# STRUCTURAL, MAGNETIC AND DIELECTRIC PROPERTIES OF NICKEL-MAGNESIUM SUBSTITUTED COBALT FERRITES NANOPARTICLES AND CORE-SHELL NANOCOMPOSITES

RIZUAN BIN MOHD ROSNAN

UNIVERSITI TEKNOLOGI MALAYSIA

# STRUCTURAL, MAGNETIC AND DIELECTRIC PROPERTIES OF NICKEL-MAGNESIUM SUBSTITUTED COBALT FERRITES NANOPARTICLES AND CORE-SHELL NANOCOMPOSITES

### RIZUAN BIN MOHD ROSNAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > JANUARY 2017

Special dedications to my beloved wife, parents and my supportive supervisors... Thanks for the love and memories

#### ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent, the Most Merciful. Thankful to Allah for His blessing and gracing that leads my thesis successfully completed.

The author would like to express deepest gratitude to Prof. Dr. Zulkafli Bin Othaman for his guidance, supports, grants and helps in many respects throughout past years. The author deeply impressed by his everlasting passion and conscientious attitude to the research, which are invaluable to author and should treasure forever. Sincere appreciation should be extended to Prof. Dr. Rosli Bin Hussin for his precious guidance in the field of electron spin resonance. His profound knowledge and expertise deeply impressed the author and has been benefitting so much.

In addition, the author wishes to thank the following people; first and foremost his lovely wife, Farrah A. Rahim for her enthusiastic support. His parents, Mohd Rosnan Busri, Siti Aisah Lani, Sharifah Thalhon Sy Abu Bakar, Allahyarham A. Rahim Daud and all family members for their love and who shared with author their experiences of life and kept things in perspective.

Sincere appreciation should be dedicated to all fellow colleagues in the research group, Dr. Ali A. Ati, Dr. Shadab Dabagh, Dr. Samad Zare, Dr. Ali Reza Samavati who have been providing friendly helps and supports throughout years. Special thanks to some lecturers and colleagues especially Dr. Mohammad Firdaus Omar, Mohd Asmu'i Mohd Akil, Leaw Wai Loon, Dr. Che Rozid, Zahidfullah, Dr. Ros, Dr. Mohammad Hafizuddin (UKM) and laboratory officers in the Department of Physics and Ibnu Sina Institute for Scientific and Industrial Research for their helps and encouragements rendered to author from time to time.

### ABSTRACT

Cobalt ferrite has gained great scientist interest because of its important applications in various fields of science and technology. However, the magnetic character of the particles used for many applications depends crucially on the size, shape and purity of these nanoparticles. Hence the need for developing fabrication processes that are relatively simple and yield controlled particle sizes is desired. This work involves the study of structural, magnetic, dielectric properties and morphology of  $Co_{0.5}Ni_{0.5-x}Mg_{x}Fe_{2}O_{4}$  ferrite nanoparticles (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5), which are synthesized by chemical co-precipitation method. In addition, the core-shell nanocomposites of Co<sub>0.5</sub>Ni<sub>0.5-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/Polyaniline were successfully synthesized via chemical polymerization method. The ferrite samples were then sintered at selected temperatures of 700 °C, 800 °C, 900 °C and 1000°C for 8 hours. X-ray powder diffraction indicated that the core material is having a single phase of spinel cubic structure. The crystallite size of Co<sub>0.5</sub>Ni<sub>0.5-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles was found in the range of 25-40 nm. The infrared spectra of the synthesized samples displayed two absorption bands characteristic of the spinel ferrites at 585–595 cm<sup>-1</sup> and 390–400 cm<sup>-1</sup>, which correspond to vibrations of tetrahedral and octahedral bonds, respectively. The Field Emission Scanning Electron Microscope and Transmission Electron Microscope images of ferrite nanoparticles show different aggregations at different sintering temperatures and concentrations. The combination of both Ni-, Mg- substituted cobalt ferrites showed that the substitution of Mg<sup>2+</sup> ions for Fe made more pronounced effects on magnetic and dielectric properties at room temperature. The values of saturation magnetization  $(M_s)$  and coercivity  $(H_c)$  are enhanced by increasing of Mg concentration up to x = 0.1. By increasing Mg<sup>2+</sup> substitution, the  $M_s$  and  $H_c$  increase from 57.35 emu/g (x = 0.0) to 61.49 emu/g (x = 0.1) and 603.26 Oe (x = 0.0) to 684.11 Oe (x = 0.1), respectively. In contrast, the  $M_s$  decreases from a maximum value 12.00 emu/g (x = 0.1) to a minimum value 5.39 emu/g (x = 0.4) when ferrites are encapsulated with Polyaniline. However, the  $H_c$  increases from a maximum value 766.94 Oe (x = 0.1) to a minimum value 646.17 Oe (x = 0.0). At 1 kHz, dielectric constant  $\varepsilon'$  shows a maximum value at 86.22 for x = 0.1 and minimum value at 56.67 for x = 0.3. In addition, the dielectric loss  $\varepsilon''$  shows a maximum value of 10.98 for x = 0.2 and minimum value of 9.45 for x = 0.0. For nanocomposites,  $\varepsilon'$  reaches a maximum value of 68.32 (x = 0.1) and minimum value of 46.73 (x = 0.3) at 1 kHz. In addition,  $\varepsilon''$  shows a maximum value of 49.42 (x = 0.2) and a minimum value of 36.33 (x = 0.3).

#### ABSTRAK

Ferit kobalt telah menarik minat yang tinggi para saintis disebabkan kepentingan aplikasinya dalam pelbagai bidang sains dan teknologi. Namun begitu, sifat magnet partikel tersebut sangat bergantung terhadap saiz, bentuk dan kandungan ketulenan bahan partikel nano tersebut. Justeru, keperluan di dalam menghasilkan proses fabrikasi yang lebih baik dan mudah serta kebolehupayaan mengawal saiz partikel nano yang terhasil sangat diperlukan. Penyelidikan ini melibatkan kajian terhadap struktur, magnet, sifat dielektrik dan morfologi bagi  $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$  partikel nano ferit (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5), di mana ia telah disintesis melalui kaedah pemendakan kimia. Tambahan lagi, komposit nano rangka-teras Co<sub>0.5</sub>Ni<sub>0.5-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/Polianalina telah berjaya disintesis melalui kaedah pempolimeran kimia. Sampel ferit yang terhasil telah disinter pada suhu 700 °C, 800 °C, 900 °C dan 1000°C selama 8 jam. Pembelauan sinar-X serbuk ferit menunjukkan bahawa bahan ferit tersebut adalah spinel berfasa tunggal dan berbentuk kubik. Saiz kristal bagi partikel nano Co<sub>0.5</sub>Ni<sub>0.5-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> telah diperolehi dalam julat 25-40 nm. Spektrum infra merah bagi sampel disentesis menunjukkan dua jalur serapan pencirian ferit spinel pada 585-595 cm<sup>-1</sup> dan 390-400 cm<sup>-1</sup>, masing-masing merujuk kepada getaran ikatan tetrahedral dan oktahedral. Imej mikroskop elektron pengimbas pancaran medan dan mikroskop elektron transmisi bagi partikel nano menunjukkan perbezaan agregat pada suhu pensinteran dan konsentrasi yang berbeza. Gabungan antara Ni-, Mg- sebagai pengganti dalam ferit kobalt menunjukkan bahawa penggantian ion Mg<sup>2+</sup> bagi Fe memberi kesan dan perubahan yang ketara terhadap sifat magnet dan dielektrik pada suhu bilik. Nilai pemagnetan tepuan  $(M_s)$  dan daya koersif  $(H_c)$ meningkat dengan penambahan konsentrasi Mg sehingga x = 0.1. Dengan peningkatan penggantian  $Mg^{2+}$ ,  $M_s$  dan  $H_c$  masing-masing menunjukkan peningkatan daripada 57.35 emu/g (x = 0.0) kepada 61.49 emu/g (x = 0.1) dan daripada 603.26 Oe (x = 0.0) kepada 684.11 Oe (x = 0.1). Sebaliknya,  $M_s$  menyusut daripada nilai maksimum 12.00 emu/g (x= 0.1) kepada nilai minimum 5.39 emu/g (x = 0.4) apabila Polianalina ditambah ke atas ferit. Namun,  $H_c$  didapati meningkat daripada nilai maksimum 766.94 Oe (x = 0.1) kepada nilai minimum 646.17 Oe (x = 0.0). Pada 1 kHz, pemalar dielektrik  $\varepsilon'$ menunjukkan nilai maksimum 86.22 bagi x = 0.1 dan nilai minimum 56.67 bagi x = 0.3. Sebagai tambahan, kehilangan dielektrik  $\varepsilon''$  menunjukkan nilai maksimum 10.98 bagi x =0.2 dan nilai minimum 9.45 bagi x = 0.0. Bagi komposit nano,  $\varepsilon'$  mencapai nilai maksimum 68.32 (x = 0.1) dan nilai minimum 46.73 (x = 0.3) pada 1 kHz. Tambahan pula,  $\varepsilon''$  menunjukkan nilai maksimum 49.42 (x = 0.2) dan nilai minimum 36.33 (x = 0.3).

## TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

| DECLARATION           | ii    |
|-----------------------|-------|
| DEDICATION            | iii   |
| ACKNOWLEDGEMENT       | iv    |
| ABSTRACT              | v     |
| ABSTRAK               | vi    |
| TABLE OF CONTENT      | viii  |
| LIST OF TABLES        | xiii  |
| LIST OF FIGURES       | XV    |
| LIST OF ABBREVIATIONS | xxi   |
| LIST OF SYMBOLS       | xxiii |
| LIST OF APPENDICES    | XXV   |

| INTRODUCTION |                              |   |
|--------------|------------------------------|---|
| 1.1          | Research background          | 1 |
| 1.2          | Problem statement            | 3 |
| 1.3          | Objectives of research       | 4 |
| 1.4          | Scope of research            | 5 |
| 1.5          | Significant of research      | 5 |
| 1.6          | Organization of the research | 6 |

| LITER | ATURE   | E REVIEW                                     | 8  |
|-------|---------|----------------------------------------------|----|
| 2.1   | Backg   | ground of ferrites                           | 8  |
|       | 2.1.1   | Spinel ferrites                              | 9  |
|       | 2.1.2   | Chemical composition of spinel ferrites      | 9  |
|       | 2.1.3   | Crystal structure of spinel cubic ferrites   | 10 |
|       | 2.1.4   | Cobalt ferrites                              | 11 |
|       | 2.1.5   | Nickel ferrites                              | 12 |
|       | 2.1.6   | Magnesium ferrites                           | 12 |
| 2.2   | Condu   | active polymer: Polyaniline                  | 13 |
|       | 2.2.1   | Polyaniline and their properties             | 13 |
|       | 2.2.2   | Advantages and application of polyaniline    | 15 |
| 2.3   | Funda   | mental of magnetism                          | 17 |
|       | 2.3.1   | Classification of magnetic materials         | 17 |
|       | 2.3.2   | Hard and Ferrites                            | 21 |
|       | 2.3.3   | Magnetic domain                              | 22 |
|       | 2.3.4   | Magnetic anisotropies of spinel ferrites     | 24 |
|       | 2.3.5   | Magnetic hysteresis                          | 25 |
|       | 2.3.6   | Magnetic Interactions                        | 27 |
|       |         | 2.3.6.1 Jump Relaxation Model                | 27 |
|       |         | 2.3.6.2 Super Exchange Interaction,          |    |
|       |         | Magnetostatic Field Interaction              | 28 |
| 2.4   | Growt   | th mechanism of ferrites and their           |    |
|       | compo   | osites                                       | 30 |
|       | 2.4.1   | Co-precipitation method                      | 30 |
|       | 2.4.2   | Polymerization method                        | 32 |
|       | 2.4.3   | Formation of core-shell ferrite              | 34 |
|       | 2.4.4   | Agglomeration and aggregation                | 35 |
| 2.5   | Therm   | nal effect on ferrites properties            | 36 |
| 2.6   | Partic  | les size and magnetic properties for         |    |
|       | cobalt  | ferrites and their substitutions             | 37 |
| 2.7   | Synth   | esis and characterization of cobalt ferrites | 39 |
| 2.8   | Synth   | esis and characterization of core-shell      |    |
|       | ferrite | s/polyaniline nanocomposites                 | 44 |
| 2.9   | Chara   | cterization Method                           | 49 |
|       | 2.9.1   | X-Ray diffractometer (XRD)                   | 49 |

2

| 2.9.2 | Fourier transform infrared spectroscopy |    |
|-------|-----------------------------------------|----|
|       | (FTIR)                                  | 52 |
| 2.9.3 | Field emission scanning electron        |    |
|       | microscopy (FESEM)                      | 54 |
| 2.9.4 | Transmission electron microscopy (TEM)  | 55 |
| 2.9.5 | Vibrating sample magnetometer (VSM)     | 56 |
| 2.9.6 | Electron spin resonance (ESR)           | 60 |
| 2.9.7 | Two probe of impedance analyzer         | 63 |

## **3 METHODOLOGY**

| 3.1 | Mater                     | ials                                       | 65 |
|-----|---------------------------|--------------------------------------------|----|
| 3.2 | B.2 Preparation of sample |                                            | 67 |
|     | 3.2.1                     | Chemical formulation                       | 67 |
|     | 3.2.2                     | Preparation of Co-Ni-Mg ferrite            |    |
|     |                           | nanoparticles                              | 69 |
|     | 3.2.3                     | Synthesis of core-shell Co-Ni-Mg $Fe_2O_4$ |    |
|     |                           | /PANI nanocomposites                       | 70 |
|     | 3.2.4                     | Preparation of Samples                     | 73 |
|     |                           |                                            |    |

