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ABSTRACT

The next generation cellular standard which is called fifth generation (5G)

requires high gain beamforming antenna array to provide high speed and secured

communication. Therefore, the proposed research work investigates the design and

development of a four-element linear microstrip patch array operating at 25 GHz

for 5G beamforming application. To investigate the radiation characteristics of the

proposed array, five beamforming radiation patterns (main beam at 0◦, ±15◦ and

±20◦) have been considered. The mutual coupling between array elements raise

the challenge of designing the antenna array system. The coupling alters the array

element input impedance and distorts the overall radiation performance. Hence, a

simple complementary split ring resonator (CSRR) structure has been developed to

alleviate the coupling problem. The modeled configuration is numerically analyzed,

verified and implemented between the array elements. The existence of the CSRR

configuration in antenna array, controls the unnecessary surface current flow between

the array elements, thus the mutual coupling between array elements has been

significantly reduced from −23 dB to −55 dB. The effect of coupling on the array

radiation patterns has been studied in the presence and absence of CSRRs. Most

importantly, the effectiveness of CSRR has been studied by steering the main beam

as well as the nulls in different angles. By implementing the CSRR elements in

array antenna, the distorted array patterns have been recovered and are presented.

The proposed CSRR implemented in antenna array have the advantage of easy and

low cost fabrication and it offers excellent coupling suppression without changing the

antenna profile. Moreover, to the best of the authors knowledge, it was observed for the

first time that the CSRR worked efficiently in reducing the effect of mutual coupling

when the beam was steered off from broadside direction from −20◦ to +20◦. The

simulation tools such as MATLAB and Ansys HFSS have been used for array weights

calculation and antenna design respectively. Finally, the fabricated prototype has been

experimentally verified, and it shows that the analytical and computed results agree

well with the measured results.
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ABSTRAK

Piawai generasi selular yang seterusnya dikenali sebagai generasi kelima

(5G) memerlukan gandaan antena tatasusunan pembentuk alur yang tinggi bagi

menyediakan sistem komunikasi berkelajuan tinggi dan selamat. Oleh itu, cadangan

kerja penyelidikan ini adalah untuk mereka bentuk dan mengeksplotasi empat

elemen tatasusunan tampalan mikrostrip linear yang beroperasi pada 25 GHz untuk

aplikasi pembentuk alur 5G. Untuk menyelidik ciri-ciri tatasusunan radiasi yang

dicadangkan, lima corak radiasi (alur utama at 0◦, ±15◦ and ±20◦) pembentuk alur

telah dipertimbangkan. Gandingan saling di antara elemen tatasusunan meningkatkan

cabaran untuk mereka bentuk sistem tatasusunan antena. Gandingan tersebut

mengubah galangan masukan elemen tatasusunan dan menganggu prestasi radiasi

keseluruhannya. Oleh itu struktur penyalun gelang terpisah lengkap (CSSR) telah

dibangunkan untuk mengurangkan masalah gandingan. Model konfigurasi secara

berangka telah dianalisis, disahkan dan dilaksanakan di antara elemen tatasusunan.

Kewujudan konfigurasi CSSR di dalam tatasusunan antena mengawal aliran arus

permukaan yang tidak perlu di antara elemen tatasusunan, oleh itu gandingan saling di

antara elemen tatasusunan telah dikurangkan dengan ketara dari −23 dB hingga −55

dB. Kesan dari gandingan pada bentuk radiasi tatasusunan dikaji dengan ketiadaan

dan kehadiran CSSR. Yang paling penting, keberkesanan CSSR telah dikaji dengan

mengarahkan alur utama serta nol di dalam pelbagai sudut. Dengan melaksanakan

elemen CSSR pada tatasusunan antena, bentuk radiasi yang terganggu telah kembali

pulih dan dipersembahkan. Cadangan CSSR yang dilaksanakan di dalam tatasusunan

antena mempunyai kelebihan seperti antena mudah direka, murah dan pengurangan

gandingan yang sangat baik tanpa menukar bentuk antena. Lagipun, mengikut

kefahaman penulis, buat pertama kalinya bahawa CSSR beroperasi dengan baik sekali

dalam mengurangkan gandingan saling ketika alur itu berubah-ubah dari arah sisi

lebar, −20◦ kepada +20◦. Alat simulasi seperti MATLAB dan Ansys HFSS telah

digunakan untuk pengiraan pemberat tatasusunan dan reka bentuk antenna, masing-

masing. Akhir sekali, prototaip yang direka telah diuji secara eksperimen, dan ia

menunjukkan bahawa keputusan analitik dan pengiraan bertepatan dengan keputusan

pengukuran.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Historically, due the expanded wireless-communication services, the

telecommunication innovation has acquired phenomenal growth from the first

generation (1G) to fifth generation (5G). Consequently, the world wide unique mobile

subscriber numbers have exceeded up to 5 billion, and it has been expected to reach

