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ABSTRACT 

Induction motors (IM) are critical components in many industrial processes. There 

is a continually increasing interest in the IMs’ fault diagnosis. The scope of this thesis 

involves condition monitoring and fault detection of three phase IMs. Different 

monitoring techniques have been used for fault detection on IMs. Vibration and stator 

current monitoring have gained privilege in literature and in the industry for fault 

diagnosis. The performance of the vibration and stator current setups was compared and 

evaluated. In that perspective, a number of data were captured from different faulty and 

healthy IMs by vibration and current sensors. The  Principal Component Analysis (PCA) 

was utilized for feature extraction to monitor and classify collected data for finding the 

faults in IMs. A new method was proposed with the combined use of vibration and current 

setups for fault detection. It consists of two steps: firstly, the training part with the aim of 

giving acceleration property (nature of vibration data) to the current features, and secondly 

the testing part with the aim of excluding the vibration setup from the fault detection 

algorithm, while the output data have the property of vibration features. The 0-1 loss 

function was applied to show the accuracy of vibration, current and proposed fault 

detection method. The PCA classified results showed mixed and unseparated features for 

the current setup. The vibration setup and the proposed method resulted in substantial 

classified features. The 0-1 loss function results showed that the vibration setup and the 

developed method can provide a good level of accuracy. The vibration setup attained the 

highest accuracy of 98.2% in training and 92% in testing. The proposed method performed 

well with accuracies of 96.5% in training and 84% in testing. The current setup, however, 

attained the lowest level of accuracy (66.7% in training and 52% in testing). To assess the 

performance of the proposed method, the Confusion matrix of classification in NN was 

utilized. The Confusion matrix showed an accuracy of 95.1% of accuracy and negligible 

incorrect responses (4.9%), meaning that the proposed fault detection method is reliable 

with minimum possible errors. These vibration, current and proposed fault detection 

methods were also evaluated in terms of cost. The proposed method provided an 

affordable fault detection technique with a high accuracy applicable in various industrial 

fields.  
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 ABSTRAK  

Induction motor (IM) adalah komponen kritikal dalam banyak proses 

perindustrian. Terdapat minat yang semakin meningkat dalam diagnosis IMs. Skop tesis 

ini melibatkan pemantauan keadaan dan pengesanan kesalahan tiga fasa IMs.Teknik 

pemantauan yang berbeza telah digunakan untuk pengesanan kesalahan pada IM. Getaran 

dan stator pemantauan semasa telah mendapat keistimewaan dalam banyak kajian dan 

dalam industri untuk diagnosis kesilapan. Prestasi getaran dan tetapan semasa stator telah 

dibandingkan dan dinilai. Dalam perspektif itu, beberapadata telah diambil dari pelbagai 

IM yang elok dengan getaran dan penderia semasa. Analisis Komponen Utama (PCA) 

digunakan untuk pengekstrakan ciri untuk memantau dan mengklasifikasikan data yang 

dikumpul untuk mencari kesalahan dalam IM. Kaedah baru dicadangkan menggunakan 

gabungan getaran dan tetapan semasa untuk pengesanan kesalahan terdiri daripada dua 

langkah: bahagian latihan dengan tujuan memberikan pecutan harta (sifat data getaran) 

kepada ciri-ciri semasa, dan sebahagian ujian dengan tujuan pengecualian persedian 

ediaan getaran dari algoritma pengesanan kesalahan, sementara data output mempunyai 

sifat ciri getaran. Fungsi kerugian 0-1 digunakan untuk menunjukkan ketepatan getaran, 

kaedah pengesanan kesalahan semasa dan cadangan yang dicadangkan. Hasil 

pengklasifikasian PCA menunjukkan ciri bercampur dan tidak terpakai untuk persediaan 

semasa. Persediaan getaran dan kaedah yang dicadangkan menghasilkan ciri-ciri terkelas 

yang besar. Hasil fungsi kehilangan 0-1 menunjukkan bahawa persediaan getaran dan 

kaedah yang dibangunkan dapat memberikan ketepatan yang baik. Persediaan getaran 

mengakibatkan ketepatan tertinggi 98.2% dalam latihan dan 92% dalam ujian. Kaedah 

yang dicadangkan dijalankan dengan baik dengan ketepatan 96.5% dalam latihan dan 84% 

dalam ujian. Walau bagaimanapun, persediaan semasa mengakibatkan tahap ketepatan 

minimum (66.7% dalam latihan dan 52% dalam ujian). Untuk menilai prestasi kaedah 

yang dicadangkan, klasifikasi kekeliruan klasifikasi dalam NN digunakan. Matriks 

kekeliruan menunjukkan 95.1% ketepatan dan tindak balas yang tidak dapat diabaikan 