### 4 RESULTS AND DISCUSSION 74

| 4.1 | Structu | ural properties                                                                                  | 74 |
|-----|---------|--------------------------------------------------------------------------------------------------|----|
|     | 4.1.1   | Sample for Co, Ni, and Mg ferrites                                                               | 74 |
|     | 4.1.2   | Sample for Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub>  |    |
|     |         | $(0.0 \le x \le 0.5)$ sintered at 900°C                                                          | 76 |
|     | 4.1.3   | Cation distribution                                                                              | 81 |
|     | 4.1.4   | Samples for Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> |    |
|     |         | $(0.0 \le x \le 0.5)$ sintered at 700, 800                                                       |    |
|     |         | and 1000°C                                                                                       | 87 |
|     | 4.1.5   | Comparison of ferrites composition                                                               |    |
|     |         | sintered at 700 to 1000 °C                                                                       | 90 |
|     |         | 4.1.5.1 Sample for $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$                                             |    |
|     |         | sintered at 700-1000 °C                                                                          | 90 |
|     |         | 4.1.5.2 Sample for $Co_{0.5}Ni_{0.5}Fe_2O_4$ sintered                                            |    |

65

|     |       | at 700-1000 °C                                                                                       | 92  |
|-----|-------|------------------------------------------------------------------------------------------------------|-----|
|     |       | 4.1.5.3 Sample for $Co_{0.5}Mg_{0.5}Fe_2O_4$ sintered                                                | t   |
|     |       | at 700-1000 °C                                                                                       | 94  |
|     | 4.1.6 | Sample for $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI$                                                      |     |
|     |       | $(0.0 \le x \le 0.5)$                                                                                | 97  |
| 4.2 | Morph | nological                                                                                            | 103 |
|     | 4.2.1 | FE-SEM observation                                                                                   | 103 |
|     | 4.2.2 | Particles size distribution by effect of Ni-M                                                        | g   |
|     |       | substitution                                                                                         | 105 |
|     | 4.2.3 | FESEM for Co-Ni-Mg ferrite ( <i>x</i> =0.1)                                                          |     |
|     |       | sintered at 700-1000°C                                                                               | 107 |
|     | 4.2.4 | Particles size distribution                                                                          | 109 |
|     | 4.2.5 | FESEM for Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI |     |
|     |       | nanocomposites                                                                                       | 110 |
|     | 4.2.6 | TEM for Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI   |     |
|     |       | nanocomposites                                                                                       | 112 |
| 4.3 | Magn  | etic properties                                                                                      | 114 |
|     | 4.3.1 | Sample for Co, Ni and Mg ferrites                                                                    | 114 |
|     | 4.3.2 | Sample for $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$                                                           |     |
|     |       | $(0.0 \le x \le 0.5)$ sintered at 900°C                                                              | 116 |
|     | 4.3.3 | Magnetic measurements for                                                                            |     |
|     |       | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ (0.0 $\le x \le 0.5$ )                                               |     |
|     |       | sintered at 700, 800 and 1000 °C                                                                     | 126 |
|     | 4.3.4 | Comparison of ferrites composition                                                                   |     |
|     |       | sintered at 700 to 1000 °C                                                                           | 130 |
|     |       | 4.3.4.1 Sample for Co-Ni-Mg ferrite                                                                  |     |
|     |       | ( <i>x</i> =0.1) sintered at 700-1000 °C                                                             | 130 |
|     |       | 4.3.4.2 Sample for Co-Ni ferrite (x=0.0)                                                             |     |
|     |       | sintered at 700-1000 °C                                                                              | 134 |
|     |       | 5.3.4.3 Sample for Co-Mg ferrite (x=0.5)                                                             |     |
|     |       | sintered at 700-1000 °C                                                                              | 136 |
|     | 4.3.5 | Sample for pure PANI and ferrite/PANI                                                                |     |
|     |       | nanocomposites                                                                                       | 141 |
|     | 4.3.6 | Sample for $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI$                                                      |     |
|     |       | $(0.0 \le x \le 0.5)$                                                                                | 143 |

| 4.4 | Dielectric properties                     |                                                                                                       | 148 |
|-----|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|
|     | 4.4.1 Dielectric measurement in frequency |                                                                                                       |     |
|     |                                           | between 100 Hz to 5 MHz                                                                               | 148 |
|     | 4.4.2                                     | Dielectric measurement in frequency                                                                   |     |
|     |                                           | between 200 MHz to 20 GHz                                                                             | 153 |
|     | 4.4.3                                     | Sample for Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI |     |
|     |                                           | $(0.0 \le x \le 0.5)$                                                                                 | 154 |

| 5 | CONCLUSION AND FUTURE OUTLOOK |                                   | 158 |
|---|-------------------------------|-----------------------------------|-----|
|   | 5.1                           | Introduction                      | 158 |
|   | 5.2                           | Conclusion of findings            | 159 |
|   | 5.3                           | Recommendation and future outlook | 162 |

| REFERENCES     | 163     |
|----------------|---------|
| Appendices A-B | 180-186 |

## LIST OF TABLES

TABLE NO.

### TITLE

## PAGE

| 3.1 | Chemicals and apparatus required for the synthesis                                                                |     |
|-----|-------------------------------------------------------------------------------------------------------------------|-----|
|     | of the Co-Ni-Mg ferrites using co-precipitation method                                                            | 66  |
| 3.2 | Chemical formula of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites | 67  |
| 3.3 | Chemical formula of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI    |     |
|     | composites                                                                                                        | 67  |
| 3.4 | The mass of chemicals for each sample formulation                                                                 | 68  |
| 4.1 | Composition, structural and morphological data of                                                                 |     |
|     | Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites                     | 84  |
| 4.2 | Cation distributions, lattice parameters $a_{exp}$ and $a_{th}$ ,                                                 |     |
|     | cation radius at (A) and [B] sites, $r_A$ and $r_B$ , of                                                          |     |
|     | Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites                     | 85  |
| 4.3 | The values of the crystallite size $D$ (nm), lattice spacing $d$ ,                                                |     |
|     | lattice parameter <i>a</i> (Å), volume <i>V</i> (Å), X-ray density $\rho_x$ ,                                     |     |
|     | tetrahedron $v_1$ (cm <sup>-1</sup> ) and octahedron $v_2$ (cm <sup>-1</sup> ) for                                |     |
|     | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ (x = 0.0, 0.1 and 0.5)                                                            | 96  |
| 4.4 | FT-IR spectra of tetra $v_1$ and octa, $v_2$ (cm <sup>-1</sup> ), crystallite size                                |     |
|     | $D_{\rm m}$ (nm), d-spacing, cell parameter $a$ (Å), unit cell volume                                             |     |
|     | $V$ (Å), x-ray density $d_x$ (g/cm <sup>3</sup> ), bulk density $d_B$ (g/cm <sup>3</sup> ),                       |     |
|     | Porosity $P(\%)$ and suface area $S(m^2/g)$                                                                       | 101 |
| 4.5 | Target compositions of a series of Ni-Mg substituted                                                              |     |
|     | cobalt ferrite samples, and the final compositions                                                                |     |
|     | (atomic abundance %) determined by energy-dispersive                                                              |     |
|     | X-ray spectroscopy (EDX) within the FESEM                                                                         | 105 |

| 4.6  | Magnetic parameters of the Ni-Mg substituted                                                                        |     |
|------|---------------------------------------------------------------------------------------------------------------------|-----|
|      | cobalt ferrite samples after sintering at 900°C                                                                     | 120 |
| 4.7  | Comparison of magnetic properties of                                                                                |     |
|      | $Co_xNi_{1-x}Fe_2O_4$ and $Co_xMg_{1-x}Fe_2O_4$ with $x = 0.0$ and 0.5                                              | 121 |
| 4.8  | ESR analysis of as-synthesized Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> |     |
|      | $(0.0 \le x \le 0.5)$ samples                                                                                       | 125 |
| 4.9  | Magnetic parameters at room temperature -                                                                           |     |
|      | coercivity $H_c$ (Oe), remanent magnetization $M_r$ (emu/g),                                                        |     |
|      | saturation magnetization $M_{\rm s}$ (emu/g), squareness ratio                                                      |     |
|      | $M_{\rm r}/M_{\rm s}$ , magnetic moment and magnetocrystalline                                                      |     |
|      | anisotropy K (erg/Gauss)                                                                                            | 139 |
| 4.10 | ESR parameters for the different sintering temperature                                                              |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ for composition $x = 0.0, 0.1$ and 0.5                                              |     |
|      | samples. Magnetic resonance field $H_{\rm r}$ (G), peak line width                                                  |     |
|      | $\Delta H_{\rm pp}$ (G), g value and relaxation time $\tau^2$ (s)                                                   | 140 |
| 4.11 | Magnetic parameters at room temperature for                                                                         |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ (in bracket) and                                                                    |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI (0.0 \le x \le 0.5), CoFe_2O_4$                                                 |     |
|      | and pure PANI                                                                                                       | 145 |
| 4.12 | ESR characteristics of PANI, CoNiMg ferrite/PANI                                                                    |     |
|      | nanocomposites, and Co-, Ni- and Mg-ferrite/PANI                                                                    |     |
|      | nanocomposites at room temperature                                                                                  | 147 |

## LIST OF FIGURES

FIGURE NO.

### TITLE

### PAGE

| 2.1  | Crystal structure of cubic ferrites                        | 11 |
|------|------------------------------------------------------------|----|
| 2.2  | Schematic drawings for PANI showing the ring torsions      |    |
|      | referenced to the average molecular plane (a) and both,    |    |
|      | (b) base and (c) salt forms                                | 14 |
| 2.3  | A periodic table showing the type of magnetic behavior     |    |
|      | of each element at room temperature                        | 17 |
| 2.4  | Schematic representation of orientations of dipole         |    |
|      | moments in (a) paramagnetic, (b) ferromagnetic,            |    |
|      | (c) antiferromagnetic and (d) ferrimagnetic materials      | 19 |
| 2.5  | (a) Schematic depiction of domains in ferromagnetic or     |    |
|      | ferromagnetic material, (b) The gradual change in magnetic | c  |
|      | dipole orientation across a domain wall                    | 23 |
| 2.6  | A typical hysteresis loop for a ferro- or ferri- magnetic  |    |
|      | material                                                   | 26 |
| 2.7  | Initiation step of the synthesis of polyethylene           | 33 |
| 2.8  | Propagation step of the synthesis of polyethylene          | 33 |
| 2.9  | Termination step of the synthesis of polyethylene          | 33 |
| 2.10 | The representative structure of organic materials          |    |
|      | functionalized magnetic iron oxide nanoparticles           | 34 |
| 2.11 | Scattering of x-rays by a crystallite of simple cubic      |    |
|      | structure                                                  | 51 |
| 2.12 | Schematic of a Michelson interferometer                    | 53 |

| 2.13 | FESEM JOEL JSM-6701F – Ibnu Sina Institute for                                                                                     |    |
|------|------------------------------------------------------------------------------------------------------------------------------------|----|
|      | Scientific & Industrial Research, UTM                                                                                              | 54 |
| 2.14 | Compact-Digital TEM Hitachi HT7700 - Hi-Tech                                                                                       |    |
|      | Instruments Sdn. Bhd                                                                                                               | 55 |
| 2.15 | The schematic of interactions between beam electrons                                                                               |    |
|      | and specimen. (1) electron beam, (2) transmitted electron,                                                                         |    |
|      | (3) backscattered electron, (4) characteristic x-rays,                                                                             |    |
|      | (5) secondary electron, (6) Auger electron,                                                                                        |    |
|      | (7) Absorbed current, (8) cathodeluminescence                                                                                      | 56 |
| 2.16 | VSM, Lake Shore model 7404 – Makmal Magnet Pusat                                                                                   |    |
|      | Pengajian Fizik Gunaan, UKM                                                                                                        | 57 |
| 2.17 | Simplified form of vibrating-sample magnetometer:                                                                                  |    |
|      | (1) loudspeaker transducer, (2) conical paper cup support,                                                                         |    |
|      | (3) drinking straw, (4) reference sample, (5) sample,                                                                              |    |
|      | (6) reference coils, (7) sample coils, (8) magnet poles,                                                                           |    |
|      | (9) metal container                                                                                                                | 58 |
| 2.18 | JEOL X-band ESR spectrometer (Model JES-FA100) -                                                                                   |    |
|      | Ibnu Sina Institute for Scientific & Industrial Research,                                                                          |    |
|      | UTM                                                                                                                                | 61 |
| 2.19 | (a) Absorption band (b) first derivative of the absorption                                                                         |    |
|      | band of (a)                                                                                                                        | 61 |
| 3.1  | Change in sintering temperature of Co-Ni-Mg ferrite                                                                                |    |
|      | samples                                                                                                                            | 70 |
| 3.2  | The polymerization procedures for Co-Ni-Mg Fe <sub>2</sub> O <sub>4</sub> /PANI                                                    |    |
|      | core-shell nanocomposites                                                                                                          | 71 |
| 3.3  | A process flow of ferrite and core-shell nanocomposites                                                                            |    |
|      | preparation and their characterization                                                                                             | 72 |
| 4.1  | The XRD patterns show single phase of CoFe <sub>2</sub> O <sub>4</sub> ,                                                           |    |
|      | NiFe <sub>2</sub> O <sub>4</sub> and MgFe <sub>2</sub> O <sub>4</sub> ferrites synthesized by                                      |    |
|      | co-precipitation method followed by sintering at 900 $^{\circ}$ C                                                                  | 75 |
| 4.2  | FT-IR spectra of CoFe <sub>2</sub> O <sub>4</sub> , NiFe <sub>2</sub> O <sub>4</sub> and MgFe <sub>2</sub> O <sub>4</sub> ferrites |    |
|      | sintered at 900°C                                                                                                                  | 76 |
| 4.3  | The XRD patterns of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites                  |    |
|      | $(0.0 \le x \le 0.5)$ synthesized by co-precipitation method                                                                       |    |
|      | followed by sintering at 900 °C                                                                                                    | 77 |