6 billion within 2020 [1]. Furthermore, in recent years wireless gadgets and Internet

of Things (IoT) devices usage has exponentially increased. As a result of these quick

advancement the demand for mobile data services has increased a lot. Besides, the

large number of communication devices usage causes a strong interference between

the devices. In order to cope with the increased data rate demand and to address the

interference problem, a new wireless standard is required. Particularly, to support

the high-speed communication and improve the quality of services the data rate of

forthcoming wireless standard (5G) should be in the range from 100 Mbps (Edge rate)

to 1 Gbps (peak rate), respectively [2, 3].

Basically, wide operating frequency band is needed to obtain such high
data rate. Essentially, to achieve the peak data rate (10 Gbps) of the 5G, the
required frequency bandwidth must be up to several hundred megahertz or few
gigahertz [4]. However, Ultra High Frequency (UHF) band (300 MHz to 3 GHz)
which is currently used for mobile communication is almost saturated due to several
applications. Therefore, wide band allocation for future communication at UHF band
is unattainable. In the meantime, apart from UHF spectrum there are several higher
frequency spectrum bands which has strong potential to meet some of the 5G demands
identified until now [5]. Hence, the International Telecommunication Union Radio
Communication Standards Sector (ITU-R) have allocated the frequencies above 6 GHz
for the upcoming mobile standard (5G) research [6, 7]. Recently, the millimeter-wave
frequencies have gained a substantial attention of the operators, vendors and academic
researchers, due to its unique bandwidth characteristics [6]. But, the Friis equation
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asserts that in the higher frequencies the path loss will be increased due to its small
wavelength [8]. So that the mm-wave signals can travel only short distance and
easily deteriorated by the obstacles due to poor penetration. However, this problem
can be mitigated by employing multiple antennas (antenna array) at transmitter and
receiver ends [9]. In general, antenna array is a process of combining similar antenna
elements together with a proper spacing and feeding. The array antennas possess
numerous advantages such as, high gain, narrow beam width etc. While, these array
antennas contain limited coverage in both azimuth and elevation planes. Technically
the coverage of the antenna array can be enhanced by utilizing beamforming technique
[10].

Basically, beam-forming array is an array, which direct the maximum radiation

in the desired direction and placing nulls in the undesired directions. It has been

achieved by exciting the array elements with variable phase shift or variable time

delay [11, 12]. The beamforming array can be constructed using any type of radiating

elements. However, printed type (microstrip patch) radiators are highly suitable to

construct a compact and lightweight beamforming antenna array system. Another

interesting advantage of it is that it can be easily integrated with beam-forming circuits.

The aforementioned advantages encouraged the antenna designers to pay greater

attention on microstrip patch beamforming antenna arrays. Besides the numerous

advantages, the performance of these arrays systems is severely affected by most

common mutual coupling effects.

Mutual coupling is an electromagnetic phenomenon which exists in antenna
array when all the array elements are excited [10]. Mutual coupling in antenna
arrays is under investigation for several decades. Mutual coupling alters the individual
element patterns as compared to its isolated patterns, causing mismatch, impedance
variation and correlation of the signals. This alteration depends upon the position of
the element in the array. The result of this is a degraded array performance which
results in the overall system performance degradation. Various mathematical methods
have been discussed in the literature to compensate the effect of mutual coupling
[13, 14]. However, these mitigation methods are well suitable only for small arrays.
Because, higher number of elements in an array increase the calculation complexity
of these methods. Apart from the mathematical compensation methods recently, the
metamaterials gained much attention in the field of electromagnetic due to its peculiar
characteristics.
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In general, the materials which has negative characteristics (negative electrical

permittivity or negative magnetic permeability or permittivity and permeability both

negative) are referred as meta-materials [15, 16]. Periodic arrangements of these

negative materials do not allow the surface current flow from one antenna to another,

thus the mutual coupling between antenna elements are highly reduced. Various

metamaterials configurations such as, High Impedance Surfaces (HIS) [17, 18],

Meander Line Structures [19–21], Electromagnetic Band Gap Substrate (EBG) [22–

24], Split Ring Resonator (SRR) [25, 26] and Complementary Split Ring Resonator

(CSRR) [27–29] have been reported in past studies for reducing the mutual coupling

between antenna array elements.

