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ABSTRACT 

Photovoltaic (PV) emulator is a power supply that produces similar current-

voltage (I-V) characteristics as the PV module. This device simplifies the testing 

phase of PV systems under various conditions. The essential part of the PV emulator 

(PVE) is the control strategy. Its main function is to determine the operating point 

based on the load of the PVE. The direct referencing method (DRM) is the widely 

used control strategy due to its simplicity. However, the main drawback of DRM is 

that the output voltage and current oscillate due to the inconsistent operating point 

under fixed load. This thesis proposes an improved and robust control strategy named 

resistance feedback method (RFM) that yields consistent operating point under fixed 

load, irradiance and temperature. The RFM uses the measured voltage and current to 

determine the load of the PVE in order to identify the accurate operating point 

instantaneously. The conventional PV models include the I-V and voltage-current PV 

model. These PV models are widely used in various control strategies of PVE. 

Nonetheless, the RFM requires a modified PV model, the current-resistance (I-R) PV 

model, where the mathematical equation is not available. The implementation of the 

I-R PV model using the look-up table (LUT) is feasible, but it requires a lot of memory 

to store the data. A mathematical equation based I-R PV model computed using the 

binary search method is proposed to overcome the drawback of the LUT. The RFM 

consists of the I-R PV model and the closed-loop buck converter. In this work, the 

RFM is investigated with two different controllers, namely the proportional-integral 

(PI) and fuzzy logic controllers. The RFM using the PI controller (RFMPI) and the 

RFM using the fuzzy logic controller (RFMF) are tested with resistive load and 

maximum power point tracking (MPPT) boost converter. The perturb and observe 

algorithm is selected for the MPPT boost converter. In order to properly design the 

boost converter for the MPPT application, the sizing of the passive components is 

proposed, derived and confirmed through simulation. This derivation allows 

adjustment on the output voltage and current ripple of the PVE when connected to the 

MPPT boost converter. The simulation results of the proposed control strategies are 

benchmarked with the conventional DRM. To validate the simulation results, all 

controllers are implemented using dSPACE ds1104 rapid prototyping hardware 

platform. The RFM computes an operating point of the PVE at 20% faster than the 

DRM. The generated output PVE voltage and current using RFMPI and the RFMF 

are up to 90% more accurate compared to the DRM. The efficiency of the PVE is 

beyond 90% when tested under locus of maximum power point. In transient analysis, 

the settling time of RFMF is faster than the RFMPI. In short, the proposed RFMF is 

robust, accurate, quick respond and compatible with the MPPT boost converter. 
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ABSTRAK 

Pelagak fotovolta (PV) ialah sebuah bekalan kuasa yang menghasilkan 

ciri-ciri arus-voltan (I-V) yang serupa dengan modul PV. Peranti ini dapat 

memudahkan fasa pengujian sistem PV pada pelbagai keadaan. Bahagian penting 

dalam pelagak PV (PVE) ialah strategi kawalan. Fungsi utamanya adalah untuk 

menentukan titik pengoperasian berdasarkan beban pada PVE. Kaedah rujukan 

langsung (DRM) merupakan strategi kawalan yang digunakan secara meluas kerana 

ianya mudah. Namun, kelemahan utama DRM ialah voltan dan arus keluarannya 

berayun disebabkan oleh titik pengoperasian yang tidak konsisten pada  beban tetap. 