| 4.4  | The peaks for (311) for Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites | 78  |
|------|-----------------------------------------------------------------------------------------------------------------------|-----|
| 4.5  | Variation of crystallite size with Mg concentration                                                                   | 79  |
| 4.6  | FT-IR spectra of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites        |     |
|      | $(0.0 \le x \le 0.5)$ sintered at 900°C                                                                               | 80  |
| 4.7  | Variation of lattice parameters, $a_{th}$ and $a_{exp}$ with Mg                                                       |     |
|      | content (x) in the $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ferrites system                                                    | 86  |
| 4.8  | XRD patterns of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ( $0.0 \le x \le 0.5$ )                                               |     |
|      | ferrite powder sintered at (a) 700 $^{\circ}$ C, (b) 800 $^{\circ}$ C and                                             |     |
|      | (c) 1000°C                                                                                                            | 87  |
| 4.9  | FTIR spectra of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ( $0.0 \le x \le 0.5$ )                                               |     |
|      | sintered at (a) 700 °C, (b) 800°C and (c) at $1000$ °C                                                                | 89  |
| 4.10 | XRD patterns of $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ (x = 0.1) sintered                                                  |     |
|      | at 700 to 1000°C                                                                                                      | 90  |
| 4.11 | FTIR spectra of $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ (x = 0.1) sintered                                                  |     |
|      | at 700 to 1000°C                                                                                                      | 92  |
| 4.12 | XRD patterns of $Co_{0.5}Ni_{0.5}Fe_2O_4$ sintered at 700 to                                                          |     |
|      | 1000 °C                                                                                                               | 93  |
| 4.13 | FTIR spectra of Co <sub>0.5</sub> Ni <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub> sintered at 700 to                 |     |
|      | 1000 °C                                                                                                               | 94  |
| 4.14 | XRD patterns of $Co_{0.5}Mg_{0.5}Fe_2O_4$ sintered at 700 to                                                          |     |
|      | 1000 °C                                                                                                               | 95  |
| 4.15 | FTIR spectra of $Co_{0.5}Mg_{0.5}Fe_2O_4$ sintered at 700 to                                                          |     |
|      | 1000 °C                                                                                                               | 97  |
| 4.16 | X-ray powder diffraction pattern for PANI,                                                                            |     |
|      | Co <sub>0.5</sub> Ni <sub>0.4</sub> Mg <sub>0.1</sub> Fe <sub>2</sub> O <sub>4</sub> nanoparticle and                 |     |
|      | $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ /PANI nanocomposites samples                                                        | 98  |
| 4.17 | X-ray powder diffraction pattern for                                                                                  |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI \ (0.0 \le x \le 0.5) \ samples$                                                  | 99  |
| 4.18 | The shifting of (311) peak for the X-ray powder                                                                       |     |
|      | diffraction pattern for $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ and                                                           |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI \ (0.0 \le x \le 0.5) \ samples$                                                  | 100 |
| 4.19 | FT-IR spectra of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI           |     |
|      | $(0.0 \le x \le 0.5)$ nanocomposites                                                                                  | 102 |

| 4.20 | FE-SEM images of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> ferrites of                 |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|      | (a) $x = 0.0$ , (b) $x = 0.1$ , (c) $x = 0.2$ , (d) $x = 0.3$ , (e) $x = 0.4$                                                     |     |
|      | and (f) $x = 0.5$ sintered at 900 °C                                                                                              | 104 |
| 4.21 | EDX pattern of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ferrites with different                                                            |     |
|      | composition of Mg substitutions                                                                                                   | 106 |
| 4.22 | FESEM micrographs (magnification 75k×) for                                                                                        |     |
|      | $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ ferrite sintered at: (a) 700 °C,                                                                |     |
|      | (b) 800 °C, (c) 900 °C and (d) 1000 °C                                                                                            | 108 |
| 4.23 | The size distributions of $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ ferrite                                                               |     |
|      | sintered at: (a) 700 °C, (b) 800 °C, (c) 900 °C and                                                                               |     |
|      | (d) 1000 °C                                                                                                                       | 109 |
| 4.24 | Typical FESEM images of (a) pure $Co_{0.5}Ni_{0.5}Fe_2O_4$                                                                        |     |
|      | nanoparticles, (b) pure PANI prepared by polymerization                                                                           |     |
|      | (c) nanoflakes-like $Co_{0.5}Ni_{0.5}Fe_2O_4/PANI$ nanocomposites                                                                 |     |
|      | and (d) $Co_{0.5}Ni_{0.2}Mg_{0.3}Fe_2O_4$ /PANI nanocomposites                                                                    | 110 |
| 4.25 | FESEM images of (a-b) Co <sub>0.5</sub> Ni <sub>0.2</sub> Mg <sub>0.3</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI                  |     |
|      | nanocomposites that shows of ferrite particles embedded                                                                           |     |
|      | in PANI matrix (in red circle)                                                                                                    | 112 |
| 4.26 | (a-b) TEM images of Co <sub>0.5</sub> Ni <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI nanocomposite                        | es  |
|      | showing the ferrite particles embedded in PANI matrix                                                                             | 113 |
| 4.27 | Typical hysteresis loops of CoFe <sub>2</sub> O <sub>4</sub> , NiFe <sub>2</sub> O <sub>4</sub> and                               |     |
|      | MgFe <sub>2</sub> O <sub>4</sub> ferrites sintered at 900 °C                                                                      | 114 |
| 4.28 | ESR patterns of CoFe <sub>2</sub> O <sub>4</sub> , NiFe <sub>2</sub> O <sub>4</sub> and MgFe <sub>2</sub> O <sub>4</sub> ferrites |     |
|      | sintered at 900°C                                                                                                                 | 116 |
| 4.29 | Typical hysteresis loops of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub>                  |     |
|      | $(0.0 \le x \le 0.5)$ ferrites sintered at 900 °C                                                                                 | 117 |
| 4.30 | Variation of coercivity, saturation magnetization and                                                                             |     |
|      | remanance of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ( $0.0 \le x \le 0.5$ ) ferrites                                                     | 118 |
| 4.31 | The ESR measurements of $Ni^{2+} \mbox{ and } Mg^{2+} \mbox{ doped } CoFe_2O_4$                                                   |     |
|      | nanoparticles with Mg concentration ( $0.0 \le x \le 0.5$ ) for the                                                               |     |
|      | samples sintered at 900 °C                                                                                                        | 123 |
| 4.32 | ESR pattern for (a) $CoFe_2O_4$ , (b) $MgFe_2O_4$ , (c) $NiFe_2O_4$                                                               |     |
|      | and (d) $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ ferrites sintered at 900°C                                                              | 124 |

| 4.33 | Magnetization curves of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub>            |     |
|------|-------------------------------------------------------------------------------------------------------------------------|-----|
|      | $(0.0 \le x \le 0.5)$ ferrite samples sintered at (a) 700 °C,                                                           |     |
|      | (b) 800 °C and (c) 1000°C                                                                                               | 126 |
| 4.34 | Room temperature ESR spectra of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$                                                         |     |
|      | for ( $x = 0.0$ , .1 and 0.5) ferrite powder sintered at (a) 700 °C                                                     | 2,  |
|      | (b) 800 °C and (c) 1000 °C                                                                                              | 128 |
| 4.35 | Fitting of the M-H curve for different sintering temperature                                                            |     |
|      | for $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ ferrite nanopowders                                                               | 130 |
| 4.36 | ESR spectra of $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ samples dried at                                                       |     |
|      | 200 °C and sintered at 700, 800, 900 and 1000 °C                                                                        | 133 |
| 4.37 | Fitting of the M-H curve for different sintering temperature                                                            |     |
|      | of Co <sub>0.5</sub> Ni <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub> ferrite nanopowders                               | 135 |
| 4.38 | ESR spectra of $Co_{0.5}Ni_{0.5}Fe_2O_4$ samples dried at 200 °C                                                        |     |
|      | and sintered at 700, 800, 900 and 1000 $^{\circ}\mathrm{C}$                                                             | 136 |
| 4.39 | Fitting of the <i>M</i> - <i>H</i> curve for different sintering temperature                                            |     |
|      | of Co <sub>0.5</sub> Mg <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub> ferrite nanopowders                               | 137 |
| 4.40 | ESR spectra of $Co_{0.5}Mg_{0.5}Fe_2O_4$ samples dried at 200 °C                                                        |     |
|      | and sintered at 700, 800, 900 and 1000 $^{\circ}\mathrm{C}$                                                             | 138 |
| 4.41 | Hysteresis loops of (a) pure PANI (inset),                                                                              |     |
|      | (b) $CoNi_{0.4}M_{g0.1}Fe_2O_4$ (red) and                                                                               |     |
|      | (c) $CoNi_{0.4}M_{g0.1}Fe_2O_4/PANI$ (blue)                                                                             | 141 |
| 4.42 | ESR spectra for the PANI and Co-, Ni-, Mg- ferrite/PANI                                                                 |     |
|      | composites obtained at room temperature                                                                                 | 142 |
| 4.43 | Magnetic hysteresis loops at room temperature of                                                                        |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI \ (0.0 \le x \le 0.5)$                                                              | 143 |
| 4.44 | (a) Variation of coercivity $H_c$ and (b) Variation of                                                                  |     |
|      | magnetization $M_{\rm s}$ at room temperature for                                                                       |     |
|      | $Co_{0.5}Ni_{0.5\text{-}x}Mg_xFe_2O_4$ and $Co_{0.5}Ni_{0.5\text{-}x}Mg_xFe_2O_4/PANI$                                  |     |
|      | $(0.0 \le x \le 0.5)$                                                                                                   | 144 |
| 4.45 | ESR spectra of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI (0.0 \le x \le 0.5)$                                                 |     |
|      | samples                                                                                                                 | 146 |
| 4.46 | Variation of complex dielectric constant, ( $\varepsilon$ ')-real and                                                   |     |
|      | dielectric loss (ɛ'')-imaginary of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> |     |
|      | $(0.0 \le x \le 0.5)$ samples as a function of frequency                                                                | 149 |

xviii

| 4.47 | Variation of tangent loss (tan $\delta$ ) and AC conductivity ( $\sigma_{ac}$ )                                                                    |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ( $0.0 \le x \le 0.5$ ) samples as a                                                                            |     |
|      | function of frequency                                                                                                                              | 150 |
| 4.48 | Variation in Cole-Cole plots with frequency for                                                                                                    |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4 \ (0.0 \le x \le 0.5).$                                                                                             | 152 |
| 4.49 | Variation of complex dielectric constant, ( $\varepsilon$ ') and                                                                                   |     |
|      | dielectric loss ( $\varepsilon$ '') of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> (0.0 $\le x \le 0.5$ ) |     |
|      | samples as a function of frequency                                                                                                                 | 153 |
| 4.50 | Variation of tangent loss (tan $\delta$ ) and ac conductivity ( $\sigma_{ac}$ )                                                                    |     |
|      | of $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ (0.0 $\le x \le 0.5$ ) samples as a                                                                             |     |
|      | function of frequency                                                                                                                              | 154 |
| 4.51 | Variation of complex (a) dielectric constant ( $\varepsilon$ ') and                                                                                |     |
|      | (b) dielectric loss ( $\varepsilon$ '') of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI              |     |
|      | $(0.0 \le x \le 0.5)$ samples as a function of frequency                                                                                           | 155 |
| 4.52 | Variation of (a) tangent loss ( $\delta$ ) and (b) logf ac conductivity                                                                            | 7   |
|      | ( $\sigma$ ) of Co <sub>0.5</sub> Ni <sub>0.5-x</sub> Mg <sub>x</sub> Fe <sub>2</sub> O <sub>4</sub> /PANI ( $0.0 \le x \le 0.5$ )                 |     |
|      | samples as a function of frequency                                                                                                                 | 156 |
| 4.53 | Variation in Cole-Cole plots with frequency for                                                                                                    |     |
|      | $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI \ (0.0 \le x \le 0.5).$                                                                                        | 157 |
|      |                                                                                                                                                    |     |

