Control with

Subversion. O’Reilly.

Davis, J. and Goadrich, M. (2006). The relationship between Precision-Recall and
ROC curves. In Proceedings of the 23rd international conference on Machine

learning. ACM, 233–240.

De Lucia, A., Oliveto, R., Zurolo, F. and Di Penta, M. (2006). Improving



188

comprehensibility of source code via traceability information: a controlled
experiment. In Proceedings of the 14th IEEE International Conference on Program

Comprehension. 317–326.

Dekeyser, J., Boulet, P., Marquet, P. and Meftali, S. (2005). Model driven engineering
for SoC co-design. In IEEE-NEWCAS Conference, 2005. The 3rd International.
21–25.

Dekhtyar, A., Hayes, J. H. and Antoniol, G. (2007). Benchmarks for traceability?

Dirckze, R. (2002). Java Metadata Interface (JMI) - Version 1.0, Unisys Corporation

and Sun Microsystems.

Egyed, A. (2001). A scenario-driven approach to traceability. In Proceedings of the

23rd International Conference on Software Engineering. Toronto, Ontario, Canada:
IEEE Computer Society. ISBN 0-7695-1050-7, 123–132.

Estublier, J., Leblang, D., Clemm, G., Conradi, R., Hoek, A. v. d., Tichy, W. and
Wiborg-Weber, D. (2002). Impact of the research community for the field of
software configuration management. In Proceedings of the 24th International

Conference on Software Engineering. Orlando, Florida: ACM. ISBN 1-58113-472-
X, 643–644. doi:10.1145/581339.581423.

Freese, T. (2003). Towards Software Configuration Management for Test-Driven
Development. In Software Configuration Management. (pp. 143–150).

Gall, H., Hajek, K. and Jazayeri, M. (1998). Detection of Logical Coupling Based
on Product Release History. In Proceedings of the International Conference on

Software Maintenance. IEEE Computer Society. ISBN 0-8186-8779-7, 190.

Gayer, S., Herrmann, A., Keuler, T., Riebisch, M. and Antonino, P. O. (2016).
Lightweight Traceability for the Agile Architect. Computer. 49(5), 64–71. ISSN
0018-9162. doi:10.1109/MC.2016.150.

Gotel, O., Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A., GrÃijnbacher,
P., Dekhtyar, A., Antoniol, G., Maletic, J. and MÃd’der, P. (2012). Traceability
fundamentals. In Software and Systems Traceability. (pp. 3–22). Springer.

Gotel, O. and Finkelstein, C. (1994). An analysis of the requirements traceability
problem. In Requirements Engineering, 1994., Proceedings of the First

International Conference on. 94–101.

Graham, D., Van Veenendaal, E., Evans, I. and Black, R. (2008). Foundations of

software testing: ISTQB certification. Course Technology Cengage Learning.

Grechanik, M., McKinley, K. S. and Perry, D. E. (2007). Recovering and using use-
case-diagram-to-source-code traceability links. In Proceedings of the the 6th joint



189

meeting of the European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering. Dubrovnik, Croatia: ACM.
ISBN 978-1-59593-811-4, 95–104.

Guess, V. C. (2002). CMII of Business Process Infrastructure. Hollis Publishing
Company. ISBN 0972058206.

Harrold, M. J. (2000). Testing: a roadmap. In Proceedings of the Conference on The

Future of Software Engineering. Limerick, Ireland: ACM. ISBN 1-58113-253-0,
61–72. doi:10.1145/336512.336532.

Harrold, M. J. (2009). Reduce, reuse, recycle, recover: Techniques for
improved regression testing. In 2009 IEEE International Conference on Software

Maintenance. September. Edmonton, AB, Canada, 5–5. doi:10.1109/ICSM.2009.
5306347.

Hayes, J. H., Dekhtyar, A. and Sundaram, S. K. (2006). Advancing Candidate Link
Generation for Requirements Tracing: The Study of Methods. IEEE Trans. Softw.

Eng. 32(1), 4–19.