(4.9%), yang bermaksud bahawa kaedah pengesanan kesalahan yang dicadangkan boleh 

dipercayai dengan ralat minimum yang mungkin. Kaedah getaran, semasa dan cadangan 

pengesanan kesalahan ini juga dinilai dari segi kos. Kaedah yang dicadangkan 

menyediakan teknik pengesanan kesalahan berpatutan dengan ketepatan tinggi yang 

digunakan dalam pelbagai bidang perindustrian. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Faults in Induction Motors 

 

Induction motors (IM) are most commonly used electrical machines in industry 

because of their low cost, reasonably small size, ruggedness, low maintenance, and 

operation with an easily available power supply (El Hachemi Benbouzid, 2000). However, 

they are subjected to different modes of faults leading to failures. These faults can be 

inherent to the machine itself or may be created by operating conditions. The inherent 

faults could be caused by the mechanical or electrical forces acting on the machine 

enclosure. If a fault is not detected or if it is allowed to be developed further, it may lead 

to a failure (El Hachemi Benbouzid, 2000; Yamamura, 1979).  

The main faults of IMs can generally be classified as 1) stator faults resulting in 

the opening or shorting of one or more of the stator phase winding 2) abnormal connection 

of the stator windings 3) broken rotor bar or cracked rotor end rings 4) static and dynamic 

air gap irregularities 5) bent shaft 6) shorted rotor field winding 7) bearing & gearbox 

failures (Bonett & Soukup, 1992; Shashidhara & Raju, 2013; J.-W.Zhang, Zhu, Li, Qi, & 

Qing, 2007; Cusidó et al., 2011). The squirrel cage of an induction machine consists of 

rotor bars and end rings. Motor with broken bar fault has one or more of the cracked or 

broken bars. Broken rotor bar can be caused by manufacturing defects, thermal stresses or 

frequent starts of the motor at rated voltage (Siddiqui, Sahay, & Giri, 2014). Winding fault 

is due to catastrophe of insulation of the stator winding. This fault can be caused by 

mechanical stresses due to movement of stator coil and rotor striking the stator, electrical 
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stresses due to the supply voltage transient or thermal stresses due to thermal overloading 

(Siddiqui, Sahay, & Giri, 2014). Whereas faulty IMs must normally be removed from the 

application in order to be fixed and repaired, a suitable fault diagnosis and monitoring 

system can reduce the financial loss, drastically (Zarei, 2012; P. Zhang, Du, Habetler, & 

Lu, 2011). 

Early detection of incipient faults is a very important issue in preventive and 

predictive maintenance of electrical equipment. Since in modern industries, the majority 

of the equipment is driven by three-phase induction motors (IMs), the condition 

monitoring of such machines constitutes an essential concern in any industrial section 

(Butler, 1996; Cusidó, Romeral, Ortega, Garcia, & Riba, 2011).  

1.2 Maintenance Strategies 

 Traditional machinery maintenance practice in industry can be categorized 

broadly into three methods:  

a) Run-to-failure maintenance 

b) Scheduled maintenance 

c) Condition based maintenance 

Run-to-failure maintenance, which reacts to the equipment failure after it happens. 

This maintenance approach is a corrective management method that has no special 

maintenance plan in place. Due to the nature of the industry sectors, the failure of one 

piece of equipment may stop production in a significant portion. For example, the failure 

of a main haulage belt motor in mining industry may idle an entire mine. In this case, the 

run-to-failure maintenance will be too costly. This type of maintenance method is not an 

acceptable maintenance method because there might be a high risk of secondary failure, 

overtime labor and high cost of spare parts (Palem, 2013; Yam, Tse, Li, & Tu, 2001). 
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Scheduled maintenance, which is the practice of replacing components in fixed 

time intervals. This maintenance takes preventive actions to check, repair, or replace the 

equipment at a prearranged schedule before machine faults. Such maintenance policy 

benefits in terms of maintenance cost reduction as it minimizes the unscheduled downtime 

and labor costs in comparison to the run-and-failure maintenance strategy. However, this 

strategy does not consider the condition of the equipment in that it scheduled the 

maintenance activity at a fixed time interval without considering the condition of the 

equipment or component (Palem, 2013; Yam, Tse, Li, & Tu, 2001). In addition, machines 

may be repaired when there are no failures (Kwitowski, Lewis, & Mayercheck, 1989). 