## LIST OF ABBREVIATIONS

| Ag                                                                          | -                | Argentum                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Al                                                                          | -                | Aluminum                                                                                                                                                                                                                                                               |
| a-PANI                                                                      | -                | Amorphous Polyaniline                                                                                                                                                                                                                                                  |
| APS                                                                         | -                | Ammonium Persulfate                                                                                                                                                                                                                                                    |
| Au                                                                          | -                | Aurum                                                                                                                                                                                                                                                                  |
| Bi                                                                          | -                | Bismuth                                                                                                                                                                                                                                                                |
| c-PANI                                                                      | -                | Crystalline Polyaniline                                                                                                                                                                                                                                                |
| Co                                                                          | -                | Cobalt                                                                                                                                                                                                                                                                 |
| Cr                                                                          | -                | Chromium                                                                                                                                                                                                                                                               |
| CTAB                                                                        | -                | Cetyl Trimethylammonium Bromide                                                                                                                                                                                                                                        |
| Cu                                                                          | -                | Copper                                                                                                                                                                                                                                                                 |
| DBSA                                                                        | -                | Dodecyl Benzene Sulfonic Asid                                                                                                                                                                                                                                          |
| DCTATPR                                                                     | -                | Direct Current Transferred Arc Thermal Plasma                                                                                                                                                                                                                          |
|                                                                             |                  |                                                                                                                                                                                                                                                                        |
|                                                                             |                  | Reactor                                                                                                                                                                                                                                                                |
| EB                                                                          | -                | Reactor<br>Emeraldine Base                                                                                                                                                                                                                                             |
| EB<br>EM                                                                    | -                | Reactor<br>Emeraldine Base<br>Electromagnetic                                                                                                                                                                                                                          |
| EB<br>EM<br>ES                                                              | -<br>-           | Reactor<br>Emeraldine Base<br>Electromagnetic<br>Emeraldine Salt                                                                                                                                                                                                       |
| EB<br>EM<br>ES<br>ESR                                                       | -<br>-<br>-      | Reactor<br>Emeraldine Base<br>Electromagnetic<br>Emeraldine Salt<br>Electron Spin Resonance                                                                                                                                                                            |
| EB<br>EM<br>ES<br>ESR<br>EXAFS                                              | -<br>-<br>-      | Reactor<br>Emeraldine Base<br>Electromagnetic<br>Emeraldine Salt<br>Electron Spin Resonance<br>X-Ray Absorption Fine Structure                                                                                                                                         |
| EB<br>EM<br>ES<br>ESR<br>EXAFS<br>FCC                                       | -<br>-<br>-<br>- | ReactorEmeraldine BaseElectromagneticEmeraldine SaltElectron Spin ResonanceX-Ray Absorption Fine StructureFace-centered Cubic                                                                                                                                          |
| EB<br>EM<br>ES<br>ESR<br>EXAFS<br>FCC<br>Fe                                 |                  | ReactorEmeraldine BaseElectromagneticEmeraldine SaltElectron Spin ResonanceX-Ray Absorption Fine StructureFace-centered CubicFerrum (iron)                                                                                                                             |
| EB<br>EM<br>ES<br>ESR<br>EXAFS<br>FCC<br>Fe<br>FESEM                        |                  | ReactorEmeraldine BaseElectromagneticEmeraldine SaltElectron Spin ResonanceX-Ray Absorption Fine StructureFace-centered CubicFerrum (iron)Field Emission Scanning Electron Microscopy                                                                                  |
| EB<br>EM<br>ES<br>ESR<br>EXAFS<br>FCC<br>Fe<br>FESEM<br>FTIR                |                  | ReactorEmeraldine BaseElectromagneticEmeraldine SaltElectron Spin ResonanceX-Ray Absorption Fine StructureFace-centered CubicFerrum (iron)Field Emission Scanning Electron MicroscopyFourier Transform Infrared                                                        |
| EB<br>EM<br>ES<br>ESR<br>EXAFS<br>FCC<br>Fe<br>FESEM<br>FTIR<br>Hg          |                  | ReactorEmeraldine BaseElectromagneticEmeraldine SaltElectron Spin ResonanceX-Ray Absorption Fine StructureFace-centered CubicFerrum (iron)Field Emission Scanning Electron MicroscopyFourier Transform InfraredMercury                                                 |
| EB<br>EM<br>ES<br>ESR<br>EXAFS<br>FCC<br>Fe<br>FESEM<br>FTIR<br>Hg<br>HRTEM |                  | ReactorEmeraldine BaseElectromagneticEmeraldine SaltElectron Spin ResonanceX-Ray Absorption Fine StructureFace-centered CubicFerrum (iron)Field Emission Scanning Electron MicroscopyFourier Transform InfraredMercuryHigh Resolution Transmission Electron Microscopy |

| LEDs     | - | Light emitting diodes                |
|----------|---|--------------------------------------|
| Li       | - | Lithium                              |
| Mg       | - | Magnesium                            |
| MHz      | - | Megahetz                             |
| Mn       | - | Manganese                            |
| MnO      | - | Manganese Oxide                      |
| Ni       | - | Nickel                               |
| PANI     | - | Polyaniline                          |
| Sb       | - | Antimony                             |
| SC       | - | specific capacitance                 |
| SCS      | - | solution combustion synthesis        |
| TEM      | - | Transmission Electron Microscopy     |
| Ti       | - | Titanium                             |
| VSM      | - | Vibrating Sample Magnetometer        |
| XRD      | - | X-ray Diffractometer                 |
| Zn       | - | Zinc                                 |
| [BMIM]Br | - | 1-Butyl-3-Methyl-Imidazolium Bromide |

## LIST OF SYMBOLS

| $\sigma_{ m ac}$   | - | AC conductivity                                                |
|--------------------|---|----------------------------------------------------------------|
| Å                  | - | Angstrom                                                       |
| ω                  | - | applied frequency                                              |
| $N_A$              | - | Avogadro's number                                              |
| $\theta$           | - | Bragg angle                                                    |
| $C_0$              | - | capacitance of the condenser with the region of space (without |
|                    |   | vacuum)                                                        |
| С                  | - | capacitance of the condenser when the space is filled with     |
|                    |   | dielectric medium                                              |
| q                  | - | charged of an electron                                         |
| V <sub>cell</sub>  | - | cell volume                                                    |
| $H_{\rm c}$        | - | coercivity                                                     |
| $\alpha_1$         | - | cosines of the angles between $M_s$ and the x axes             |
| $T_c$              | - | crystalline temperature                                        |
| D                  | - | diameter of crystallite                                        |
| $\Delta E$         | - | different of energy                                            |
| dI                 | - | distance between centers of two charges                        |
| $ ho_{ m B}$       | - | density of bulk                                                |
| $ ho_{\mathrm{x}}$ | - | density of x-ray                                               |
| μ                  | - | electronic dipole moment                                       |
| $K_1$              | - | first order of cubic anisotropy constants                      |
| R•                 | - | free radical                                                   |
| V                  | - | frequency of radiation                                         |
| 8                  | - | g-factor                                                       |
| D                  | - | grain size                                                     |
| δ                  | - | inversion parameter                                            |

| a                  | - | lattice constant                                           |
|--------------------|---|------------------------------------------------------------|
| β                  | - | Bohr magneton                                              |
| β                  | - | line broadening at half the maximum intensity (FWHM)       |
| $\Delta H_{ m PP}$ | - | peak-to-peak line width (in G)                             |
| $\Delta H_{1/2}$   | - | line width (in $G$ ) at half-height of the absorption peak |
| М                  | - | magnetization                                              |
| В                  | - | magnetic field strength                                    |
| $n_B$              | - | magnetic moment                                            |
| $\mu_0$            | - | magnetic permeability of free space                        |
| Κ                  | - | magnetocrystalline anisotropy                              |
| $M_w$              | - | molecular mass or molecular weight                         |
| М                  | - | monomer                                                    |
| Ζ                  | - | number of formula units in a unit cell                     |
| $N_2$              | - | octahedral cluster                                         |
| h                  | - | Planck constant                                            |
| ε'                 | - | permittivity real                                          |
| ε''                | - | permittivity imaginary                                     |
| μ"                 | - | permeability imaginary part                                |
| μ'                 | - | permeability real part                                     |
| Р                  | - | porosity                                                   |
| $\mathcal{E}_r$    | - | relative permittivity                                      |
| $	au^2$            | - | relaxation time                                            |
| $M_{ m r}$         | - | remanence                                                  |
| $M_{\rm s}$        | - | saturation magnetization                                   |
| m <sub>S</sub>     | - | saturation moment                                          |
| K                  | - | shape factor                                               |
| $K_1$              | - | second order of cubic anisotropy constants                 |
| S                  | - | specific surface                                           |
| $v_1$              | - | tetrahedral cluster                                        |
| arphi              | - | volume fraction                                            |
| $d_{\mathrm{x}}$   | - | X-ray density                                              |
| λ                  | - | X-ray wavelength                                           |
|                    |   |                                                            |

## LIST OF APPENDICES

## APPENDIX NO.

## TITLE

## PAGE

| 1 | Process step of synthesis of ferrite nanoparticles by      |     |
|---|------------------------------------------------------------|-----|
|   | co-precipitation method                                    | 180 |
| 2 | Process step of filtration, grinding and sintering samples |     |
|   | at desire temperatures                                     | 181 |
| 3 | Process step of synthesis of ferrite/polyaniline           |     |
|   | nanocomposites by polymerization method                    | 182 |
| 4 | Calculation example of chemical mass                       | 183 |
| 5 | Calculation example of lattice constant                    | 184 |
| 6 | Publications and Conference proceedings                    | 186 |

### **CHAPTER 1**

### **INTRODUCTION**

### 1.1 Background of Research

In recent years, the synthesis and characterization of ferrites and their modifications have attracted more attention due to their remarkable electrical, magnetic and magneto-electric properties, which are interesting for scientific and technological applications. Ceramic-like ferromagnetic materials have been considered as highly important electronic materials for more than half a century. According to Still, a Magnetite ( $Fe_2O_4$ ) which is known as a natural genuine ferrite has been recognized more than two millennium years ago by ancient people due to its magnetism and was used as a mariner's compass in China [1]. Nanoscale ferrites are likely to become an integral part of the future nanotechnology primarily as their electrical, permittivity and magnetic elements [2]. The properties of ferrites are dependent on size, shape, distribution of particles and chemical composition, which are in turn influenced by the synthesis technique.

Among ferrites, cobalt ferrites,  $CoFe_2O_4$  are the most widely used magnetic materials for having low cost and high performance in high frequency applications.  $CoFe_2O_4$  with inverse spinel structure is well known for having a relatively large magnetic anisotropy, moderate saturation magnetization, remarkable chemical

stability, and mechanical hardness [3]. These properties, along with their great physical and chemical stability, make  $CoFe_2O_4$  nanoparticles suitable for potential applications in electromechanical transducers, biomedicine and magnetic data storage systems. However, the magnetic character of the particles used for many applications depends crucially on the size, shape and purity of these nanoparticles [4]. Hence the need for developing fabrication processes that are relatively simple and yield controlled particle sizes is desired. Several, popular methods including coand/or reduction, precipitation, thermal decomposition micelle synthesis, hydrothermal synthesis, and laser pyrolysis techniques can all be directed at the synthesis of high-quality magnetic nanoparticles [5].

Concurrently, nanocomposite materials combining an electrically conducting polymer and magnetic nanoparticles also have been intensively investigated due to their fascinating application such as electrochemical display devices [6], molecular electronics [7], sensors [8], electrical-magnetic interference (EMI) shields [9][10], and microwave absorption materials[11]. On top of this, the synthesis of magnetic particle/polyaniline nanocomposites not only achieves a combination of their properties, but also overcomes the shortcomings in the preparation of inorganic nanomaterials, according to reports related to their preparation and properties [12]. Among the conducting polymers, polyaniline, (PANI) has received a great deal of attention due to its unique electro-physico-chemical behavior, environmental properties and relatively easy synthesis.

In this work, nickel-magnesium substituted cobalt ferrite Co-Ni-Mg Fe<sub>2</sub>O<sub>4</sub> and their substituted ferrite/polyaniline nanocomposites (Co-Ni-Mg-Fe<sub>2</sub>O<sub>4</sub>/PANI) have been successfully synthesized. Co-Ni-Mg-Fe<sub>2</sub>O<sub>4</sub> is the magnetic core, and PANI is the conducting shell to become core-shell structure. The Co-Ni-Mg-Fe<sub>2</sub>O<sub>4</sub> nanoparticles were prepared by co-precipitation method and the Co-Ni-Mg-Fe<sub>2</sub>O<sub>4</sub>/PANI composites were synthesized via polymerization method. The structural, morphological, magnetic and dielectric properties were investigated in details through X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron

Microscope (TEM), Vibration Sample Magnetometer (VSM), Electron Spin Resonance (ESR) and Two Probe of Impedance Analyzer.

### **1.2 Problem Statement**

A potential of Co ferrites has extensively been explored for highly important applications in various fields of science and technology. Their structural, morphology, magnetic and electrical properties would be the main indicators as functional magnetic materials as for specific applications. These properties of ferrite are very much sensitive to technique adopted for the synthesis, preparative parameters, initial ingredients and heat treatment. Magnetic properties of ferrites can be suitably tailored by varying the composition of cations. Due to the above parameters, there may be a change in cations distribution, which may result in the unexpected magnetic, electrical and dielectric properties. This means that by changing the type of the magnetic ions as well as by selective substitution of nonmagnetic atoms on the tetrahedral (A) and octahedral (B) sites, will lead to interesting spin configurations.

Note that, there are several studies focusing on the effect of other cosubstituted ferrites. The influence of magnetic ion substitution such as  $Mn^{2+}$  [13] and  $Gd^{3+}$  [14] on various structural, magnetic, electric and dielectric properties of  $CoFe_2O_4$  have been reported in the literature. Nevertheless, several researchers have reported on non-magnetic ions such as  $Al^{3+}$  [15],  $Y^{3+}$  [16],  $Zn^{2+}$  [17],  $Cu^{2+}$  [18] or  $Cd^{2+}$  [19] substituting  $CoFe_2O_4$ . Magnesium ions with non-magnetic nature are known for achieving control over magnetic parameters in developing technologically important materials and they have strong B sites preference.