Heindl, M. and Biffl, S. (2005). A case study on value-based requirements tracing.
In Proceedings of the 10th European software engineering conference held jointly

with 13th ACM SIGSOFT international symposium on Foundations of software

engineering. ACM, 60–69.

Hetzel, B. (1993). The Complete Guide to Software Testing. (2nd ed.). Wiley. ISBN
0471565679.

Ibrahim, N.B. Idris, M.Munro and A.Deraman (2005). A Requirements Traceability
to Support Change Impact Analysis. Asian Journal of IT (AJIT) vol.4(4).

Jones, C. (1991). Applied software measurement: assuring productivity and quality.
McGraw-Hill, Inc. ISBN 0-07-032813-7.

Junqueira, D. C., Bittar, T. J. and Fortes, R. P. M. (2008). A fine-grained and flexible
version control for software artifacts. In Proceedings of the 26th annual ACM

international conference on Design of communication. Lisbon, Portugal: ACM.
ISBN 978-1-60558-083-8, 185–192. doi:10.1145/1456536.1456576.

Kagdi, H., Maletic, J. I. and Sharif, B. (2007). Mining Software Repositories for
Traceability Links. In Proceedings of the 15th IEEE International Conference on

Program Comprehension. IEEE Computer Society. ISBN 0-7695-2860-0, 145–154.

Kasse, T. and A. MCQuaid, P. (2000). Software Configuration Management for Project
Leaders. ASQ. 2.



190

Kazman, R., Abowd, G., Bass, L. and Clements, P. (1996). Scenario-Based Analysis
of Software Architecture. IEEE Softw. 13(6), 47–55.

Keyes, J. (2004). Software Configuration Management. Auerbach Publications. ISBN
0849319765.

Kitchenham, B., Linkman, S. and Law, D. (1997). DESMET: a methodology for
evaluating software engineering methods and tools. Computing Control Engineering

Journal. 8(3), 120–126. ISSN 0956-3385. doi:10.1049/cce:19970304.

Knethen, A. v. (2002). Change-Oriented Requirements Traceability: Support for
Evolution of Embedded Systems. In Proceedings of the International Conference on

Software Maintenance (ICSM’02). IEEE Computer Society. ISBN 0-7695-1819-2,
482.

Larsson, M., Larsson, M. and Larsson, M. (2000). Applying Configuration
Management Techniques to Component-Based Systems.

Lawrie, D. J., Feild, H. and Binkley, D. (2006). Leveraged quality assessment using
information retrieval techniques. In 14th International Conference on Program

Comprehension. 149–158.

Lázaro, M., Marcos, E. and Juan, R. (2005). Research in Software Engineering:
Paradigms and Methods.

Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya, J., Bedford, G., Berenbach,
B., Khadra, O. B., Duan, C. and Zou, X. (2006). Poirot: A Distributed Tool
Supporting Enterprise-Wide Automated Traceability. In Proceedings of the 14th

IEEE International Requirements Engineering Conference. IEEE Computer Society.
ISBN 0-7695-2555-5, 356–357.

Lormans, M., Van Dijk, H., Van Deursen, A., Nocker, E. and de Zeeuw, A. (2004).
Managing evolving requirements in an outsourcing context: an industrial experience
report. In Software Evolution, 2004. Proceedings. 7th International Workshop on

Principles of. IEEE, 149–158.

Lucia, A. D., Fasano, F., Oliveto, R. and Tortora, G. (2007). Recovering traceability
links in software artifact management systems using information retrieval methods.
ACM Trans. Softw. Eng. Methodol. 16(4), 13. doi:10.1145/1276933.1276934.

Mäder, P. and Egyed, A. (2012). Assessing the effect of requirements traceability
for software maintenance. In Software Maintenance (ICSM), 2012 28th IEEE

International Conference on. IEEE, 171–180.

Mäder, P., Gotel, O. and Philippow, I. (2008). Rule-Based Maintenance of
Post-Requirements Traceability Relations. In 2008 16th IEEE International



191

Requirements Engineering Conference. September. Barcelona, Spain, 23–32. doi:
10.1109/RE.2008.24.