Condition based monitoring is a maintenance procedure that uses sensors to evaluate the 

health of the system. Condition monitoring and fault diagnostics are useful for early 

detection of mechanical and electrical failures to prevent main component faults (Jardine, 

Lin, & Banjevic, 2006). One of the key elements to condition based maintenance is the 

understanding of the actual condition or health of a machine, then using this information 

to schedule and perform maintenance when it is most needed. If performed correctly, 

condition based maintenance can bring out many advantages such as increasing machinery 

availability and performance, reducing consequential damage, increasing machine life, 

reducing spare parts inventories, and reducing breakdown maintenance (Siddiqui, Sahay, 

& Giri, 2014). Figure 1.1 presents three main maintenance strategies. 

 

Figure 1.1 Three main maintenance strategies 
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1.2.1 Condition Monitoring for Fault Diagnosis Prediction 

Condition monitoring leading to fault detection of IMs has been an attractive 

research area in the last few years because of its significant effect in many industrial 

processes. Correct detection and early prediction of incipient faults consequence in fast 

unscheduled maintenance and short downtime for the process under consideration. 

Destructive consequences can be avoided by condition monitoring. Financial loss also is 

reduced. An ideal diagnostic technique should provide the minimum essential 

measurements from a motor (Jin, Zhao, Chow, & Pecht, 2014; Toliyat, Nandi, Choi, & 

Meshgin-Kelk, 2012). 

In the scope of industry, most of the occurred faults are not predictable or even 

visible with the naked eye. Therefore, it is very critical to identify and diagnose these 

faults at early stages to prevent any corruption or damages in electrical instruments. For 

example, since the air gap between rotor and stator is very small, any imbalance in barriers 

or mis-positioning of rotor may cause serious physical damages to the rotor and stator of 

the IM (Bellini, Filippetti, Tassoni, & Capolino, 2008). 

Different monitoring procedures have been utilized for fault detection on IMs. 

Vibration analysis, stray flux, and stator current-signature analysis (SCSA) are the most 

popular ones (A Bellini, Concari, Franceschini, Tassoni, & Toscani, 2006). Stator faults 

result in the open or short circuits on one or more stator windings (V Spyropoulos & D 

Mitronikas, 2013). Extreme heating, transient over voltages, winding movement, or 

contamination are the factors providing the winding-insulation damage. This fault causes 

in high currents and winding overheating, which result in severe phase-to-phase, turn-to-

turn, or turn-to-ground faults. All these may lead to an irreversible damage in the windings 

or in the stator core. Hence, affordable and reliable diagnosis of incipient faults between 

turns during motor operation is vital (El Hachemi Benbouzid, 2000; Nandi, Toliyat, & Li, 

2005; Tallam et al., 2007; Torkaman). 
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1.3 Methods for Fault Diagnosis of IMs 

The existing methods for the fault diagnosis of IMs can be generally categorized 

into three groups, namely: model-based, signal-based, and data-based (Alberto Bellini, 

Filippetti, Tassoni, & Capolino, 2008). Most of the diagnostic techniques for IMs can be 

extended easily to other types of rotating electrical machines. 

1.3.1 Model-Based Fault Detection Method 

Model-based fault detection method depends in light of a theoretical analysis of 

the asymmetrical motor whose model is utilized to anticipate fault signatures (Alberto 

Bellini et al., 2008; Isermann, 2005; Siddiqui et al., 2014). The difference between 

measured and simulated signatures is used as a fault detector as shown in Figure 1.2. 