It was observed that when the non-magnetic divalent cations such as Zn, Mg, are substituted for magnetic cations such as Ni, Co, Mn, the saturation magnetization

 $(M_s)$  increase up to 50% substitution, beyond which these values decrease. In addition, Mg<sup>2+</sup> ions causes appreciable changes in the structural and electrical properties of the ferrites [20] [21]. Thus, the substitution of magnetic Ni<sup>2+</sup> and non-magnetic Mg<sup>2+</sup> ions on Co ferrite will markedly modify the magnetic properties. The aim of this work is to study the structural properties of Co<sub>0.5</sub>Ni<sub>0.5-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>,  $0.0 \le x \le 0.5$  in step of 0.1 as a function of Ni and Mg contents and to define their correlation with morphology, magnetic and dielectric properties. Since Ni-Mg substituted Co ferrite nanoparticles in series  $0.0 \le x \le 0.5$  is a new contributor in family of mixed ferrites, it would be considered as pioneer to combine this material into conductive polyaniline matrix to develop a core-shell structure of nanocomposites. The structure of core-shell for nanocomposites is categorized as versatile by combining the electrical and magnetic properties, where this is also has a plenty rooms need to be explained and explored.

### 1.3 Objectives of Research

The main objectives of this research are:

- 1. To synthesize single-phase  $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$  ( $0.0 \le x \le 0.5$ ) in step of 0.1 powdered materials by co-precipitation method.
- 2. To determine the influence of  $Ni^{2+}$  and  $Mg^{2+}$  concentration on the structural, particle size, magnetic and dielectric properties of the  $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$ ferrites material at 900 °C.
- 3. To determine the influence of sintering temperature on the structural, particle size and magnetic properties of  $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$  ferrites material.
- 4. To determine the influence of polyaniline embedded on the magnetic and dielectric properties of  $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$  ferrites material.

#### **1.4 Scope of Research**

In this work, ferrite nanoparticles phase of  $Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4$  with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 were synthesized using co-precipitation method. The synthesis of the core-shell ferrite/PANI nanocomposites using polymerization method. The stoichiometric molar amounts of Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Mg(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Co(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O and Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O were introduced. The ferrites samples were sintered at selected sintering temperatures of either 700 °C, 800 °C, 900 °C and 1000°C for 8 hours. Determination of structural properties and morphology of ferrite nanoparticles and nanocomposites have been performed by using XRD, FTIR, FESEM and TEM. Determination of magnetic properties of ferrite nanoparticles and nanocomposites were performed by using ESR and VSM. Determination of dielectric properties of ferrite nanoparticles and nanocomposites were performed by using two-probe method using impedance analyzer.

### 1.5 Significant of Research

The combination of Co, Ni and Mg to be ferrite nanoparticles with specific formula and in the form of ferrite/PANI nanocomposites are novel. Our aim is to merge the advantages of both Co and Ni ferrites (ferromagnetic behavior) and to utilize from the existence of Mg (paramagnetic behavior) in small constant ratio to ensure the large magnetization of the ferrites. It is unexpected that the addition of Mg improves the magnetization by high saturation magnetization, higher dielectric properties and low loss over a wide range of frequency. The properties of Co ferrites are remarkable such as high coercivity, moderate saturation magnetization, strong anisotropy along with good mechanical hardness and chemical stability. On the other hand, Ni ferrites possess high resistivity and permeability at high frequencies. The chosen methods of co-precipitation and polymerization are economical. The simple, repeatable, homogeneous and environmental friendly preparation may contribute towards the controlled growth of high quality ferrite nanopowders, potentially as candidates for memory storage media and microwave devices.

### **1.6** Organization of the Research

This thesis is divided into seven chapters as follow:

Chapter One provides a brief introduction of the research under taken. This includes the research background and overview, problem statement, objectives, scope of research, significant of research and organization of the research.

Chapter Two provides a comprehensive review of background related to this topic and current knowledge on spinel cobalt ferrite and their chemical composition. It covers fundamental of magnetism, growth mechanism of cobalt ferrites and their composites, including the formation of core-shell ferrite/polyaniline nanocomposites. This includes some theoretical aspects involves and uses in this project.

The experimental work employed in this study is described in details in Chapter Three. It includes the chemical used, formulation and preparation of Ni-Mg substituted cobalt ferrites and core-shell formation of ferrites/polyaniline nanocomposites samples. The structural, morphology, magnetic and dielectric properties determination using XRD, FTIR, FESEM, TEM, VSM, ESR and impedance analyzer are also described in detail in this chapter.

The experimental results and finding of the research are presented in Chapter Four. It includes the characterization of ferrite samples in term of different ratio of Ni and Mg substitution, different sintering temperature and the formation of coreshell structure on  $Co_{0.5}Ni_{0.4}Mg_{0.1}Fe_2O_4$ / polyaniline nanocomposites. This chapter is

### REFERENCES

- Still, A. *The Soul of Lodestone; The Background of Magnetical Science*. N.Y.: Murray Hill Book, Inc. 1946
- Bayrakdar, H. Yalçin, O. Vural, A. and Esmer, K. Effect Of Different Doping On The Structural, Morphological And Magnetic Properties For Cu Doped Nanoscale Spinel Type Ferrites. *J. Magn. Magn. Mater.*, 2013. 343: 86–91.
- Il Kim, Y. Kim, D. and Lee, C. S. Synthesis And Characterization of CoFe<sub>2</sub>O<sub>4</sub> Magnetic Nanoparticles Prepared By Temperature-Controlled Coprecipitation Method. *Phys. B Condens. Matter*, 2003. 337(1–4): 42–51.
- Nawale, A. B. Kanhe, N. S. Patil, K. R. Reddy, V. R. Gupta, A. Kale, B. B. Bhoraskar, S. V. Mathe, V. L. and Das, A. K. Magnetic Properties of Nanocrystalline CoFe<sub>2</sub>O<sub>4</sub> Synthesized by Thermal Plasma in Large Scale. *Mater. Chem. Phys.*, 2012. 137(2): 586–595.
- An-Hui, L. Salabas, E. L. and Schuth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization and Application. *Angew. Chemie Int. Ed.*, 2007. 46(8): 1222–1244.
- Aphesteguy, J. C. and Jacobo, S. E. Composite of polyaniline containing iron oxides. *Phys. B Condens. Matter*, 2004. 354(1–4): 224–227.
- El-Shishtawy, R. M., Salam, M. A. Gabal, M. A. and Asiri, A. M. Preparation, Characterization and Electromagnetic Properties of Polyaniline/Carbon Nanotubes/Nickel Ferrite Nanocomposites. *Polym. Compos.*, 2012. 33: 532– 539.
- Raju, P. and Murthy, S. R. Preparation And Characterization of Ni–Zn Ferrite-Polymer Nanocomposites Using Mechanical Milling Method. *Appl. Nanosci.*, 2013. 3(6) 469–475.
- 9. Della Pina, C. Ferretti, A. M. Ponti, A. and Falletta, E. A Green Approach To

Magnetically-HardElectrically-ConductingPolyaniline/CoFe2O4Nanocomposites. Compos. Sci. Technol., 2015. 110: 138–144.

- Gairola, S. P. Verma, V. Kumar, L. Dar, M. A. Annapoorni, S. and Kotnala, R. K. Enhanced Microwave Absorption Properties In Polyaniline And Nano-Ferrite Composite In X-Band. *Synth. Met.*, 2010. 160(21–22): 2315–2318.
- Ni, P. Fe, Z. Cr, O. Mohamed, M. B. and El-sayed, K. Composites : Part B Structural, Magnetic And Dielectric Properties. *Compos. Part B*, 2014. 56: 270–278.
- Li, L. Liu, H. Wang, Y. Jiang, J. and Xu, F. Preparation and Magnetic Properties of Zn-Cu-Cr-La Ferrite and Its Nanocomposites With Polyaniline. J. Colloid Interface Sci., 2008. 321(2): 265–271.
- Tsay, C. -Y. Lin, Y. -H. and Jen, S. -U. Magnetic, magnetostrictive, and AC Impedance Properties Of Manganese Substituted Cobalt Ferrites. *Ceram. Int.*, 2015. 41: 5531–5536.
- Puli, V. S. Adireddy, S. and Ramana, C. V. Chemical Bonding And Magnetic Properties Of Gadolinium (Gd) Substituted Cobalt Ferrite. *J. Alloys Compd.*, 2015. 644: 470–475.
- Aghav, V. N. Dhage, P. S. Mane, M. L. Shengule, D. R. Dorik, R. G. and Jadhav, K. M. Effect Of Aluminum Substitution On The Structural And Magnetic Properties Of Cobalt Ferrite Synthesized By Sol–Gel Auto Combustion Process. *Phys. B Condens. Matter*, 2011. 406(23): 4350–4354.
- Kumari, S. Kumar, V. Kumar, P. Kar, M. and Kumar, L. Structural And Magnetic Properties Of Nanocrystalline Yttrium Substituted Cobalt Ferrite Synthesized By The Citrate Precursor Technique. *Adv. Powder Technol.*, 2015. 26(1): 213–223.
- Sundararajan, M. Kennedy, L. J. Aruldoss, U. Khadeer, S. Vijaya, J. J. and Dunn, S. Combustion Synthesis Of Zinc Substituted Nanocrystalline Spinel Cobalt Ferrite: Structural And Magnetic Studies. *Mater. Sci. Semicond. Process.*, 2015. 40: 1–10.
- Sekhar, B. C. Rao, G. S. N. Caltun, O. F. Lakshmi, B. D. Rao, B. P. and Rao,
   P. S. V. S. Magnetic And Magnetostrictive Properties Of Cu Substituted Co-Ferrites. J. Magn. Magn. Mater., 2016. 398: 59–63.
- 19. Reddy, C. V. Byon, C. Narendra, B. Baskar, D. Srinivas, G. Shim, J. and. Prabhakar Vattikuti, S. V. Investigation Of Structural, Thermal And Magnetic

Properties Of Cadmium Substituted Cobalt Ferrite Nanoparticles. *Superlattices Microstruct.*, 2015. 82: 165–173.

- Akther Hossain, A. K. M. Seki, M. Kawai, T. and Tabata, H. Colossal Magnetoresistance In Spinel Type Zn[1-x]Ni[x]Fe<sub>2</sub>O<sub>4</sub>. J. Appl. Phys., 2004. 96(2):. 1273.
- John Berchmans, L Kalai Selvan, R. Selva Kumar, P. and Augustin, C. Structural And Electrical Properties of Ni<sub>1-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> Synthesized By Citrate Gel Process. *J. Magn. Magn. Mater.*, 2004. 279(1) 103–110.
- 22. Ortega, D. and Pankhurst, Q. A. Magnetic Hyperthermia. *Nanoscience*, 2013.1: 60–88.
- 23. Carta, D. Casula, M. F. Falqui, A. Loche, A. Mountjoy, G. Sangregorio, C. and Corrias, A. A Structural And Magnetic Investigation Of The Inversion Degree In Ferrite Nanocrystals MFe<sub>2</sub>O<sub>4</sub> (M = Mn, Co, Ni). *J. Phys. Chem. C*, 2009. 113(20): 8606–8615.
- Bragg, W. H. The Structure of Magnetite and the Spinels. *Nature*, 1915. 95: 561–561.
- Kalendová, A. Veselý, D. and Brodinová, J. Anticorrosive Spinel-type Pigments of the Mixed Metal Oxides Compared to Metal Polyphosphates. *Anti-Corrosion Methods Mater.*, 2004. 51(1): 6–17.
- Warner, T. E. Synthesis, Properties and Minerology of Important Inorganic Materials, 1st. ed. West Sussex, U.K: John Wiley & Sons Ptd. 2011.
- Sugihara, M. Sato, H. Izaka, A. Kuroda, S. and Saito, M. Magnetic Ferrites.
   48030758 19730922, 1973.
- Lotgering, F. K. Vromans, P. H. G. M. and Huyberts, M. A. H. Permanent-Magnet Material Obtained by Sintering the Hexagonal Ferrite. *J. Appl. Phys.*, 1980. 51: 5913–5918.
- 29. Natta, G. and Passerini, L. Spinelli Del Cobalto Bivalente: Alluminato, Cromito, Ferrito E Cobaltito Cobaltosi. *Gazz. Chim. Ital.*, 1929. 59: 280–288.
- Bhattacharjee, K. Pati, S. P. Das, G. C. Das, D. and Chattopadhyay, K. K. Effect Of Particle Size Distribution On The Structure, Hyperfine, And Magnetic Properties Of Ni<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> Nanopowders. *J. Appl. Phys.*, 2014.116(23): 233907.
- Van Uitert, L. G. High Resistivity Nickel Ferrites—the Effect of Minor Additions of Manganese or Cobalt. J. Chem. Phys., 1956. 24: 306–310.