Mäder, P., Philippow, I. and Riebisch, M. (2007). Customizing Traceability Links for
the Unified Process. Lecture Notes in Computer Science. 4880, 53.

Maletic, J. I., Collard, M. L. and Simoes, B. (2005). An XML based approach to
support the evolution of model-to-model traceability links. In Proceedings of the 3rd

international workshop on Traceability in emerging forms of software engineering.
Long Beach, California: ACM. ISBN 1-59593-243-7, 67–72.

Maletic, J. I., Munson, E. V., Marcus, A. and Nguyen, T. N. (2003). Using a hypertext
model for traceability link conformance analysis. In Proc. of the Int. Workshop on

Traceability in Emerging Forms of Software Engineering. 47–54.

Manning, C. D., Raghavan, P., SchÃijtze, H. and others (2008). Introduction to

information retrieval. vol. 1. Cambridge university press Cambridge.

Marcus, A. and Maletic, J. I. (2003). Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings of the 25th

International Conference on Software Engineering. Portland, Oregon: IEEE
Computer Society. ISBN 0-7695-1877-X, 125–135.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE

Transactions on. (4), 308–320.

McMaster, S. and Memon, A. M. (2009). An Extensible Heuristic-Based Framework
for GUI Test Case Maintenance. In 2009 International Conference on Software

Testing, Verification, and Validation Workshops. April. Denver, CO, USA, 251–254.
doi:10.1109/ICSTW.2009.11.

Mei, H., Zhang, L. and Yang, F. (2001). A software configuration management
model for supporting component-based software development. SIGSOFT Softw.

Eng. Notes. 26(2), 53–58. doi:10.1145/505776.505790.

Mei, H., Zhang, L. and Yang, F. (2002). A component-based software configuration
management model and its supporting system. Journal of Computer Science and

Technology. 17(4), 432–441. doi:10.1007/BF02943283.

Memon, A. M. and Soffa, M. L. (2003). Regression testing of GUIs. In
Proceedings of the 9th European software engineering conference held jointly

with 11th ACM SIGSOFT international symposium on Foundations of software

engineering. Helsinki, Finland: ACM. ISBN 1-58113-743-5, 118–127. doi:
10.1145/940071.940088.

MIL-HDBK-61A (1997). MILITARY HANDBOOK. SCM Process. 12(5.1), 2–2.



192

MIL-STD-498 (1995). Mil-std-498. Crosstalk, the Journal of Defense Software

Engineering. 8(2), 2–5.

MIL-STD-498 (2005). MIL-STD-498 ROADMAP.

Miller, K. and Voas, J. (2006). Software test cases: is one ever enough? IT

Professional. 8(1), 44–48. ISSN 1520-9202.

Mlynarski, M., GÃijldali, B., SpÃd’th, M. and Engels, G. (2009). From design models
to test models by means of test ideas. In Proceedings of the 6th International

Workshop on Model-Driven Engineering, Verification and Validation. Denver,
Colorado: ACM. ISBN 978-1-60558-876-6, 1–10. doi:10.1145/1656485.1656492.

Mohan, K., Xu, P., Cao, L. and Ramesh, B. (2008). Improving change management
in software development: Integrating traceability and software configuration
management. Decision Support Systems. 45(4), 922–936. ISSN 0167-9236. doi:
10.1016/j.dss.2008.03.003.

Murta, L., CorrÃła, C., PrudÃłncio, J. G. and Werner, C. (2008a). Towards odyssey-
VCS 2: improvements over a UML-based version control system. In Proceedings of

the 2008 international workshop on Comparison and versioning of software models.
Leipzig, Germany: ACM. ISBN 978-1-60558-045-6, 25–30. doi:10.1145/1370152.
1370159.

Murta, L., Oliveira, H., Dantas, C., Lopes, L. G. and Werner, C. (2007). Odyssey-
SCM: An integrated software configuration management infrastructure for UML
models. Sci. Comput. Program. 65(3), 249–274.