 

 

 

  

Figure 1.2 Model-based diagnostic technique. Two techniques are possible according to 

the same basic structure (Bellini et al., 2008) 
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In order to express a fault index, residual analysis and proper signal processing are 

usually utilized (Bellini et al., 2008). Some left-overs are generated by model-based fault 

detection and diagnosis methods which is indication of variations between measurement 

and prediction. Theoretically, System faults only affect these left-over signals and the 

deviations in the system inputs and predicted disturbances faced in normal operating 

conditions have almost no effect on them. Power supply imbalances and load variations 

are two critical parameters for electric motors. Hence, for normal condition and operating 

without any faults the left-overs must be almost zero-mean white noise while in the case 

of any faults they must deviate from this behavior. Model-based fault detection method 

has not been prevalent and popular to be applied in the industry due to complications in 

obtaining accurate and suitable models while modeling uncertainties resulting from 

system nonlinearities, parameter uncertainties, disturbances and other measurement noise 

exist (Combastel et al., 2002). Moreover, modeling of electromechanical systems is not 

practical due to their complex construction and the requirement of extensive 

approximations, which makes model-based analysis methods an inappropriate choice 

(Combastel, Lesecq, Petropol, & Gentil, 2002; Kim & Parlos, 2002). 

1.3.2 Signal-Based Fault Detection Method 

Signal-based methods mostly focus on frequency domain data. The known fault 

signatures in quantities sampled from the actual machine are detected by signal-based 

diagnosis (Bellini et al., 2008). The signs are examined and observed by a proper signal 

processing unit as shown in Figure 1.3. Even though advanced methods and/ or decision-

making techniques can be used, frequency analysis is normally used. In this method, signal 

processing has an important role since it can improve signal-to-noise ratio and normalize 

data to differentiate other faults generated from other sources. It is also able to reduce the 

sensitivity to operating conditions (Bellini et al., 2008; Kim & Parlos, 2002). The signal-

based systems are mostly utilized for the procedures in the steady state. Effectiveness of 

such fault diagnosis method in dynamic systems is significantly limited. 
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Figure 1.3 Block diagram of signal-based diagnostic procedure (Bellini et al., 2008) 

1.3.3 Data-Based Fault Detection Method 

Data-based diagnosis relies on signal processing and on classification methods. 

The data-based techniques are considered more suitable options as a result of any 

information of machine parameters and model is not required in this type of fault detection 

technique (Bellini et al., 2008). In that perspective, such fault diagnosis offers a few 

numbers of mathematical calculations. They are applied on the lines of the supervised 

learning methods. In the supervised learning, the data are collected from the system in 

known health conditions and based on the decision rules developed, health conditions of 

unknown systems are categorized and prognosticated (Kim & Parlos, 2002). 

The advantage of using data-based diagnosis is that it does not need any 

information of machine model and parameters. Signal processing and clustering methods 

 



8 

 

are only requirement in this technique. Sample data are captured from an actual IM and 

are processed in order to find a set features for classification purpose. Finally, fault index 

can be achieved by utilizing decision process techniques as shown in Figure 1.4. 

 

Figure 1.4 Block diagram of data-based diagnostic procedure (Bellini et al., 2008) 

Data sampled from the motor are managed to extract a features' set that are 

classified by classification methods. A fault index is defined by decision process 

techniques. Artificial intelligence (AI) systems are broadly applied to classify faulty and 

healthy conditions (Siddique, Yadava, & Singh, 2003).  
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1.4 AI Techniques for Motor Fault Diagnosis 

 

 

In recent years, AI technologies have been employed to overcome the difficulties 

that conventional diagnosis strategies (direct inspection, wear particle analysis and 

parameter estimation) are facing. Conventional methods are easy to understand. However, 

they are not always possible in reality because they require in-depth knowledge of the 

induction motor system or its working mechanisms. In the case of inadequate information 

false alarms can occur. A brief review of the advantages and disadvantages of these 

approaches is given in Table 1.1 (Awadallah & Morcos, 2003; Gao & Ovaska, 2001; 

Laghari, Memon, & Khuwaja, 2004; Tsang, 1995). 

 

 

Table 1.1: Comparison of methods for motor fault detection and diagnosis 

 
Approach Advantage Disadvantage 

 

Direct inspection 

 

 

 

 

Wear particle analysis 

 

 

 

Parameter estimation 

 

 

 

Expert systems (ES) 

 

 

 

Artificial neural 

network (ANN) 

 

Simple & direct 

 

 

 

Analysis theory is 

mature and suitable for 

routine check-up 

 

Suitable for on-line 

monitoring and fault 

diagnosis 

 

Known experience and 

knowledge. Excellent 

explanation capability 

 

Without the need of 

complex and rigorous 

mathematical models or 

expert experience 

 

Requires experienced 

engineers 

 

 

Time consuming and 

exhaustive 

examination required 

 

Difficult to obtain accurate 

mathematical model 

 

 

Expert experience & 

knowledge is difficult to be 

transformed & automated 

 

Need training data 

 

 



10 

 

In general, expert systems and artificial neural networks (ANN) are one of the 

most popular methods within AI systems. The effectiveness of the expert systems depends 

on the precision and completeness of the knowledge base, which is usually very 

complicated, time consuming and must be constructed manually. The major problem with 

expert systems is that they cannot adjust their diagnostic rules automatically, and thus 

cannot acquire knowledge from new data samples (Siddiqui et al., 2014). 

