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ABSTRACT 

The utilisation of waste materials and by-products is a partial solution to 

environmental and ecological problems. One important recent development, in the 

field of concrete technology, is the utilisation of waste materials and by-products in 

the construction industry, as aggregates in the production of various types of 

concrete. Agro-waste materials, such as palm oil fuel ash (POFA), show a great 

potential ability to be utilised as a pozzolanic material in concrete. The problem of 

the rising costs of construction materials, coupled with evident environmental 

degradation, and the need to improve concrete properties; especially in terms of 

acoustic properties, has stimulated the necessity to incorporate tyre-rubber 

aggregates (TRA) and POFA in concrete. Rubberised Concrete (RC) is produced by 

replacing a volume percentage of the traditional coarse and/or fine aggregate with 

tyre-rubber particles. TRA has been utilized in various gradations from used vehicle 

tyres and POFA has been replaced partially as cementitious material. This research 

investigates the wide range of physical, mechanical and acoustic properties of 

concrete containing recycled TRA and POFA to assess its suitability as a 

construction material. The influence of factors, such as rubber aggregate content, 

size, shape and type of rubber particle, was also considered.  TRA is classified into 

three groups, namely fine fibre (R1), fine granular (R2) and coarse granular (R3). The 

concrete mixture is designed based on ACI 211-91. The TRA component of the 

mixture is replaced in 5% to 30% by volume. The results of this study show that the 

best proportion of POFA is 20% with a water-binder ratio of 0.38; which improves 

the 28-day concrete strength. The results show that despite a great loss in strength 

with increasing TRA replacement, this type of concrete is acceptable for various 

structural applications requiring medium to low compressive strengths. It is found 

that for the same volume of rubber (coarse and fine TRA), coarse rubber particles 

increase air content, decrease compressive, indirect tensile, and flexural strengths, 

and improve the deformability of concrete, compared to concrete containing fine 

TRA. Furthermore, the modified rubberised concrete exhibits superior acoustic 

properties. The results of sound absorption coefficient and sound transmission loss 

show that the coarse aggregates have more influence on improving the sound-

proofing properties by up to 42.5% with 30% TRA incorporation.  These attributes 

make rubberised POFA concrete a potential candidate for application in a promising 

flooring system that is cost-effective and has increased sound-proof properties. The 

possible quantities of concrete produced worldwide for such applications would 

ensure the viability of this product. Therefore, this type of concrete shows promise 

in becoming an additional sustainable solution for tyre-rubber waste management. 

.  
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ABSTRAK 

Penggunaan bahan-bahan buangan dan produk sampingan adalah penyelesaian separa 

kepada masalah alam sekitar dan ekologi. Satu perkembangan penting baru-baru ini 

dalam bidang teknologi konkrit adalah penggunaan bahan-bahan buangan dan produk 

sampingan dalam industri pembinaan sebagai agregat dalam pengeluaran pelbagai jenis 

konkrit. Bahan-bahan sisa agro, seperti abu bahan api kelapa sawit (POFA), 

menunjukkan potensi besar untuk digunakan sebagai bahan pozzolanic dalam konkrit. 

Masalah kenaikan kos bahan-bahan binaan, ditambah pula dengan pencemaran alam 

sekitar yang jelas, dan keperluan untuk meningkatkan sifat-sifat konkrit, terutama dari 

segi ciri-ciri akustik, telah merangsang keperluan untuk menggabungkan agregat tayar-

getah (TRA) dan POFA dalam konkrit. Konkrit Getah (RC) dihasilkan dengan 

menggantikan peratusan isipadu agregat kasar tradisional dan/atau agregat halus dengan 

zarah-zarah tayar-getah. TRA telah digunakan dalam pelbagai penggredan daripada tayar 

terpakai kenderaan dan POFA telah digantikan sebahagiannya sebagai bahan bersimen. 