Murta, L. G., Hoek, A. and Werner, C. M. (2008b). Continuous and automated
evolution of architecture-to-implementation traceability links. Automated Software

Engg. 15(1), 75–107.

Naslavsky, L., Ziv, H. and Richardson, D. J. (2007). Towards traceability of model-
based testing artifacts. In Proceedings of the 3rd international workshop on

Advances in model-based testing. London, United Kingdom: ACM. ISBN 978-
1-59593-850-3, 105–114.

Naslavsky, L., Ziv, H. and Richardson, D. J. (2009). A model-based regression
test selection technique. In 2009 IEEE International Conference on Software

Maintenance. September. Edmonton, AB, Canada, 515–518. doi:10.1109/ICSM.
2009.5306338.

Nguyen, T., Munson, E. and Thao, C. (2005). Object-oriented configuration
management technology can improve software architectural traceability. In Third

ACIS International Conference on Software Engineering Research, Management

and Applications, 2005. August. 86–93. doi:10.1109/SERA.2005.54.



193

Nguyen, V., Deeds-Rubin, S., Tan, T. and Boehm, B. (2007). A SLOC counting
standard. In COCOMO II Forum, vol. 2007.

Oliveto, R., Antoniol, G., Marcus, A. and Hayes, J. (2007). Software Artefact
Traceability: the Never Ending Challenge. IEEE. (ICSM 2007).

Omar, S. F. b. (2013). A SOFTWARE TRACEABILITY APPROACH TO SUPPORT

REQUIREMENT BASED TEST COVERAGE ANALYSIS. Ph.D. Thesis. Universiti
Teknologi Malaysia.

Osterweil, L. (1996). Strategic directions in software quality. ACM Comput. Surv.

28(4), 738–750. doi:10.1145/242223.242288.

Overmyer, S. P. (1990). DoD-Std-2167A and methodologies. ACM SIGSOFT Software

Engineering Notes. 15(5), 50–59.

Palmer, J., R.H., T. and M., D. (2000). "Traceability," in Software Requirement
Engineering. 2nd Edition. IEEE Computer Society Press Los Alamitos, CA, USA,
412–422.

Parveen, T., Tilley, S. and Gonzalez, G. (2007). A case study in test management.
In Proceedings of the 45th annual southeast regional conference. Winston-Salem,
North Carolina: ACM. ISBN 978-1-59593-629-5, 82–87. doi:10.1145/1233341.
1233357.

Pinheiro, F. A. (2004). Requirements traceability. Perspectives on software

requirements, 91–113.

Poshyvanyk, D. and Marcus, A. (2007). Using traceability links to assess and maintain
the quality of software documentation. Proc. of TEFSE. 7, 27–30.

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation.

Pressman, R. S. (1992). Software Engineering (3rd Ed.): A Practitioner’s Approach.
New York, NY, USA: McGraw-Hill, Inc. ISBN 0-07-050814-3.

Pressman, R. S. (2005). Software engineering: a practitioner’s approach. Palgrave
Macmillan.

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A. and Binkley, D. (2014). Recovering
test-to-code traceability using slicing and textual analysis. Journal of Systems and

Software. 88, 147–168. ISSN 0164-1212. doi:10.1016/j.jss.2013.10.019.

Rafati, A., Lee, S. P., Parizi, R. M. and Zamani, S. (2015). A Test-to-code Traceability
Method Using .NET Custom Attributes. In Proceedings of the 2015 Conference on

Research in Adaptive and Convergent Systems. RACS. New York, NY, USA: ACM.
ISBN 978-1-4503-3738-0, 489–496. doi:10.1145/2811411.2811553.



194

Rajlich and Gosavi (2002). A Case Study of Unanticipated Incremental Change. In
Proceedings of the International Conference on Software Maintenance (ICSM’02).
IEEE Computer Society. ISBN 0-7695-1819-2, 442.