- 32. McGuire, T. R. and Potter, R. I. Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys. *IEEE Trans. Magn.*, 1975. 11: 1018–1038.
- Okasha, N. Enhancement of Magnetization of Mg–Mn Nanoferrite by γ-Irradiation. J. Alloys Compd., 2010. 490(1–2) 307–310.
- Wah, M. S. Swe, M. M. Thant, A. A. Kaung, P. and Win, T. W. Study on Electrical Properties of MgMn Films Prepared by Chemical Spray Pyrolysis Deposition. *Univ. Res. J.*, 2011. 4(4).
- Gabal, M. A. and Bayoumy, W. A. Effect Of Composition On Structural And Magnetic Properties Of Nanocrystalline Ni<sub>0.8-x</sub>Zn0.2Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> Ferrite. *Polyhedron*, 2010. 29: 2569–2573.
- Thankachan, S. Jacob, B. P. Xavier, S. and Mohammed, E. M. Effect Of Samarium Substitution On Structural And Magnetic Properties Of Magnesium Ferrite Nanoparticles. *J. Magn. Magn. Mater.*, 2013 348: 140–145.
- Gateshki, M. Petkov, V. Pradhan, S. K. and Vogt, T. Structure Of Nanocrystalline MgFe<sub>2</sub>O<sub>4</sub> From X-Ray Diffraction, Rietveld And Atomic Pair Distribution Function Analysis. *J. Appl. Crystallogr.*, 2005. 38(5): 772–779.
- Gurunathan, K. Murugan, A. V. Marimuthu, R. Mulik, U. and Amalnerkar, D. Electrochemically Synthesised Conducting Polymeric Materials For Applications Towards Technology In Electronics, Optoelectronics And Energy Storage Devices. *Mater. Chem. Phys.*, 1999. 61(3): 173–191.
- Yang, Y. Westerweele, E. Zhang, C. Smith, P. and Heeger, A. J. Enhanced Performance of Polymer Light-Emitting Diodes Using High-Surface Area Polyaniline Network Electrodes. J. Appl. Phys., 1995. 77(2): 694–698.
- Talaie, A. and Eisazadeh, H. Advanced Conductive Paints Using Smart Colloidal Polymeric Composites : Fabrication and Computer Classification. *Iran. Polym. J.*, 1999. 8(4): 241–246.
- Gubin, S. P. Koksharov, Y. A. Khomutov, G. B. and Yurkov, G. Y. Magnetic Nanoparticles: Preparation, Structure And Properties. *Russ. Acad. Sci. Turpion Ltd.*, 2005. 74(6): 489–520.
- Albuquerque, A. S. Ardisson, J. D. Macedo, W. A. A. López, J. L. Paniago, R. and Persiano, A. I. C. Structure And Magnetic Properties Of Nanostructured Ni-Ferrite. *J. Magn. Magn. Mater.*, 2001.226–230: 1379–1381.
- Lu, X. Yu, Y. Chen, L. Ma, H. Han Gao, J. W. Zhang, W. and Wei, Y. Aniline Dimer–COOH Assisted Preparation Of Well-Dispersed Polyaniline–Fe<sub>3</sub>O<sub>4</sub>

Nanoparticles. Nanotechnology, 2005. 16(9): 1660–1665.

- 44. Sun, S. F. *Physical Chemistry of Macromolcules Basic Principles and Issues*, 2nd ed. St. John's University Jamaica, N. Y.: John Wiley & Sons, Inc. 2004.
- Wu, W. He, Q. and Jiang, C. Magnetic iron oxide nanoparticles: Synthesis And Surface Functionalization Strategies. *Nanoscale Res. Lett.*, 2008. 3(11): 397– 415.
- Sun. S. Murray, C. B. Weller, D. Folks, L. Moser, A. Monodisperse FePt Nanoparticles And Ferromagnetic FePt Nanocrystal Superlattices. *Science.*, 2000. 287(5460): 1989–1992.
- Anders, S. Toney, M. F. Thomson, T. Thiele, J. -U. Terris, B. D. Sun, S. and Murray, C. B. X-Ray Studies Of Magnetic Nanoparticle Assemblies. *J. Appl. Phys.*, 2003. 93(10): 7343.
- Hankare, P. P. Jadhav, S. D. Sankpal, U. B. Chavan, S. S. Waghmare, K. J. and Chougule, B. K. Synthesis, Characterization And Effect Of Sintering Temperature On Magnetic Properties Of MgNi Ferrite Prepared By Co-Precipitation Method. J. Alloys Compd., 2009. 475(1–2) 926–929.
- Azizi, A. Yoozbashizadeh, H. Yourdkhani, A. and Mohammadi, M. Phase Formation And Change Of Magnetic Properties In Mechanical Alloyed Ni<sub>0.5</sub>Co<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> By Annealing. *J. Magn. Magn. Mater.*, 2010. 322(1) 56–59.
- Chia, C. H. Zakaria, S. Yusoff, M. Goh, S. C. Haw, C. Y. Ahmadi, S. Huang, N. M. and Lim, H. N. Size And Crystallinity-Dependent Magnetic Properties Of CoFe<sub>2</sub>O<sub>4</sub> Nanocrystals. *Ceram. Int.*, 2010. 36(2) 605–609.
- Dlamini, W. B. Msomi, J. Z. and Moyo, T. XRD, Mössbauer And Magnetic Properties of Mg<sub>x</sub>Co<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> Nanoferrites. *J. Magn. Magn. Mater.*, 2015. 373: 78–82.
- Sontu, B. U. Yelasani, V. and Musugu, V. R. R. Structural, Electrical And Magnetic Characteristics Of Nickel Substituted Cobalt Ferrite Nano Particles, Synthesized By Self Combustion Method. *J. Magn. Magn. Mater.*, 2015. 374: 376–380.
- Chen, B. Chen, D. Kang, Z. and Zhang, Y. Preparation And Microwave Absorption Properties Of Ni–Co Nanoferrites. J. Alloys Compd., 2015. 618: 222–226.
- 54. Shakir, M. Nasir, Z. Shoeb, M. and Alam, F. Study On Immobilization Of Yeast Alcohol Dehydrogenase On Nanocrystalline Ni-Co Ferrites As Magnetic

Support. Int. J. Biol. Macromol., 2015. 72: 1196–1204.

- Gao, J. Yan, Z. Liu, J. Zhang, M. and Guo, M. Synthesis, Structure And Magnetic Properties Of Zn Substituted Ni–Co–Mn–Mg Ferrites. *Mater. Lett.*, 2015. 141: 122–124.
- Bao, N. Shen, L. Padhan, P. and Gupta, A. Self-Assembly And Magnetic Properties Of Shape-Controlled Monodisperse CoFe<sub>2</sub>O<sub>4</sub> Nanocrystals. *Appl. Phys. Lett.*, 2008. 92(17): 2–5.
- 57. Clearfield, A. Gadalla, A. M. Marlow, W. H. and Livingston, T. W. Synthesis of Ultrafine Grain Ferrites. *J. Am. Ceram. Soc.*, 1989. 72(1): 1789–1792.
- Yu, H. F. and Gadalla, A. M. Preparation of NiFe<sub>2</sub>O<sub>4</sub> Powder by Pyrolysis of Nitrate Aerosols in NH<sub>3</sub>. *J. Mater. Res.*, 1996. 11(3): 663–670.
- Dorsey, P. C. Lubitz, P. Chrisey, D. B. and Horwitz, J. S. CoFe<sub>2</sub>O<sub>4</sub> Thin Films Grown On (100) MgO Substrates Using Pulsed Laser Deposition. *J. Appl. Phys.*, 1996. 79(8): 6338–6340.
- Shafi, K. V. P. M. Gedanken, A. Prozorov, R. and Balogh, J. Sonochemical Preparation and Size-Dependent Properties of Nanostructured CoFe<sub>2</sub>O<sub>4</sub> Particles. *Chem. Mater.*, 1998. 10(11): 3445–3450.
- Cross, W. B. Affleck, L. Kuznetsov, M. V. Parkin, I. P. and Pankhurst, Q. A. Self-Propagating High-Temperature Synthesis Of Ferrites MFe<sub>2</sub>O<sub>4</sub> (M = Mg, Ba, Co, Ni, Cu, Zn); Reactions In An External Magnetic Field. *J. Mater. Chem.*, 1999. 9(10): 2545–2552.
- 62. Ding, J. Chen, Y. J. Shi, Y. and Wang, S. High Coercivity In SiO<sub>2</sub>-doped CoFe<sub>2</sub>O<sub>4</sub> Powders And Thin Films. *Appl. Phys. Lett.*, 2000. 77(22) 3621.
- Sorescu, M. Grabias, A. Tarabasanu-Mihaila, D. and Diamandescu, L. From Magnetite to Cobalt Ferrite. *J. Mater. Synth. Process.*, 2001. 9(3): 119–123.
- Manova, E. Kunev, B. Paneva, D. Mitov, I. and Petrov, L. Mechano-Synthesis, Characterization and Magnetic Properties of Nanoparticles of Cobalt Ferrite CoFe<sub>2</sub>O<sub>4</sub>. *Chem. Mater.*, 2004. 16(26): 5689–5696.
- 65. Makovec, D. Kosak, A. and Drofenik, M. Preparation Of Mnzn-Ferrite With Microemulsion Technique. *J. Eur. Ceram. Soc.*, 2004 24(6): 959–962.
- Rahman, I. Z. and Ahmed, T. T. A Study On Cu Substituted Chemically Processed Ni–Zn–Cu Ferrites. J. Magn. Magn. Mater., 2005. 290–291(2): 1576–1579.
- 67. Pramanik, N. C. Fuji, T. Nakanishi, M. and Takada, J. Preparation And

Magnetic Properties Of The CoFe<sub>2</sub>O<sub>4</sub> Thin Films On Si Substrate By Sol-Gel Technique. *J. Mater. Sci.*, 2005. 40(16): 4169–4172.

- Sartale, S. D. Lokhande, C. D. and Ganesan, V. Electrochemical and Characterization of CoFe<sub>2</sub>O<sub>4</sub> Thin Films. *Phys. Status Solidi A*, 2005. 202(1): 85–94.
- Drofenik, M. Kristl, M. Makovec, D. and Košak, A. Syntheses of Ferrite Nanoparticles Using Ultrasound Irradiation. *Mater. Sci. Forum*, 2006. 518: 73– 78.
- Gul, I. H. Ahmed, W. and Maqsood, A. Electrical And Magnetic Characterization Of Nanocrystalline Ni–Zn Ferrite Synthesis By Co-Precipitation Route. J. Magn. Magn. Mater., 2008. 320(3–4): 270–275.
- Pillai, V. and Shah, D. O. Synthesis Of High-Coercivity Cobalt Ferrite Particles Using Water-In-Oil Microemulsions. J. Magn. Magn. Mater., 1996. 163(1-2): 243–248.
- Maaz, K. Mumtaz, A. Hasanain, S. K. and Ceylan, A. Synthesis And Magnetic Properties Of Cobalt Ferrite (CoFe<sub>2</sub>O<sub>4</sub>) Nanoparticles Prepared By Wet Chemical Route. *J. Magn. Magn. Mater.*, 2007. 308(2): 289–295.
- Kumbhar, V.S. Jagadale, A. D. Shinde, N. M. and Lokhande, C. D. Chemical Synthesis Of Spinel Cobalt Ferrite (CoFe<sub>2</sub>O<sub>4</sub>) Nano-Flakes For Supercapacitor Application. *Appl. Surf. Sci.*, 2012. 259: 39–43.
- Akram, M. Anis-ur-Rehman, M. Mubeen, M. and Ali, M. Microstructures, Electrical and Magnetic Properties of Zn Doped Co Nanoferrites. *Key Eng. Mater.*, 2012. 510–511: 221–226.
- 75. Yavuz, O. Ram, M. K. Aldissi, M. Poddar, P. and Hariharan, S. Synthesis And The Physical Properties Of MnZn Ferrite And NiMnZn Ferrite–Polyaniline Nanocomposite Particles. J. Mater. Chem., 2005. 15: 810–817.
- Li, Y. Zhang, H. Liu, Y. and Xiao, J. Q. Synthesis and Electro-magnetic Properties of Polyaniline-Barium Ferrite Nanocomposite. *Chinese J. Chem. Phys.*, 2007. 20(6): 739–742.
- 77. houhu, X. Yi-Xiang, J. W. Yu, J. C. and Leung, K. C. -F. Preparation, Characterization, and Catalytic Activity of Core/Shell Fe<sub>3</sub>O<sub>4</sub>-Polyaniline-Au Nanocomposites. *Langmuir*, 2009. 25(19): 11835–11843.
- Tanrıverdi, E. E. Uzumcu, A. T. Kavas, H. Demir, A. and Baykal, A. Conductivity Study Of Polyaniline-Cobalt Ferrite (PANI-CoFe<sub>2</sub>O<sub>4</sub>)

Nanocomposite. Nano-micro Lett., 2011. 3(2): 99-107.