Penyelidikan ini menyiasat pelbagai sifat-sifat fizikal, mekanikal dan akustik pada 

konkrit yang mengandungi TRA yang dikitar semula dan POFA untuk menilai 

kesesuaiannya sebagai bahan pembinaan. Pengaruh faktor-faktor seperti kandungan 

agregat getah, dan saiz, bentuk dan jenis zarah getah juga dipertimbangkan.  TRA 

diklasifikasikan kepada tiga kumpulan, iaitu serat halus (R1), butiran halus (R2) dan 

butiran kasar (R3). Campuran konkrit direka bentuk ACI 211-91. Komponen TRA dalam 

campuran digantikan sebanyak  5% hingga 30% mengikut isipadu. Keputusan kajian ini 

menunjukkan bahawa bahagian terbaik POFA adalah 20% dengan nisbah air-pengikat 

sebanyak 0.38, yang meningkatkan kekuatan konkrit 28 hari tersebut. Keputusan 

menunjukkan bahawa walaupun sebahagian besar kekuatan kehilangan dengan 

peningkatan penggantian TRA, konkrit jenis ini boleh digunakan untuk pelbagai aplikasi 

struktur yang memerlukan kekuatan mampatan yang sederhana hingga rendah. Telah 

didapati bahawa untuk isipadu getah (TRA kasar dan halus) yang sama, zarah getah 

kasar meningkatkan kandungan udara, menurunkan kekuatan mampatan, tegangan tidak 

langsung dan lenturan, dan meningkatkan perubahan bentuk konkrit berbanding dengan 

konkrit yang mengandungi TRA halus.  Tambahan pula, konkrit getah yang diubahsuai 

mempamerkan sifat-sifat akustik yang unggul. Keputusan pekali penyerapan bunyi dan 

kehilangan penghantaran bunyi menunjukkan bahawa agregat kasar mempunyai 

pengaruh yang lebih ke atas peningkatan sifat-sifat kalis bunyi sehingga 42.5% dengan 

penggabungan TRA sebanyak 30%.  Ciri-ciri ini menjadikan konkrit getah POFA calon 

yang berpotensi untuk aplikasi sistem lantai yang berkesan dari segi kos dan mempunyai 

sifat-sifat kalis bunyi yang lebih baik. Kuantiti konkrit yang mungkin dihasilkan di 

seluruh dunia untuk aplikasi begini akan memastikan kebolehlaksanaan produk ini. Oleh 

itu, jenis konkrit ini berpotensi menjadi penyelesaian tambahan yang mampan bagi 

pengurusan sisa tayar-getah.. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

Concrete has been the most commonly used manufactured material in the 

world since its invention. Concrete is a composite material comprising three major 

fractions, namely aggregate, cement, or binder (supplementary cement materials), 

and water, in suitable proportions, thus allowing the resulting mixture to set and 

harden over time. It is common knowledge that aggregates are the inert materials in 

concrete; however, being the major constituent, the proper selection of aggregates is 

very important to accomplish innovation in concrete production (de Brito and 

Saikia, 2013). In fact, the proper selection of aggregates and the manipulation of 

their size distribution are very important steps in the development of almost all types 

of special concrete. The aggregate fraction in concrete is about 60% to 80% of its 

total volume (Neville, 2011). Moreover, the preparation of some types of concrete, 

such as light and heavyweight concrete, as well as concrete resistant to sound or 

vibration, can only be achieved through the proper selection of aggregates.  

Recently, the worldwide growth of the automobile industry and the increase 

in car use has tremendously boosted tyre production. For example, in the United 

States alone, around 233.3 million scrap tyres were generated in 2013; this is 

approximately equal to 3,824.3 thousand tonnes (U.S. Environmental Protection 

Agency, 2013). The European Union countries discarded 3.2 million tonnes of scrap 

tyres in 2009 (Bravo and de Brito, 2012). In Malaysia, the estimated number of 

waste tyres is 8.2 million annually (Thiruvangodan, 2006). Furthermore, the 

quantity of scrap tyres generated in Malaysia for various years is presented in Table 

1.1. Therefore, large quantities of waste materials and by-products are generated 

http://www.epa.gov/waste/conserve/materials/tires/tdf.htm
http://www.epa.gov/waste/conserve/materials/tires/tdf.htm
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from manufacturing processes, service industries, and municipal solid wastes. As a 

result, solid waste management has become one of the major environmental 

concerns in the world. The increase in public awareness about the environment, the 

scarcity of landfill space, and the ever-increasing cost of goods, the utilisation of 

waste materials and by-products has become an attractive alternative to disposal. 