 

 

ANN based method is rather easy to develop and perform. Unlike parameter 

estimation and expert systems, ANN strategy can detect and diagnose motor faults based 

on measurements without the need for complex and rigorous mathematical models or 

experience. ANN systems can learn fault detection and diagnosis solely based on input-

output examples without the need of mathematical models. Therefore, ANN systems have 

drawn significant attention in the motor fault detection and diagnosis field. No prior 

knowledge about motor fault detection and diagnosis is needed. Only the training data, 

including normal and faulty data need to be obtained in advance. Once ANNs are trained 

appropriately, the networks could contain knowledge needed to perform fault detection 

and diagnosis (Kumari & Sunita, 2013; Nasira, Kumar, & Kiruba, 2008; Shi, Sun, Li, & 

Liu, 2007; Siddiqui et al., 2014). 

 

 

1.5 Problem Statement 

 

 

Electrical and mechanical data are commonly used in data-based diagnosis (Kano 

& Nakagawa, 2008). The electrical current waveform of the IM can potentially reveal 

whether the machine is working properly or not. It is notable that there are specific 

characteristic behaviors in the current signals (provided by inverters) or vibration signals 

(provided by accelerometer sensors placed on the machine) for each kind of main motor 

faults. Therefore, it is feasible to detect the faults based on current and vibration 

measurements (Garcia-Ramirez, Osornio-Rios, Granados-Lieberman, Garcia-Perez, & 

Romero-Troncoso, 2012). 
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Motor current signature analysis (MCSA) is known as an effective technique for 

fault diagnosis in three-phase IMs. This method is associated to various faults such as 

broken rotor bars and windings faults. Numerous technical works have been recently 

studied the benefits of this method in detecting the IM faults (El Hachemi Benbouzid, 

2000; Penman et al., 1994; Radhika et al., 2010; Sadri, 2004; J.-W. Zhang et al., 2007; Z. 

Zhang et al., 2003). Current sensors are mostly cheap and could be used and maintained 

easily. Tandon et.al (2007) reported that stator current monitoring requires minimum 

instruments and can be considered as an affordable fault detection technique (Tandon, 

Yadava, & Ramakrishna, 2007). However, it has some limitations that reduce the 

performance and accuracy of motor diagnosis. Bellini et.al (2008) proposed that stator 

current monitoring is not a reliable fault detection system because the current signal 

analysis is effective for the faults whose critical frequency rate is lower than the supply 

frequency. The current signal can be utilized as a reliable approach only in dedicated 

operating conditions (Bellini, Immovilli, Rubini, & Tassoni, 2008). 

 

 

Vibration monitoring technique is a powerful approach for fault diagnosis in IMs. 

It has been widely used due to its significant results. Fault diagnosis based on mechanical 

features such as vibration of the stator furnishes the operator with high accuracy of results 

(Dorrell, Thomson, & Roach, 1997). The dark side of such technique is the high cost of 

accelerometers and associated wiring, which also require expensive software and 

technical assistant to be utilized as reported by Nandi et.al (2005). They stated that 

vibration transducers are expensive and require special installation conditions to avoid 

harm owing to shock and vibration (Nandi, Toliyat, & Li, 2005). Thus, its use in several 

applications may be limited. Subsequently, this method cannot utilize for large machines 

fault diagnostics purpose because it is expensive (Siddiqui, Sahay, & Giri, 2014). The 

vibration sensors could be damaged easily as well, which makes them improper for being 

used in rough industrial environments (Gritli, Filippetti, Miceli, Rossi, & Chatti, 2012).  
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In a research done by Bellini et.al, use of vibration and current signal was 

compared, in order to show advantages and disadvantages of this two condition 

monitoring systems. They utilized the frequency domain to analyze capturing data. Signal 

processing methods including Hilbert transformation and Envelope analysis were used for 

machines with healthy and faulty bearings to demonstrate which monitoring system is the 

best suited to the bearing failures. They found out that current signal cannot be considered 

as a reliable fault detection system because of the current signal analysis is effective for 

the faults whose critical frequency rate is lower than the supply frequency. Vibration 

monitoring technique, however, showed that can be a reliable but expensive indicator for 

bearing faults in low and high frequency.  Though, vibration needs a structural model with 

mass, damping and stiffness parameters. On the other hand, frequency domain analysis 

requires different types of signal processing methods with complex mathematical 

equations (Bellini, Immovilli, Rubini, & Tassoni, 2008). 