Tesis ini mencadangkan strategi kawalan yang diperbaik dan teguh yang dinamakan 

kaedah suap balik perintang (RFM) yang menghasilkan titik pengoperasian yang 

konsisten pada beban, kesinaran dan suhu yang tetap. RFM menggunakan voltan dan 

arus yang diukur untuk menentukan beban pada PVE bagi menentukan titik 

pengoperasian yang tepat secara serta-merta. Model-model PV lazim yang digunakan 

ialah model PV I-V dan voltan-arus. Model-model PV ini digunakan secara meluas 

dalam pelbagai strategi kawalan untuk PVE. Walau bagaimanapun, RFM 

memerlukan model PV yang diubahsuai, iaitu model PV arus-perintang (I-R), yang 

persamaan matematiknya belum diterbitkan. Pelaksanaan model PV I-R 

menggunakan jadual carian (LUT) boleh dilaksanakan, tetapi ianya memerlukan 

banyak ingatan untuk menyimpan data. Satu persamaan matematik berdasarkan 

model PV I-R yang diselesaikan menggunakan kaedah carian gelintar perduaan, 

dicadangkan untuk mengatasi kelemahan LUT. RFM terdiri daripada model PV I-R 

dan penukar menurun gelung tertutup. Dalam tesis ini, RFM diuji dengan dua 

pengawal yang berbeza, iaitu pengawal kamiran-perkadaran (PI) dan pegawal logik 

kabur. RFM menggunakan pengawal PI (RFMPI) dan RFM menggunakan pengawal 

logik kabur (RFMF) diuji menggunakan beban perintang dan penukar menaik 

penjejakan titik kuasa maksimum (MPPT). Algoritma usik dan perhati dipilih untuk 

penukar menaik MPPT. Bagi mereka bentuk penukar menaik secara betul, pensaizan 

komponen pasif dicadangkan, diterbitkan dan disahkan melalui simulasi. Terbitan ini 

membolehkan pelarasan riak voltan dan riak arus keluaran PVE apabila disambung 

pada penukar menaik MPPT. Keputusan simulasi bagi strategi-strategi kawalan yang 

dicadangkan itu dibandingkan dengan DRM lazim. Bagi mengesahkan keputusan 

simulasi, kesemua pengawal dilaksanakan menggunakan platform perkakasan 

prototaip pantas dSPACE ds1104. RFM dapat mengira satu titik pengoperasian bagi 

PVE pada 20% lebih pantas berbanding dengan DRM. Voltan dan arus keluaran yang 

dihasilkan oleh PVE mengunakan RFMPI dan RFMF adalah mencecah 90% lebih 

tepat berbanding dengan DRM. Kecekapan PVE melebihi 90% apabila diuji pada 

lokus titik kuasa maksimum. Untuk analisis fana, masa enapan bagi RFMF adalah 

lebih pantas berbanding dengan RFMPI. Pendek kata, RFMF yang dicadangkan ialah 

teguh, tepat, cepat bertindak balas dan serasi dengan penukar menaik MPPT. 
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INTRODUCTION 

1.1 Background of the Study 

A recent study shows the potential of the solar based energy generation using 

the photovoltaic (PV) panel to fulfil the world’s energy demand. Solar energy is one 

of the renewable energies that requires little maintenance, which has low operation 

cost and pollution free. Up to 2015, there was a 50 GWp increase annually in the global 

PV energy production, which totalled up to 227 GWp of the estimated global capacity 

of the PV energy [1]. This shows a 22% increase in the global energy production from 

the PV generation based system. Malaysia has the potential for solar-based energy 

generation due to its high and steady irradiance throughout the year [2]. There was a 

27.1% increase in the PV energy production in Malaysia from 2016 to 2017 [3]. The 

rise in PV’s popularity is due to an increase in awareness of the PV’s potential, 

government programs to promote the use of the renewable energy and the increase in 

the market competition of the PV. 

 

 

One of the components in the PV energy generation system is the maximum 

power point tracking (MPPT). Since the PV module is a nonlinear source, the MPPT 

ensures the maximum power is extracted from the PV module at any prevailing 

environmental condition. In the development stage of the MPPT, the PV module is 

emitted with irradiance from the controllable halogen lamp or the light emitting diode 

(LED) to test the effectiveness of the MPPT [4]. However, the setup for this test bed 

is complex and temperature manipulation is not flexible. This method also requires a 

large area for the actual PV module, the light source and a controllable direct current 

(DC) or alternating current (AC) source to control the light source. Besides, this 

method is inefficient since a high power is required by the light source to produce the 

irradiance for the PV module. These drawbacks can be overcome using an alternative 

test bed for MPPT testing, which is known as the PV emulator (PVE). 
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The PVE is a nonlinear power supply which is capable of producing the current-

voltage (I-V) characteristic curve of a PV module. The PVE functions as a power 

source in the experimental stage of the solar energy generating system to allow 

repeatable testing conditions without sunlight. The PVE offers a convenient control of 

ambient conditions rather than complex irradiance and temperature control to allow 

fast and efficient solar energy generation system testing. The PVE available in the 

market varies from a single panel emulation (approximately 300 W) to a PV array 

emulation (larger than 300 W). However, this type of PVE is expensive, ranging from 

(US)$ 6,385 (Elgar ETS60X14C-PVF) to (US)$ 21,000 (Magna Power 

TSD50050240) [5, 6]. Therefore, much research related to the PVE has been 

conducted to reduce the overall cost and improve the transient response of the PVE.  