The high consumption of natural sources, extreme quantities of industrial wastes 

produced, and environmental pollution require the delineation of new solutions for 

sustainable development. 

Table 1.1: Number of scrap tyres generated in Malaysia (National Solid Waste 

Management Department, 2011) 

Year Quantity of Scrap Tyres (Tonne/Year) 

2007 208.911 

2008 211.209 

2009 232.325 

2010 245.087 

 

Another important recent development in the field of concrete science is the 

utilisation of waste materials and by-products in the construction industry, as well as 

the use of these materials as aggregates in the production of various types of 

concrete. The utilisation of waste materials and by-products is a partial solution to 

environmental and ecological problems. The use of these materials helps not only in 

having them utilised in cement, concrete, and other construction materials but also 

in reducing the cost of cement and concrete manufacturing. It also has numerous 

indirect benefits, such as reduction in landfill costs, energy savings, and 

environmental protection from possible pollution effects. Furthermore, the 

utilisation of these materials may improve the microstructure, durability, and 

mechanical properties of mortar and concrete, which may be difficult to achieve 

using only ordinary Portland cement. 
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Meanwhile, palm oil fuel ash is known as an agricultural by-product, and 

such waste material is simply disposed in landfills without any commercial returns. 

However, this may have a mal-effect role in the environment and landfills areas. In 

fact, Malaysia is the second largest producer of palm oil in the world. According to a 

report on the Malaysian palm oil industry (2009), palm oil production reached 17.7 

million tonnes. There are more than 200 palm oil mills operating in the country. On 

average, 43 tonnes or more of empty fruit bunches, husks, and shells are generated 

per 100 tonnes of fresh fruit bunches processed. The total solid waste generated by 

this industry has been estimated to amount to more than 8.1 million tonnes a year. 

These wastes are mostly used in boilers as fuel to generate power for the mill. After 

this process, the waste becomes ash. This ash is known as palm oil fuel ash (POFA) 

(Shafigh et al., 2014; Foo and Hameed, 2009)  

Significant research on the use of by-products in cement-based materials has 

been on-going, and the results show that POFA has the great potential to serve as a 

partial replacement binder material in concrete mixtures. 

1.2 Importance of the Study 

The disposal of rubber tyre waste has become a serious problem because of 

the generation of huge amounts of tyres, which are non-biodegradable by nature. 

Over the past decades, millions of scrap tyres have been disposed into open land 

fields. These stockpiles seriously threaten both the environment and public health 

because of their potential to serve as suitable breeding fields for mosquitoes, 

particularly because scrap tyres oftentimes retain water, which provides enough 

humidity and a warm place for mosquito breeding. Mosquitoes are one of the major 

public health threats that increase the likelihood of spreading disease. Moreover, 

these stockpiles create a fire danger because tyre components contain flammable 

content. Some researchers reported that tyre fires had continued for several months. 

Moreover, under the high temperatures of tyre fires, the tyres melt and release 

hydrocarbons and other pollutants to the ground and, in some cases, even to the 

ground water. In addition, tyre fires have produced black smoke, which causes 

serious air pollution (Guneyisi et al., 2004; Eldin and Senouci 1994; Hernandez–
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Oliveras et al., 2002; Li et al., 2004-b; Topcu 1995; Khaloo et al., 2008; Siddique 

and Naik, 2004; Khatib and Bayomy 1999; Ghaly and Cahill, 2005). 

Although concrete is the most commonly used construction material, it does 

not always fulfil some requirements, especially in service. Portland cement concrete 

(PCC) is a composite material that is well-known for its mechanical properties, with 

including adequate compressive strength, acceptable tensile strength, and low 

toughness, which resulted in brittleness and low deformability (Guneyisi et al., 

2004; Khaloo et al., 2008). An ideal PCC is expected to have such properties as high 

tensile strength and light weight. Moreover, the prompted demand for the 

modification of the brittle property of concrete resulted in the utilisation and 

application of alternative materials with deformable property, such rubber tyres, as 

coarse or fine aggregates or as a filler materials for the preparation of various types 

of concrete (Kumaran et al. 2012; Siddique and Naik 2004; Fattuhi and Clark, 1996; 

Chiu, 2008; Khaloo et al., 2008; Li et al., 2004-a). Elastic and deformable of tyre-

rubber particles could improve concrete properties, especially in terms of brittleness 

and sound insulation properties. Therefore, the addition of proper materials to 

concrete is one of the most popular fields in the concrete modification research area, 

and a large number of studies have been conducted to identify and introduce new 

materials as additives or replacements to improve or modify concrete properties 

(Hall et al., 2012; Khaloo et. al 2008; Pelisser et al., 2011; Sunthonpagasit and 

Duffey, 2004). 