Specifically, among the all, the SRR and CSRR configurations offers higher

mutual coupling reduction than others. Furthermore, these structures are compact

in size, simple in design and easy to integrate with the antenna arrays. The detail

study about the split ring and complementary split ring resonators will be discussed

in the next section. In accordance with all the above discussion, the development of a

beam-forming antenna array with high gain and less mutual coupling is most essential

for future wireless (5G) system. Therefore, in this research work it is addressed in

handsome detail.

1.2 Problem Statement

The intense demand for boundless data rates has led the telecommunication
field to implement a new wireless standard. In the meantime, the increase of usage
and the demand for simultaneous communication between devices causes higher
interference. Different multiple antenna approaches like massive MIMO and beam-
forming have been proposed to satisfy this ever-growing need. The MIMO system
offers high quality of service and support large number of subscribers in single cell.
However, MIMO systems are not sufficient to fulfill the high data rate need. The
beam-forming system, which can be achieved by a one-dimensional linear or two-
dimensional planar array, can further increase the channel capacity by increasing
the Signal to Interference plus Noise Ratio (SINR). Microstrip patch antennas are
being considered as a good candidate for beamforming applications. However, the
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performance of the microstrip patch beamforming array is severally affected due to the
mutual coupling.

In order to mitigate the mutual coupling and improve the performance of

the beam-forming array, different mathematical solutions like open circuit voltage

method, calibration method, receive mutual impedance approach etc. have been used.

However, for these mathematical solutions several complex measurement results are

required to mitigate the mutual coupling. Therefore, metamaterials based decoupling

structures like defected structures, electromagnetic band gap structures (EBG), split

ring resonators (SRR) and complementary split ring resonators (CSRR) are preferred.

The defected structures which could be located in ground place is large in size,

therefore it will increase the back-radiation. Next, the EBG configurations are complex

in design because multi-layer substrate and vertical via’s are required to construct

these structures. Implementing these EBGs increase the design complexity of the

beamforming array.

Compare to all, the SRR and CSRR configurations are compact and simple

designs therefore several research works proposed different CSRR configurations for

mutual coupling reduction. However, those CSRR elements were implemented in

arrays with broadside radiation pattern only and almost no study was carried out on on

the effectiveness of CSRRs in a smart beamforming array when the main beam as well

as position of nulls was changed to different angles. Hence, in this research work the

CSRR configuration is chosen to decrease the mutual coupling between beamforming

antenna array and the radiation performance of the beamforming antenna array has

been verified along with CSRR elements when the main beam and nulls are steered to

different angles. By doing so it will be justified that CSRRs not only suppress mutual

coupling when the main beam is pointing in the broadside direction (as discussed

in most studies) but are also effective when the main beam is scanned off from the

broadside direction to other angles −20◦to 20◦.

In order to address these issues, this research work focuses on two

major aspects; beamforming microstrip patch array and reducing mutual coupling

in beamforming array using complementary split ring resonators. Design of
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beamforming microstrip patch antenna array and performance enhancement of beam-

forming array using CSRRs are discussed in Chapter 4. Moreover, in the same chapter,

the simulation and experimental results are explained in detail. Finally, the overall

work is concluded in Chapter 5.

1.3 Research Objectives

1. To model and design, a four element linear microstrip patch antenna array

operating at 25 GHz and estimate the array elements weights to perform the

beamforming.

2. To model and design, a complementary split ring resonator operating at 25 GHz

and study their band rejection characteristics.

3. To implement the configured complementary split ring resonator in between

the array elements to reduces the mutual coupling and to recover the distorted

individual element patterns and array element pattern.