 

 

In general, there are three components in a PVE system, namely the PV model, 

the power converter and the control strategy, as shown in Figure 1.1. The PV model is 

highly responsible for the accuracy, the computational requirement and the 

adaptability of the PVE, as shown in Figure 1.2. The PVE require real-time calculation 

of the PV model to operate properly. The delays in the computation of the PV model 

results in incorrect output for the PVE.  Therefore, the PV model used in the PVE 

application needs to be simple enough without compromising the accuracy of the I-V 

characteristic produced [7]. This accuracy and simplicity depend on the type and 

implementation method of the PV model. The types of PV models include the 

Interpolation Model and the Electrical Circuit Model. While the implementation 

methods of the PV model includes the PV model simplification [8-12], Look-Up Table 

(LUT) [13-18], Piecewise Linear Method [19-22], and Neural Network [9, 23]. The 

PV model implementation method affects the adaptability of the PVE since some of 

the methods require offline adjustment of the PV model parameters. 
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PV Model Power ConverterControl Strategy

Type of PV 
Model

Implementation 
of PV Model

PV Emulator

Type of Power 
Converter

Controller for 
Power 

Converter  

Figure 1.1: The three components of the PVE system. 
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Figure 1.2: The influence of the three components in the PVE system toward the 

performance of the PVE. 

 

 

The power converter is also a part of the PVE system. It affects the robustness, 

transient response, the efficiency and the computational requirement of the PVE. The 

actual PV panel response approximately tenth of microseconds [24]. Therefore, the 

PVE is aimed to have a fast response time similar to an actual PV panel. The 

performance depends on the type and controller of the power converter. The switched-

mode power supply (SMPS) is commonly used in the PVE and is highly efficient [18, 

25-28]. The linear regulator is useful if the output ripple for the PVE needs to be 

removed [29-32]. The design of the PVE using the programmable power supply is 

simple since the closed-loop system for the power converter is already included in the 
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system [33-35]. While the commonly used controller for the power converter is the 

proportional-integral (PI) or proportional-integral-derivative (PID) controllers [24, 28, 

36, 37]. There is also the fuzzy PI or PID controllers [38, 39] and the sliding mode 

controller [40, 41]. 

 

 

The control strategy of the PVE is the method used to obtain the operating point 

based on the given load, irradiance and temperature. It combines the PV model and 

power converter to become PVE. The control strategy affects the various performance 

of the PVE. A good control strategy features accurate output voltage and output current 

similar to the PV model, easily implemented, robustness, fast transient response, high 

adaptability in emulating various PV model and low processing burden. There are 

several control strategies used in PVE implementation. The direct referencing method 

(DRM) is commonly used in the PVE due to its simplicity [9, 11, 39, 42-44]. The 

hybrid-mode control method [29, 33, 45] and the resistance comparison method [26, 

28, 46] produce a stable output for the PVE at any load condition. The hill climbing 

(HC) method for the PVE is easily designed since a compensator is not required [47, 

48]. The analogue based method does not have a computational delay and the partial 

shading condition is easily emulated [44, 49-52]. 

1.2 Problem Statement 

The commonly used control strategy in PVE is the DRM due to its simplicity in 

implementation. The PVE is formed by connecting the PV model directly to the input 

reference of the closed-loop controller in the power converter. The operating point of 

the PVE using the DRM is determined by the PI controller and the buck converter. 