1.3 Problem statement 

At present, the rapid growth of the automobile industry increased not only 

automobile production, but also the amount of industrial waste materials, such as 

scrap tyres. Industrial waste materials, such as waste tyres, should be handled 

properly to reduce the mal-effect on the environment and the rate of wastage. 

Moreover, the economic situation in developing countries demands for cost 

reduction in construction projects. Therefore, cutting costs related to concrete has a 

major role in this goal, given that concrete is the most commonly used material in 

construction projects. 
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The utilisation of pozzolanic materials, polymers, fibres, and waste materials 

in concrete has been studied many years ago because shortcomings in the 

performance of concrete, either in the fresh or hardened state, motivated engineers to 

seek improvements. The inclusion of all these materials is a typical approach. Over 

the past decades, numerous research works have been conducted on the use of agro-

waste ashes as supplementary cementing material in concrete construction. Among 

others, palm oil fuel ash (POFA) played a tremendous role in this regard. 

In addition, in the application of concrete, desirable concrete properties 

include lighter weight, higher toughness, better sound absorption, and higher impact 

resistance. Although concrete is the most commonly used construction material, it 

does not always fulfil these requirements. New applications for recycling waste 

materials have recently been realised to improve the properties of concrete. One of 

these applications is the utilisation of scrap tyres to replace aggregates partially. The 

major weakness of using rubber in concrete is the low compression strength of 

rubberised concrete. It remains a problem in the use of rubberised concrete as a 

structural component. Thus, it is recommended for use as a non-loading member in 

construction. Utilising tyre-rubber aggregates in concrete has great potential to 

produce acoustic material. However, the low strength of rubberised concrete 

prevents engineers from fully benefiting from this attribute. 

 Therefore, this research endeavours to find a way to utilise rubberised 

POFA concrete in structural application, especially in the floor component for low-

cost buildings, as concrete with high potential in terms of acoustic and 

soundproofing properties. 

 

1.4 Aim and Research Objective 

The aim of this research is to investigate the effect of incorporating palm oil 

fuel ash (POFA) for the partial substitution of cementitious material, with tyre-

rubber aggregate replacement utilised as the aggregate in concrete to achieve green 

and sustainable concrete production.  
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i. The main objectives of this research are as follows: 

i. To determine the optimum mix design for rubberised concrete with 

different types, sizes, and amounts of tyre-rubber particles 

incorporating POFA for application to structural concrete. 

ii. To identify the engineering properties of concrete with different types, 

shapes, and sizes of tyre-rubber aggregate in terms of physical and 

mechanical qualities. 

iii. To evaluate the durability of POFA-rubberised concrete, this study was 

based on such parameters as fire endurance, water absorption, chloride 

penetration, and carbonation of modified-rubberised concrete. 

iv.  To determine the property-improvement of POFA-rubberised concrete 

in terms of acoustic properties. The properties to be evaluated include: 

sound absorption and sound transmission properties of POFA-

rubberised concrete in the corporation and different types, shapes, 

amounts, and sizes of tyre-rubber aggregates. 

1.5 Scope and Limitation of the Research 

In general, this research focused on the impact of tyre-rubber aggregate on 

the engineering properties of concrete. However, this research work was concerned 

with the development of the utilization palm oil fuel ash (POFA) concrete. 