Ren, Y., Xing, T., Quan, Q. and Zhao, Y. (2010). Software Configuration Management
of Version Control Study Based on Baseline. In 2010 International Conference

on Information Management, Innovation Management and Industrial Engineering

(ICIII), vol. 4. November. 118–121. doi:10.1109/ICIII.2010.506.

Rijsbergen, C. J. V. (1979). Information Retrieval. (2nd ed.). Newton, MA, USA:
Butterworth-Heinemann. ISBN 978-0-408-70929-3.

Robson, C. (2002). Real World Research: A Resource for Social Scientists and

Practitioner-Researchers (Regional Surveys of the World). {Blackwell Publishing
Limited}. ISBN 0631213058.

Rochimah, S., Wan Kadir, W. M. N. and Abdullah, A. H. (2009). Multifaceted Re-
quirement Traceability Approach to Support Software Evolution. 5th PostGraduate

Annual Seminars - PARS.

Rumbaugh, J., Jacobson, I. and Booch, G. (2004). Unified Modeling Language

Reference Manual, The. Pearson Higher Education.

Sengupta, S., Kanjilal, A. and Bhattacharya, S. (2008). Requirement Traceability
in Software Development Process: An Empirical Approach. In Rapid System

Prototyping, 2008. RSP ’08. The 19th IEEE/IFIP International Symposium on.
ISBN 1074-6005, 105–111.

Shahid, M. and Ibrahim, S. (2013). A New Model For Requirements to Code
Traceability to Support Code Coverage Analysis. Asian Academic Research Journal

of Multidisciplinary (AARJMD). 1(14), 159–172.

Shahid, M. and Ibrahim, S. (2016). Change impact analysis with a software traceability
approach to support software maintenance. In 2016 13th International Bhurban

Conference on Applied Sciences and Technology (IBCAST). January. 391–396. doi:
10.1109/IBCAST.2016.7429908.

Sherba, S. A. (2005). Towards automating traceability: an incremental and scalable
approach.

Sherba, S. A., Anderson, K. M. and Faisal, M. (2003). A Framework for
Mapping Traceability Relationships. 2 ND INTERNATIONAL WORKSHOP ON

TRACEABILITY IN EMERGING FORMS OF SOFTWARE ENGINEERING AT

18TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE

ENGINEERING, 32–39.



195

Skoglund, M. and Runeson, P. (2004). A case study on regression test suite
maintenance in system evolution. In 20th IEEE International Conference on

Software Maintenance, 2004. Proceedings. Chicago, IL, USA, 438–442. doi:
10.1109/ICSM.2004.1357831.

Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing & Management. 45(4), 427–437.
ISSN 0306-4573. doi:10.1016/j.ipm.2009.03.002.

Spanoudakis, G., Zisman, A., PÃl’rez-Minana, E. and Krause, P. (2004). Rule-based
generation of requirements traceability relations. Journal of Systems and Software.
72(2), 105–127.

Spillner, A., Linz, T. and Schaefer, H. (2006). Software Testing Foundations: A Study

Guide for the Certified Tester Exam. Rocky Nook. ISBN 3898643638.

Tamai, T. and Kamata, M. I. (2009). Impact of requirements quality on project success
or failure. In Design Requirements Engineering: A Ten-Year Perspective. (pp. 258–
275). Springer.

Tassey, G. (2002). The economic impacts of inadequate infrastructure for software

testing. Technical report.

Venn, J. (1880). I. On the diagrammatic and mechanical representation of propositions
and reasonings. The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science. 10(59), 1–18.

Wissink, T. and Amaro, C. (2006). Successful Test Automation for Software
Maintenance. In 2006 22nd IEEE International Conference on Software

Maintenance. September. Philadelphia, PA, USA, 265–266. doi:10.1109/ICSM.
2006.63.

Zimmermann, T., Spanoudakis, G., Perez Minana, E. and Krause, P. (2005). Tracing
software requirements artifacts. Proceedings of the International Conference on SE

Research and Practice.