This is not a robust control strategy because any changes in the PI controller gains and 

the buck converter output may result in oscillation or instability in the PVE output 

voltage and current. Besides, the design of the PI controller is affected by the DRM 

and the process of tuning the PI controller gains becomes complicated. To avoid these 

problems, the hybrid-mode control method and the resistance comparison method is 

introduced. The hybrid-mode control method combines two types of DRMs, namely 
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the voltage-mode and current-mode control. The voltage-mode control DRM produces 

a non-oscillate and stable PVE output in I-V characteristic curve over the constant 

voltage region (CVR); yet the PVE output oscillates or becomes unstable when it 

moves over the constant current region (CCR), shown in Figure 1.3. Contrary, the 

current-mode control DRM produces a non-oscillate and stable PVE output in the 

CCR, but oscillates or becomes unstable in the CVR. Therefore, hybridise the 

operation of the PVE in the voltage-mode control DRM over the CVR and the 

current-mode control DRM over the CCR, non-oscillate and stable output of PVE can 

be achieved. Besides, the dependency of the hybrid-mode control method on the power 

converter and its controller is minimized, which ease the tuning of the PI controller. 

Nevertheless, the implementation becomes complicated since two different PV models 

and PI controllers are needed. An additional algorithm to switch between two DRMs 

is also needed in the control strategy. On the other hand, the resistance comparison 

method is robust since it computes the PVE operating point using the iterative method 

instead of relies on the power converter and its controller. This control strategy 

computes various data points in the I-V characteristic curve of the PV model and 

compares it with the output resistance before reaching the true operating point. 

Therefore, a high computational power is needed to avoid delays in producing the PVE 

operating points. Delay in computational results in inaccurate output voltage and 

current of the PVE. Acknowledged the benefits and drawbacks of the control 

strategies, an improved control strategy features a robust characteristic, simple 

implementation and low computational power has been proposed. 
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I
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Voc

Constant Current Region, CCR

Constant Voltage Region, CVR

 

Figure 1.3: The area of the constant current and voltage regions in the PV I-V 

characteristic curve. 

 

 

The PI controller for the closed-loop buck converter is designed specifically for 

a load condition. Even though this PI controller is able to operate under other load 

conditions, the performance of the buck converter decreases significantly. As the load 

increases, the settling time for the output voltage and current of the closed-loop buck 

converter increases. Conversely, the PI controller used in the PVE with the DRM 

produces a low settling time for the PVE output voltage and current when the output 

resistance is high. The fast performance of the DRM at high output resistance is due 

to the high input reference during the transient response that causing the duty cycle to 

change quickly. Still, the PVE with the DRM performs slowly when output resistance 

is low. Consequently, the characteristics of the conventional PI controller for the 

closed-loop buck converter during low output resistance and the DRM during high 

output resistance are desired. Hence, this combination produces fast output voltage 

and current response for the buck converter at various load condition. These 

characteristics can be applied to the fuzzy controller in order to improve the 

performance of the PVE. 
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1.3 Research Objectives 

The objectives of the research are: 

 

1. To design a control strategy for the PVE features robust characteristic, simple 

implementation and low computational power. 

 

2. To improve the transient performance of the PVE at various load conditions 

using the fuzzy controller. 

 

 

3. To validate the proposed PVE system experimentally and benchmarked with the 

DRM. 

1.4 Research Methodology 

Firstly, the literature review on the PVE is conducted. In the review, the control 

strategy, PV model and power converter used in the PVE is analysed. The advantages 

and disadvantages of the various components in the PVE are investigated based on the 

simulations and experiments conducted on the PVE. The problems faced by the 

conventional PVE is studied and the new controller for the PVE is suggested to 

overcome these problems. 

 

 

The new controller for the PVE is simulated using MATLAB/Simulink. A PV 

module is chosen during the emulation process. The performances of the PVE are 

analysed using the resistive load and the maximum power point tracking (MPPT) boost 

converter. The results from the new controller is compared with the conventional 

controller. 
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Lastly, the simulation results are experimentally validated, which the controllers 

for the PVEs are implemented in dSPACE ds1104 rapid prototyping. The experimental 

results is observed using an oscilloscope and dSPACE ControlDesk software package. 

1.5 Research Contribution 

The thesis presents the proposed work on PVE research with contributions as follow: 

 

1. To proposes a control strategy called the resistance feedback method (RFM), 

which requires only a single iteration of the PV model to produce an operating 

point. It is highly accurate, easily implemented, robust against various changes 

in the parameters of the power converter and its controller, adapts to various PV 

module, and produces fast output voltage and current response. 

 

2. To proposes a modified current-resistance (I-R) PV model which the input to 

the PV model is the resistance. It is computed using the binary search method. 