- Patil, R. Roy, A. S. Anilkumar, K. R. Jadhav, K. M. and Ekhelikar, S. Dielectric Relaxation And Ac Conductivity Of Polyaniline-Zinc Ferrite Composite. *Compos. Part B Eng.*, 2012. 43(8): 3406–3411.
- Zhong-Ai, H. Hong-Xiao, Z. Chao, K. Yu-Ying, Y. Xiu-Li, S. Li-Jun, R. and Yan-Peng, W. The Preparation And Characterization Of Quadrate NiFe<sub>2</sub>O<sub>4</sub>/Polyaniline Nanocomposites. *J. Mater. Sci. Mater. Electron.*, 2006. 17(11): 859–863.
- Kazantseva, N. E. Bespyatykh, Y. I. Sapurina, I. Stejskal, J. Vilčáková, J. and Sáha, P. Magnetic Materials Based On Manganese-Zinc Ferrite With Surface-Organized Polyaniline Coating. *J. Magn. Magn. Mater.*, 2006. 301(1): 155– 165.
- Jiang, J. Ai, L. and Li, L. C. Synthesis And Magnetic Performance Of Polyaniline/Mn-Zn Ferrite Nanocomposites With Intrinsic Conductivity. J. Mater. Sci., 2009. 44(4): 1024–1028.
- Elsayed, A. H. M. Eldin, S. M. Elsayed, A. M. Elazm, A. H. A. Younes, E. M. and Motaweh, H. A. Synthesis And Properties Of Polyaniline / Ferrites Nanocomposites. *Int. J. Eletrochemical Sci.*, 2011. 6: 206–221.
- Khafagy, R. M. Synthesis, Characterization, Magnetic And Electrical Properties Of The Novel Conductive And Magnetic Polyaniline/Mgfe<sub>2</sub>O<sub>4</sub> Nanocomposite Having The Core-Shell Structure. J. Alloys Compd., 2011. 509(41) 9849–9857.
- Balaji, M. Lekha, P.C. and Padiyan, D. P. Vibrational Spectroscopy Core Shell Structure In Copper Ferrite – Polyaniline Nanocomposite : Confirmation By Laser Raman Spectra. *Vib. Spectrosc.*, 2012. 62: 92–97.
- Baykal, A. Günay, M. Toprak, M. S. and Sozeri, H. Effect Of Ionic Liquids On The Electrical And Magnetic Performance Of Polyaniline-Nickel Ferrite Nanocomposite. *Mater. Res. Bull.*, 2013. 48(2): 378–382.
- Senthilkumar, B. Sankar, K. V. Sanjeeviraja, C. and Selvan, R. K. Synthesis And Physico-Chemical Property Evaluation Of PANI – NiFe<sub>2</sub>O<sub>4</sub> Nanocomposite As Electrodes For Supercapacitors. *J. Alloys Compd.*, 2013. 553: 350–357.
- Hosseini, S. H. and Asadnia, A. Polyaniline / Fe<sub>3</sub>O<sub>4</sub> Coated On MnFe<sub>2</sub>O<sub>4</sub>
   Nanocomposite : Preparation, Characterization, And Applications In

Microwave Absorption. Int. J. Phys. Sci., 2013. 8(22) 1209–1217.

- Wang, C. Shen, Y. Wang, X. Zhang, H. and Xie, A. Materials Science in Semiconductor Processing Synthesis of Novel NiZn-Ferrite / Polyaniline Nanocomposites and Their Microwave Absorption Properties. *Mater. Sci. Semicond. Process.*, 2013. 16: 1–6.
- 90. Birkholz, M. *Thin Film Analysis by X-Ray Scattering*. Weinheim: Wiley-Vch Verlag. 2006.
- Aphesteguy, J. C. and Jacobo, S. E. Synthesis of A Soluble Polyaniline–Ferrite Composite: Magnetic And Electric Properties. *J. Mater. Sci.*, 2007. 42(17): 7062–7068.
- Sontu, U. B. Yelasani, V. and Musugu, V. R. R. Structural, Electrical And Magnetic Characteristics of Nickel Substituted Cobalt Ferrite Nano Particles, Synthesized By Self Combustion Method. *J. Magn. Magn. Mater.*, 2015. 374: 376–380.
- 93. Stuart, B. H. and Ando, D. J. Infrared Spectroscopy: Fundamentals and Applications. N. Y.: John Wiley & Sons. 2004.
- Foner, S. and Artman, J. O. Magnetization Processes in Heat-Treated Single Crystal Cobalt Ferrite. J. Appl. Phys., 1958. 29: 443–444.
- Foner, S. Versatile and Sensitive Vibrating-Sample Magnetometer. *Rev. Sci. Instrum.*, 1959. 30(7): 548–557.
- 96. Manjurul Haque, M. Huq, M. M. and Hakim, M. A. Effect of Zn<sup>2+</sup> Substitution On The Magnetic Properties of Mg<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> Ferrites. *Phys. B Condens. Matter*, 2009. 404(21) 3915–3921.
- 97. Jnaneshwara, D. M. Avadhani, D. N. Daruka Prasad, B. Nagabhushana, B. Nagabhushana, H. Sharma, S. C. Prashantha, S. C. and Shivakumara, C. Effect Of Zinc Substitution On The Nanocobalt Ferrite Powders For Nanoelectronic Devices. J. Alloys Compd., 2014. 587: 50–58.
- Farghali, A. A. Moussa, M. and Khedr, M. H. Synthesis And Characterization Of Novel Conductive And Magnetic Nano-Composites. J. Alloys Compd., 2010. 499(1): 98–103.
- Joshi, S. Kumar, M. Chhoker, S. Srivastava, G. Jewariya, M. and Singh, V. N. Structural, Magnetic, Dielectric And Optical Properties Of Nickel Ferrite Nanoparticles Synthesized By Co-Precipitation Method. *J. Mol. Struct.*, 2014. 1076: 55–62.

- 100. Bamzai, K. K. Kour, G. Kaur, B. Arora, M. and Pant, R. P. Infrared Spectroscopic And Electron Paramagnetic Resonance Studies On Dy Substituted Magnesium Ferrite. J. Magn. Magn. Mater., 2013 345: 255–260.
- 101. Verma, K. Kumar, A. and Varshney, D. Dielectric Relaxation Behavior Of A<sub>x</sub>Co<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (A=Zn, Mg) Mixed Ferrites. J. Alloys Compd., 2012. 526: 91–97.
- 102. Druc, A. C. Borhan, A. I. Diaconu, A. Iordan, A. R. Nedelcu, G. G. Leontie, L. and Palamaru, M. N. How Cobalt Ions Substitution Changes The Structure And Dielectric Properties Of Magnesium Ferrite?. *Ceram. Int.*, 2014. 40(8): 13573–13578.
- 103. Zhang, W. Cen, J. S. Hu, Z. F. Zhuang, L. Tang, X. G. and Luo, L. Soft Magnetic Material (NiFe<sub>2</sub>O<sub>4</sub>) Particles Synthesized by Solvent Co-Precipitation Method. *Adv. Mater. Res.*, 2011. 216: 649–653.
- 104. Goodarz Naseri, M. Ara, M. H. H. Saion, E. B. and Shaari, A. H. Superparamagnetic Magnesium Ferrite Nanoparticles Fabricated By A Simple, Thermal-Treatment Method. J. Magn. Magn. Mater., 2014. 350: 141–147.
- 105. Stock, S. R. and Cullity, B. D. *Elements of X-ray Diffraction*. Upper Saddle River, N.J: Prentice Hall. 2001.
- Raju, K Venkataiah, G. and Yoon, D. H. Effect Of Zn Substitution On The Structural And Magnetic Properties Of Ni–Co Ferrites. *Ceram. Int.*, 2014. 40(7) 9337–9344.
- 107. Raut, A. V. Barkule, R. S. Shengule, D. R. and Jadhav, K. M. Synthesis, Structural Investigation And Magnetic Properties Of Zn<sup>2+</sup> Substituted Cobalt Ferrite Nanoparticles Prepared By The Sol–Gel Auto-Combustion Technique. *J. Magn. Magn. Mater.*, 2014. 358–359: 87–92.
- Naeem, M. Abbas, N. Hussain, I. and Maqsood, I. Structural, Electrical And Magnetic Characterization Of Ni – Mg Spinel Ferrites. J. Alloys Compd., 2009. 487: 739–743.
- 109. Gabal, M. A. Al Angari, Y. M. and Zaki, H. M. Structural, Magnetic And Electrical Characterization Of Mg–Ni Nanocrystalline Ferrites Prepared Through Egg-White Precursor. J. Magn. Magn. Mater., 2014. 363: 6–12.
- 110. Hemeda, O. M. Mostafa, N. Y. Elkader, O. H. A. and Ahmed, M. A. Solubility Limits In Mn–Mg Ferrites System Under Hydrothermal Conditions. Journal Of Magnetism And Magnetic Materials. J. Magn. Magn. Mater., 2014. 364: 39– 46.

- 111. Waldron, R. D. Infrared Spectra of Ferrites. Phys. Rev., 1955. 99(6): 1927.
- 112. Balavijayalakshmi, J. Suriyanarayanan, N. and Jayaprakash, R. Effects Of Sintering On Structural And Magnetic Properties Of Cu Substituted Cobalt-Nickel Mixed Ferrite Nano Particles. J. Magn. Magn. Mater., 2014. 362: 135– 140.
- 113. Kumar, L. Kumar, P. Narayan, A. and Kar, M. Rietveld Analysis Of XRD Patterns Of Different Sizes Of Nanocrystalline Cobalt Ferrite. *Int. Nano Lett.*, 2013. 3(1): 8.
- 114. Chhantbar, M. C. Trivedi, U. N. Tanna, P. V. Shah, H. J. Vara, R. P. Joshi, H. H. and Modi, K. B. Infrared Spectral Studies Of Zn-Substituted CuFeCrO<sub>4</sub> Spinel Ferrite System. *Indian J. Phys.*, 2004. 78A(3): 321–326.
- Mohamed, M. B. and Yehia, M. Cation Distribution And Magnetic Properties Of Nanocrystalline Gallium Substituted Cobalt Ferrite. J. Alloys Compd., 2014. 615: 181–187.
- Maria, K. Choudhury, S. and Hakim, M. Structural Phase Transformation And Hysteresis Behavior Of Cu-Zn Ferrites. *Int. Nano Lett.*, 2013. 3(1) 42.
- 117. Patange, S. M. Sagar, S. E. Toksha, B. G. Jadhav, S. S. Shukla, S. J. and Jadhav, K. M. Cation Distribution By Rietveld, Spectral And Magnetic Studies Of Chromium-Substituted Nickel Ferrites. *Appl. Phys. A*, 2009. 95(2): 429– 434.
- Mathe, V. L. and Kamble, R. B. Electrical And Dielectric Properties Of Nano Crystalline Ni-Co Spinel Ferrites. *Mater. Res. Bull.*, 2013. 48(4) 1415–1419.
- 119. Sutka, A. Pärna, R. Mezinskis, G. and Kisand, V. Effects Of Co Ion Addition And Annealing Conditions On Nickel Ferrite Gas Response. *Sensors Actuators, B Chem.*, 2014. 192: 173–180.
- 120. Da Dalta, S. Takimi, A. S. Volkmer, T. M. Sousa, V. C. and Bergmann, C. P. Magnetic And Mössbauer Behavior Of The Nanostructured MgFe<sub>2</sub>O<sub>4</sub> Spinel Obtained At Low Temperature. *Powder Technol.*, 2011. 210(2) 103–108.
- 121. Pradhan, S. K. Bid, S. Gateshki, M. and Petkov, V. Microstructure Characterization And Cation Distribution Of Nanocrystalline Magnesium Ferrite Prepared By Ball Milling. *Mater. Chem. Phys.*, 2005. 93(1):. 224–230.
- Gabal, M. Non-Isothermal Decomposition of NiC<sub>2</sub>O<sub>4</sub>–FeC<sub>2</sub>O<sub>4</sub> Mixture Aiming At The Production of NiFe<sub>2</sub>O<sub>4</sub>. J. Phys. Chem. Solids, 2003. 64(8): 1375–1385.

- Globus, A. Pascard, H. and Cagan, V. Distance Between Magnetic Ions and Fundamental Properties in Ferrites. *Le J. Phys. Colloq.*, 1977. 38(C1): C1– 163–C1–168.
- 124. Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Phys., 1921. 5(1) 17–26.
- Kragh, H. An Early Explanation Of The Periodic Table : Lars Vegard And X-Ray Spectroscopy. *Bulletin for the History of Chemistry*. 2011. 1–22.
- 126. Kumar, A. Sharma, P. and Varshney, D. Structural, Vibrational And Dielectric Study Of Ni Doped Spinel Co Ferrites: Co<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x=0.0, 0.5, 1.0). *Ceram. Int.*, 2014. 40(8): 12855–12860.
- 127. Rahimi, M. Kameli, P. Ranjbar, M. Hajihashemi, H. and Salamati, H. The Effect Of Zinc Doping On The Structural And Magnetic Properties of Ni<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>. *Mater Sci*, 2013. 57: 2969–2976.
- 128. Mozaffari, M. Amighian, J. and Darsheshdar, E. Magnetic And Structural Studies Of Nickel-Substituted Cobalt Ferrite Nanoparticles Synthesized By The Sol–Gel Method. J. Magn. Magn. Mater., 2014. 350: 19–22.
- 129. Sujatha, C. Reddy, K. V. Babu, K. S. Reddy, A. R. and Rao, K. H. Effect Of Sintering Temperature On Electromagnetic Properties of NiCuZn Ferrite. *Ceram. Int.*, 2013. 39: 3077–3086.
- Druc, A. C. Borhan, A. I. Diaconu, A. Iordan, A. R. Nedelcu, G. G. Leontie, L. and Palamaru, M. N. How Cobalt Ions Substitution Changes The Structure And Dielectric Properties Of Magnesium Ferrite?. *Ceram. Int.*, 2014. 40(8): 13573–13578.
- 131. Chitra P. Muthusamy, A. Dineshkumar, S. and Jayaprakash, R. Temperature And Frequency Dependence On Electrical Properties Of Polyaniline/Ni(1-x)Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> Nanocomposites. *J. Magn. Magn. Mater.*, 2015. 384: 204–212.
- Raming, T. P. Winnubst, A. J. A. Van Kats, C. M. and Philipse, A. P. The Synthesis And Magnetic Properties Of Nanosized Hematite (alpha-Fe<sub>2</sub>O<sub>3</sub>) Particles. J. Colloid Interface Sci., 2002. 249(2) 346–350.
- Qu, Y. Yang, H. Yang, N. Fan, Y. Zhu, H. and Zou, G. The Effect Of Reaction Temperature On The Particle Size, Structure And Magnetic Properties Of Coprecipitated CoFe<sub>2</sub>O<sub>4</sub> Nanoparticles. *Mater. Lett.*, 2006. 60(29–30): 3548– 3552.