 

 

Rodenas and Daviu proposed a twofold method for detection of broken rotor bars, 

cooling system problems and bearing faults in IMs. The first stage utilized current 

monitoring technique using steady state and transient methods. They used infrared 

cameras to take thermography images to find failure places in a second stage. Although, 

each of these approaches provided useful information to detect extensive ranges of faults, 

but they were applicable for large and expensive motors. The infrared technique was 

sensitive to failures located near the machine frame surface rather than to internal faults. 

Furthermore, infrared cameras are so expensive. Another limitation was the length of the 

required data due to the long duration of the heating transient. This system also may not 

be applicable in industrial area with high temperature environment. Therefore, an 

insensitive to heat and cost-effective fault diagnosis approach is required to be affordable 

for all types of motors not only large and expensive ones. Besides, an ideal fault detection 

technique should diagnose failures at inner and outer parts of machines (Picazo-Ródenas, 

Antonino-Daviu, Climente-Alarcon, Royo-Pastor, & Mota-Villar, 2015). 
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There is almost no single fault diagnosis method capable to detect all probable 

faults taking place in IMs with a reasonable price and high accuracy. Although stator 

current and vibration monitoring are the most commonly used monitoring procedures in 

the industry, but each of these techniques alone have some limitations. Consequently, a 

single fault detection technique cannot be considered as a reliable and general diagnosis 

system. While current monitoring technique is an inexpensive method, but it is less 

accurate. Vibration monitoring on the other hand has higher price and accuracy compared 

to the current monitoring. It must be noted that systems required high accuracy and lower 

cost. Therefore, a new method for fault detection is deeply needed to meet these 

requirements. This thesis presented a cost-effective and reliable method for detection of 

faults in three-phase IMs by combination of the two aforementioned monitoring 

techniques (vibration and current) with great prospect for application in industrial scale.  

 

 

 

1.6 Objectives of the Study 

 

 

             The objectives of this thesis are as follows: 

(1) To develop an affordable installation and maintenance setup for fault 

diagnosis in IMs. 

(2) To develop an intelligent fault detection strategy based on vibration and 

electrical current signals. 

(3) To evaluate the performance of vibration and current setup in term of 

accuracy and cost. 

 

 

 

 

1.7 Scope of the Study 

  

 

This investigation was conducted to determine the stator winding and broken rotor 

bar faults in three phase induction machines with a squirrel cage rotor. Two faulty IMs 

with broken rotor and winding faults and one healthy IM have been investigated in the 
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Center for Artificial Intelligent and Robotics (CAIRO) laboratory at University Teknologi 

Malaysia (UTM). Data were captured by two different setups in time domain:  

            i) Vibration setup contains NI  PCI- 4474 DAQ card and accelerometers 

ii) Current setup included NI 9234 and NI 9174 CDAQ cards, and current clipping        

sensor.  

 

 

Each of these two setups alone have some limitations for fault diagnosis in IMs. 

Vibration setup is expensive, whilst current setup is cheap but with low detection 

reliability.  This research work assumes to develop a reliable and cost-effective fault 

detection method with the joint use of vibration and current setups. In addition, ANN was 

used for classification and nonlinear regression system. PCA technique also utilized for 

reduction of features dimensions.  

 

 

1.8 Thesis Organization 

This thesis is organized into five chapters. A brief outline of the thesis’s 

contents is as follows: 

Chapter 1 presents an introduction to the research problem. It involves the 

background of the study, problem statement and hypothesis of the thesis. The logical 

flow and structure of the thesis are also outlined in this chapter. 

A complete literature review on faulty IMs with various types of faults, 

condition monitoring techniques, different methods for fault detection and their 

advantages and disadvantages are presented in chapter 2. 

Chapter 3 focuses on the proposed methodology contained data acquisition, 

feature extraction, method development including testing set to train the algorithm and 
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