Primarily, POFA replaced cement partially at a range from 15% to 30%. Then, the 

amount of replacement was optimised based on the compressive strength. Tyre-

rubber aggregates were categorised in three groups, namely fine fibre crumb rubber 

(0.8 to 3.3 mm), fine granular crumb rubber (1 to 4 mm), and coarse granular crumb 

rubber (5 to 8 mm). The range of replacement level of natural aggregate with the 

tyre-rubber aggregate was from 5% to 30%.  
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The experimental study focused on the engineering properties of modified 

rubberised concrete, particularly, compressive strength, as well as the acoustic 

properties, durability, and fire safety performance of rubberised POFA concrete. 

1.6 Significance of the Research 

The disposal of rubber tyre waste has become a serious problem because of 

the generation of huge amounts of tyres, which are non-biodegradable by nature. 

The extensive references, including excellent reviews, are available on the use of 

tyre-rubber as coarse or fine aggregates or as a filler material for the preparation of 

various types of concrete (Kumaran et al. 2012; Kumaran et al. 2011; Siddique and 

Naik 2004). Meanwhile, studies are on-going to identify a balance between 

reutilising scrap tyres and the mechanical properties of rubberised concrete, 

especially in terms of compressive strength.  

Furthermore, previous research found that POFA exhibited a satisfactory 

performance when introduced to the concrete as a pozzolanic material. Therefore, 

reusing of by-products from the agro-industry, such as POFA, may help decrease the 

threats of disposal hazard materials and save nature by reducing the CO2 emissions 

associated with reduction in the demand manufacturing of Portland cement.  

The outcome of this research can prepare supportive information for utilising 

POFA as a binder replacement and tyre-rubber particles as aggregates. Furthermore, 

this research work aim to provide a soundproof concrete with the used of the tyre 

aggregates with proper compressive strength, which is accepted as a property of 

structural concrete that may be deemed as strength of this research. 

1.7 Thesis Organisation 

The thesis is organised and presented in several chapters as follows: 
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Chapter One: This chapter presents a general appraisal and overview of the 

study. It includes the introduction, importance of the study, problem statement, aim 

of the study, objectives of the research, as well as the scope and significance of 

research in this field. Furthermore, the layout of the thesis is briefly described in this 

chapter.  

Chapter Two: This chapter provides a comprehensive description of the 

properties of rubberised concrete and explains the recent research works on the use 

of POFA as pozzolanic material. An in-depth review of the effects of the application 

of POFA as pozzolanic material on the properties of concrete is discussed. The 

contribution of rubber aggregate utilisation to the concrete properties, specifically 

both fresh and hardened properties, is described. 

 Chapter Three: The use of the proper materials and the methodology for the 

use of the appropriate standard and modification are necessary when conducting the 

tests described in this chapter. 

Chapter Four: The procedures for the modification of the mixture proportion 

of concrete in terms of POFA utilisation in concrete as pozzolanic material to 

enhance concrete strength and rubber aggregate to serve as a partial replacement for 

natural aggregates. This chapter reveals the results of POFA and its effect on 

concrete properties. It also presents the methods of substitution for rubber 

aggregates and why this method was chosen. 

Chapter Five: This chapter reveals the properties of rubberised POFA 

concrete in the fresh and hardened states in long-term studies. The parameters 

studied in this chapter include workability in terms of the slump of concrete, fresh 

density, and air content. In addition, the relationship between some data is 

developed in order to establish a correlation. For the investigation on hardened 

properties, tests falling in this category include compressive, flexural, and tensile 

strength. It also presents the results obtained and discussion made on the evaluation 

of mechanical properties. The deformability and conductivity of modified 

rubberised concrete is discussed in this chapter. Tests conducted in this category 

include modulus of elasticity and ultrasonic wave transmit of concrete containing 

different amounts and sizes of rubber aggregates.  
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 Chapter Six: The aspects of durability performance considered in this 

chapter are permeability (water absorption and total porosity), chloride content 

(rapid chloride penetration test), carbonation, and fire endurance. 

Chapter Seven: The acoustic properties of rubberised concrete in the high- 

and low-frequency sound wave study are outlined in this chapter. Furthermore, the 

soundproofing properties of rubberised concrete with different types and amounts of 

rubber aggregates are discussed. 

Chapter Eight: This chapter concludes this dissertation by stating the 

findings and achievements of the study and the contribution of the research to the 

existing knowledge. Recommendations are presented for further research in related 

areas as well. 
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