This model allows the change of irradiance and temperature during operation, 

which is highly accurate and easily implemented. This PV model is suitable for 

the RFM. 

 

3. To proposes a fuzzy controller for the buck converter called the fuzzy error 

compensator, which is capable of maintaining fast response at various load 

conditions. The fuzzy error compensator is integrated into the RFM to further 

improve the performance of the PVE. 

 

4. To develops a procedure to design the boost converter specifically for the MPPT 

application. This allows simple calculations of the passive components in the 

MPPT boost converter. 
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The first three contributions improve all three components of the PVE system as 

shown in Figure 1.4. While the last contribution improves the results obtained when 

the PVE is connected to the MPPT converter. 
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Method

I-R PV 
Model

Other 
Conventional 

Method

Contribution

 

Figure 1.4: The contribution categories based on the components of the PVE 

system. 

1.6 Scope of the Study 

The simulation of the PVE is done using the MATLAB/Simulink software 

package. The improvement of the PVE focused on the control strategy, PV model and 

the controller for the power converter. There is no modification on the type of power 

converter used in the PVE. The PVE is able to emulate the PV module with the open 

circuit voltage of 44.4 V, the short circuit current of 2.32 A and the maximum power 

of 75.7 Wp. The single diode model is used as the PV model. The PVE requires 

real-time calculation of the PV model. Therefore, the PV model used for PVE 

application needs to compromise between the complexity and the accuracy.  

 

 

The buck converter is chosen as the power converter for the PVE since it is 

efficient, able to operate at various condition and easily controlled. The load for the 

PVE is a resistive load and the MPPT boost converter with the perturb and observe 

(P&O) method. The performance of the proposed controller is benchmarked with the 
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conventional DRM. The controller for the PVE is implemented using the dSPACE 

ds1104 rapid prototyping board and it is monitored using the dSPACE ControlDesk 

software package.  

 

 

In this thesis, the partial shading is not considered in the PVE since the real-time 

calculation of the PV model burdens the digital hardware platform. The load of the 

PVE ranges from 5 Ω to 90 Ω. The short and open circuit tests are not conducted due 

to the limitation of the buck converter. The PVE and MPPT boost converter is designed 

to operate with the irradiance between 200 W/m2 to 1000 W/m2 and temperature 

between 0°C to 75°C. During this condition, the PVE and MPPT boost converter 

operates in the continuous current-mode. The operation outside the irradiance and 

temperature ranges may result in a large voltage ripple, inaccurate emulation and 

damages to the components. The standard test condition (STC), which is 1000 W/m2 

and 25°C, is used to analyse the performance of the PVEs. Nonetheless, the designed 

PVE and MPPT boost converter capable of operating within the real-world irradiance 

and temperature condition.  

1.7 Thesis Organization 

The thesis is organised as follows: 

 

 

Chapter 2 reviews the various types and implementation of the PV model, the 

types of power converter and its controller, and several types of the control strategy. 

The benefits and drawbacks of each component are also discussed. 

 

 

Chapter 3 discusses the methodology of the conventional single diode PV model 

used in the PVE. The design of the buck converter and the derivation of the transfer 

function are reported in this chapter. There are two controllers for the buck converter, 

namely the conventional PI controller and the proposed fuzzy error compensator. The 
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procedure for developing the conventional DRM, the proposed RFM with PI controller 

(RFMPI) and the proposed RFM with the fuzzy controller (RFMF) are elaborated in 

this chapter. The proposed design procedure of the MPPT boost converter is also 

derived. 

 

 

Chapter 4 discusses the simulation results of the conventional DRM, the 

proposed RFMPI and the proposed RFMF. This chapter covers the convergence of one 

data point in the I-V characteristic curve using the conventional and the proposed PV 

model. In addition, the robustness, accuracy and transient response of the control 

strategy are detailed. The performance of the PVE when it is connected to the MPPT 

converter is also analysed. The derived equations of the MPPT boost converter are 

validated using simulations. 

 

 

Chapter 5 discusses the experimental results of the conventional DRM, the 

proposed RFMPI and the proposed RFMF. The procedure for developing the 

experimental set-up is discussed in this chapter. The experimental results are compared 

with the simulation results in order to validate the proposed method. 

 

 

Chapter 6 draws the conclusion of the thesis and provides possible directions for 

further research. 
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