- 134. Naseri, M. G. Saion, E. B. Hashim, M. Shaari, A. H. and Ahangar, H. A. Synthesis And Characterization Of Zinc Ferrite Nanoparticles By A Thermal Treatment Method. *Solid State Commun.*, 2011. 151(14–15) 1031–1035.
- Stucki. J.W. and Banwart. W.L. Advanced Chemical Methods for Soil and Clay Minerals Research, 1st ed. London & Boston: D. Reidel Publishing. 1981.
- 136. Kumar, A. Yadav, N Rana, D. S. Kumar, P. Arora, M. and Pant, R. P. Structural And Magnetic Studies Of The Nickel Doped CoFe<sub>2</sub>O<sub>4</sub> Ferrite Nanoparticles Synthesized By The Chemical Co-Precipitation Method. *J. Magn. Magn. Mater.*, 2015. 394: 379–384.
- Shahane, G. S. Kumar, A. Arora, M. Pant, R. P. and Lal, K. Synthesis And Characterization Of Ni–Zn Ferrite Nanoparticles. *J. Magn. Magn. Mater.*, 2010. 322(8): 1015–1019.
- Wu, K Li, H. Yang, C. and Chen, H. Effect of pH On The EPR Properties Of NiZn Ferrite/SiO<sub>2</sub> Nanocomposite. *Appl. Surf. Sci.*, 2004. 228(1–4): 285–291.
- 139. Varshney, D. Verma, K. and Kumar, A. Substitutional Effect On Structural And Magnetic Properties of  $A_x Co_{1-x} Fe_2 O_4$  (A = Zn, Mg and x = 0.0, 0.5) Ferrites. J. Mol. Struct., 2011. 1006(1–3): 447–452.
- 140. Qi, Y. Yang, Y. Zhao, X. Liu, X. Wu, P. Zhang, F. and Xu, S. Controllable Magnetic Properties Of Cobalt Ferrite Particles Derived From Layered Double Hydroxide Precursors. *Particuology*, 2010. 8(3): 207–211.
- Maria Yousaf, L. Mahmood, K. Mahmood, A. Malik, H. Farooq, M. Shakir, I. Asghar, M. and Azhar, M. New Mg<sub>0.5</sub>Co<sub>x</sub>Zn0.5-xFe<sub>2</sub>O<sub>4</sub> Nano-Ferrites : Structural Elucidation And Electromagnetic Behavior Evaluation. *Curr. Appl. Phys.*, 2014. 14: 716–720.
- 142. Ati, A. A. Othaman, Z. Samavati, A. and Doust, F. Y. Structural And Magnetic Properties Of Co – Al Substituted Ni Ferrites Synthesized By Co-Precipitation Method. J. Mol. Struct., 2014. 1058: 136–141.
- 143. Yafet, Y. and Kittel, C. Antiferromagnetic Arrangements in Ferrites. *Phys. Rev.*, 1952. 87(2): 290.
- 144. Kemei, M. C. Moffitt, S. L. Shoemaker, D. P. and Seshadri, R. Evolution Of Magnetic Properties In The Normal Spinel Solid Solution Mg(<sub>1-x</sub>)Cu(<sub>x</sub>)Cr<sub>2</sub>O<sub>4</sub>. *J. Phys. Condens. Matter*, 2012. 24(4): 046003.

- Muthuselvam, I. P. and Bhowmik, R. N. Mechanical Alloyed Ho<sup>3+</sup> Doping In CoFe<sub>2</sub>O<sub>4</sub> Spinel Ferrite And Understanding Of Magnetic Nanodomains. J. Magn. Magn. Mater., 2010. 322(7): 767–776.
- 146. Zhang, H. E. Zhang, B. F. Wang, G. F. Dong, X. H. and Gao, Y. The Structure And Magnetic Properties Of Zn<sub>1-x</sub>Ni<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> Ferrite Nanoparticles Prepared By Sol–Gel Auto-Combustion. *J. Magn. Magn. Mater.*, 2007. 312(1): 126–130.
- 147. Iqbal, M. J. Ashiq, M. N. Hernandez-Gomez, P. and Munoz, J. M. Magnetic, Physical And Electrical Properties Of Zr-Ni-Substituted Co-Precipitated Strontium Hexaferrite Nanoparticles. *Scr. Mater.*, 2007. 57(12) 1093–1096.
- 148. Kumar, A. Yadav, N. Rana, D. S. Kumar, P. Arora, M. and Pant, R. P. Structural And Magnetic Studies Of The Nickel Doped CoFe<sub>2</sub>O<sub>4</sub> Ferrite Nanoparticles Synthesized By The Chemical Co-Precipitation Method. J. Magn. Magn. Mater., 2015. 394: 379–384.
- 149. Bayrakdar, H. Yalçın, O. Cengiz, U. Özüm, S. Anigi, E. and Topel, O. Comparison Effects And Electron Spin Resonance Studies Of alpha-Fe<sub>2</sub>O<sub>4</sub> Spinel Type Ferrite Nanoparticles. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2014. 132: 160–164.
- Abragam, A. and Bleaney, B. *Electron Paramagnetic Resonance of Transition Ions*, 1st ed. Clarendon - Oxford, UK: Oxford University Press. 1970.
- Willard, M. A. Nakamura, Y. Laughlin, D. E. and McHenry, M. E. Magnetic Properties of Ordered and Disordered Spinel-Phase Ferrimagnets. *J. Am. Ceram. Soc.*, 1999. 82(12): 3342–3346.
- 152. Naseri, M. G. Saion, E. B. Ahangar, H. A. Hashim, M. and Shaari, A. H. Simple Preparation And Characterization Of Nickel Ferrite Nanocrystals By A Thermal Treatment Method. *Powder Technol.*, 2011. 212(1) 80–88.
- 153. Moradmard, H. Shayesteh, S. F. Tohidi, P. Abbas, Z. and Khaleghi, M. Structural, Magnetic And Dielectric Properties Of Magnesium Doped Nickel Ferrite Nanoparticles. J. Alloys Compd., 2015. 650: 116–122.
- Kodama, R. H. and Berkowitz, A. E. Atomic-Scale Magnetic Modeling Of Oxide Nanoparticles. *Phys. Rev. B*, 1999. 59(9): 6321.
- 155. Zeng, Q. Baker, I. McCreary, V. and Yan, Z. Soft Ferromagnetism In Nanostructured Mechanical Alloying FeCo-based Powders. J. Magn. Magn. Mater., 2007. 318(1–2): 28–38.
- 156. Mathew, D. S. and Juang, R. S. An Overview Of The Structure And

Magnetism Of Spinel Ferrite Nanoparticles And Their Synthesis In Microemulsions. *Chem. Eng. J.*, 2007. 129(1–3) 51–65.

- 157. Roy, P. K. and Bera, J. Effect Of Mg Substitution On Electromagnetic Properties of (Ni<sub>0.25</sub>Cu<sub>0.20</sub>Zn<sub>0.55</sub>)Fe<sub>2</sub>O<sub>4</sub> Ferrite Prepared By Auto Combustion Method. J. Magn. Magn. Mater., 2006. 298(1): 38–42.
- Chiu, W. S. Radiman, S. Abd-Shukor, R. Abdullah, M. H. and Khiew, P. S. Tunable Coercivity of CoFe<sub>2</sub>O<sub>4</sub> Nanoparticles Via Thermal Annealing Treatment. J. Alloys Compd., 2008. 459(1–2): 291–297.
- 159. Hankare, P. P. Jadhav, S. D. Sankpal, U. B. Chavan, S. S. Waghmare, K. J. and Chougule, B. K. Synthesis, Characterization And Effect Of Sintering Temperature On Magnetic Properties Of MgNi Ferrite Prepared By Co-Precipitation Method. J. Alloys Compd., 2009. 475(1–2): 926–929.
- 160. Wu, K. H. Ting, T. H. Wang, G. P. Yang, C. C. and McGarvey, B. R. EPR and SQUID Studies On Magnetic Properties of SiO<sub>2</sub>-doped Ni-Zn Ferrite Nanocomposites. *Mater. Res. Bull.*, 2005. 40(12): 2080–2088.
- 161. Köseoğlu, Y. Effect Of Surfactant Coating On Magnetic Properties of Fe<sub>3</sub>O<sub>4</sub>
   Nanoparticles: ESR Study. J. Magn. Magn. Mater., 2006. 300(1): e327–e330.
- Cao, X and Gu, L. Spindly Cobalt Ferrite Nanocrystals: Preparation, Characterization And Magnetic Properties. *Nanotechnology*, 2005. 16(2): 180– 185.
- 163. Muneyuki, D. Resonance On the g-Value of Ferrimagnetic. 1954.
- 164. Lee, S. -P. Chen, Y. -J. Ho, C. -M. Chang, C. -P. and Hong, Y. -S. A Study On Synthesis And Characterization Of The Core–Shell Materials of Mn<sub>1-x</sub>Zn<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>–Polyaniline. *Mater. Sci. Eng. B*, 2007. 143(1–3): 1–6.
- 165. Khairy, M. Characterization and Properties. J. Alloys Compd., 2014. 608: 283–291.
- 166. Standley, K. J. Oxide magnetic materials: Monographs on the physics and chemistry of materials, 2nd ed. Colorado, U.S.A.: Oxford University Press. 1972.
- 167. Karmakar, D. Mandal, S. K. Kadam, R. M. Paulose, P. L. Rajarajan, A. K. Nath, T. K. Das, A. K. Dasgupta, I. and Das, G. P. Ferromagnetism In Fedoped ZnO Nanocrystals: Experimental and Theoretical investigations. *Phys. Rev. B Condens. matter Mater. Phys.*, 2007. 75: 144404.
- 168. Noginova, N. Arthur, E. Weaver, T. Loutts, G. B. Atsarkin, V. A. and Gotovtsev, D. G. NMR And Spin Relaxation In LaGA<sub>1-x</sub>Mn<sub>x</sub>O<sub>3</sub> - Evidence for

Thermally Activated Internal Dynamics. *Phys. Rev. B. Condens. Matter*, 2004. 69(2): 024406.

- Piracha, A. H. Ramay, S. M. Atiq, S. Siddiqi, S. A. Saleem, M. and Anwar, M. S. Dielectric And Magnetic Investigations Of Mixed Cubic Spinel Co-Ferrites With Controlled Mg Content. *J. Electroceramics*, 2015. 34(2–3) 122–129.
- 170. Batoo, K. M. Mir, F. A. Abd El-sadek, M. -S. Shahabuddin, M. and Ahmed, N. Extraordinary High Dielectric Constant, Electrical And Magnetic Properties Of Ferrite Nanoparticles At Room Temperature. J. Nanoparticle Res., 2013. 15(11): 2067.
- 171. Asif Iqbal, M. Misbah-Ul-Islam, Ali, I Khan, H. M. Mustafa, G. and Ali, I. Study Of Electrical Transport Properties Of Eu<sup>+3</sup> Substituted MnZn-Ferrites Synthesized By Co-Precipitation Technique. *Ceram. Int.*, 2013. 39(2): 1539–1545.
- 172. Pandit, R. Sharma, K. K. Kaur, P. and Kumar, R. Cation Distribution Controlled Dielectric, Electrical And Magnetic Behavior Of In<sup>3+</sup> Substituted Cobalt Ferrites Synthesized Via Solid-State Reaction Technique. *Mater. Chem. Phys.*, 2014. 148(3): 988–999.
- Dar, M. A. Verma, V. Gairola, S. P. Siddiqui, W. A. Singh, R. K. and Kotnala,
   R. K. Low Dielectric Loss Of Mg Doped Ni-Cu-Zn Nano-Ferrites For Power Applications. *Appl. Surf. Sci.*, 2012. 258(14): 5342–5347.
- 174. Druc, A. C. Borhan, A. I. Nedelcu, G. G. Leontie, L. Iordan, A. R. and Palamaru, M. N. Structure-Dielectric Properties Relationships In Copper-Substituted Magnesium Ferrites. *Mater. Res. Bull.*, 2013. 48(11): 4647–4654.
- 175. Dhawan, S. K. Ohlan, A. and Singh, K. Designing of Nano Composites of Conducting Polymers for EMI Shielding," In Advances in Nanocomposites -Synthesis, Characterization and Industrial Applications, B. Reddy, Ed: Intech. 429–482; 2011.
- Mohamed, M. B. and EL-Sayed, K. Structural, Magnetic And Dielectric Properties of PANI- Ni<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>1.5</sub>Cr<sub>0.5</sub>O<sub>4</sub> Nanocomposite. *Compos. Part B*, 2014. 56: 270–278.
- 177. Wang, W. S. Gumfekar, S. P. Jiao, Q. and Zhao, B. Ferrite-Grafted Polyaniline Nanofibers As Electromagnetic Shielding Materials. *J. Mater. Chem. C*, 2013. 1(16): 2851.

- Liu, P. Huang, Y. and Zhang, X. Cubic NiFe<sub>2</sub>O<sub>4</sub> Particles On Graphene-Polyaniline And Their Enhanced Microwave Absorption Properties. *Compos. Sci. Technol.*, 2015. 107: 54–60.
- He, Z. Fang, Y. Wang, X. and Pang, H. Microwave Absorption Properties of PANI/CIP/Fe<sub>3</sub>O<sub>4</sub> Composites. *Synth. Met.*, 2011. 161(5–6): 420–425.