1.4 Scope of the Research

The primary aims of this research are to design a beamforming antenna array
for next generation wireless standard application. Various frequency bands from
24.25 to 86 GHz has been suggested for 5G research study [30]. The frequency
band 24.25 - 27.5 GHz have been chosen for this study with a resonant frequency
of 25 GHz. This range of frequency is the lowest possible band from the ITU-
R suggested 5G frequencies, which can provide feasibility of optimized fabrication
with available beamforming RF components. Next, due to several advantages widely
used rectangular microstrip patch antenna has been used as radiating element in this
research. Furthermore, the coaxial probe fed method have been used to feed antenna
elements because it is easy to fabricate and offer better impedance matching.

Antenna arrays come in different configurations like linear, circular, planar and

conformal. In this research work, a simple, wideband (1GHz), high gain (12dB) and

low cost linear array antenna has been proposed for 5G applications. Basically, the

5



bandwidth of the proposed antenna array is defined based on where the frequency range

S11 is less than -10 dB. Followed by, the complex array element weights (Magnitude

and Phase) has been calculated by using the array factor equation to steer the main

beam from the broadside direction to other angles −20◦to 20◦. The proposed linear

array antenna consist of four identical patch antenna elements, the four elements are

chosen because of certain short comings in purchasing expensive RF components like

attenuators, phase shifters, power dividers and amplifiers which are used to practically

provide the required magnitude and phase to the array elements for beamforming.

Generally, the mutual coupling severely degrades the performance of a smart

beamforming array. Basically, the maximum acceptable level of mutual coupling (S12)

between the array elements are considered as -15 dB. Different mathematical methods

(open circuit voltage method, decoupling method, calibration method) and use of

metamaterials based decoupling structures have been used to compensate the effect

of mutual coupling. In this work, complementary split ring resonator (CSRR) has been

chosen to reduce the mutual coupling between antenna array elements because it is

simple and compact in design and it is easy to fabricate. As a first step of mutual

coupling reduction, a simple and compact complementary split ring resonator which

has sharp band rejection at 25 GHz has been designed and analyzed. Followed by, the

surface current flow from one antenna element another is reduced by implementing the

modeled CSRR configurations in between the array elements.

After accomplishing the optimum designs, to practically investigate and

validate the concept, a four-element antenna array with and without CSRRs has been

fabricated and experimentally verified. The fabrication accuracy entirely depends on

how much accurate the design is printed on the transparent sheet. Therefore, in this

work a high quality Epson L200 ink-jet printer has been used for printer purpose. A

perfect printed output has been obtained when the dimensions of the configuration is

maintained ≥ 0.15 mm. Finally, the proposed antenna array has been experimentally

verified in terms of S-parameter and radiation pattern. The real time beamforming

setup includes several RF components which increase the losses. In order to get better

performance the losses of each RF component is properly analyzed and modeled.
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The software used in this research work are: Matlab and Ansys HFSS.

Matlab has been used to carry out the dimension calculations of beamforming antenna

array and CSRR. Next, the Matlab has been used to calculate and verify the CSRR

constitutive parameters such us permittivity and permeability. Finally, Matlab has also

been used for the calculation of complex array element weights required for beam-

forming. Ansys HFSS has been used for the simulation and optimization of all the

beam-forming array and CSRR.

1.5 Research Contributions

The main contributions of this research work can be summarized as:

1. Innovative design of a beam-forming antenna array with four elements for 5G

application (25 GHz). This includes the fabrication and measurements of the

beamforming antenna array.

2. Innovative and compact design of complementary split ring resonator based

filtering structure. The band rejection characteristics and effective permittivity

and permeability responses are verified by numerical methods.

3. Finally, the CSRR configurations are implemented in between the array

elements to suppress the mutual coupling, by reducing the mutual coupling

the active impedance of the each array elements are exactly maintained as

50 + i0 Ω. Moreover, the distorted individual element patterns are recovered

by reducing the mutual coupling between the array elements. Therefore,

the overall array pattern which is the linear combination of element patterns

are recovered successfully. The overall results are verified by extensive

measurement procedures.

A lot of work has been done on traditional antennas for beamforming applications

and mutual coupling compensation. In this research work an extensive study has been

carried out on beamforming antenna array and the compensation of mutual coupling

effect in this antenna array.
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