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ABSTRACT

In nanoscale communication, diffusion-based molecular communication
(DBMC) in which information is encoded into molecule patterns by a transmitter
nanomachine, has emerged as a promising communication system, particularly for
biomedical and healthcare applications. Although, numerous studies have been
conducted to evaluate and analyze DBMC systems, investigation on DBMC system
through a multilayer channel has received less attention. The aims of this research are
to mathematically model a closed-form expression of mean molecular concentration
over multilayer DBMC channel, to formulate channel characteristics, and to conduct
performance evaluation of multilayer DBMC channel. In the mathematical model, the
propagation of molecules over an n-layer channel is assumed to follow the Brownian
motion and subjected to Fick’s law of diffusion. The partial differential equation (PDE)
of the time rate change of molecular concentration is obtained by modeling the n-layer
channel as an n-resistor in series and considering the conservation law of molecules.
Fourier transform and Laplace transform were used to obtain the solution for the PDE,
which represents the mean molecular concentration at a receiver nanomachine. In the
formulation, channel characteristics such as impulse response, time delay, attenuation
or the maximum peak, delay spread and capacity were analytically obtained from the
mean molecular concentration. In this stage, the multilayer channel is considered as
a linear and deterministic channel. For the performance evaluation, the air-water-
blood plasma medium representing the simplified multilayer diffusion model in the
respiratory system was chosen. It was found that both analytical and simulation results
of mean molecular concentration using Matlab and N3Sim were in good agreement.
In addition, the findings showed that the higher the average diffusion coefficient
resulted in a smaller dispersion of channel impulse response, and shortened the
channel delay spread as well as time delay. However, the channel attenuation remains
unchanged. In the performance evaluation, an increase of 100% in the transmission
distance increased the time delay by 300% but decreased the maximum peak of
molecular concentration by 87.5%. A high channel capacity can be achieved with wide
transmission bandwidth, short transmission distance, and high average transmitted
power. These findings can be used as a guide in the development and fabrication
of future artificial nanocommunication and nanonetwork systems involving multilayer
transmission medium. Implication of this study is that modeling and analyzing
of multilayer DBMC channel are important to support biomedical applications as
diffusion can occur through a multilayer structure inside the human body.
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ABSTRAK

Dalam komunikasi berskala nano, komunikasi berdasarkan peresapan molekul
(DBMC) di mana maklumat dikodkan ke dalam pola molekul oleh pemancar mesin
nano telah muncul sebagai satu sistem komunikasi berpotensi di masa hadapan,
khususnya untuk aplikasi-aplikasi bio-perubatan dan penjagaan kesihatan. Walaupun
banyak kajian telah dijalankan untuk menilai dan menganalisis sistem DBMC, namun
kajian ke atas sistem DBMC melalui saluran banyak lapisan masih kurang mendapat
perhatian. Tujuan kajian ini adalah untuk memodelkan secara matematik ungkapan
tertutup bagi penumpuan purata molekul merentasi saluran DBMC banyak lapisan,
pemformulaan ciri-ciri bagi saluran dan penilaian prestasi bagi saluran DBMC
banyak lapisan. Dalam permodelan matematik, pergerakan molekul merentasi n-
lapisan saluran adalah diandaikan mengikuti gerakan Brownian dan tertakluk kepada
hukum peresapan Fick. Persamaan pembezaan separa (PDE) bagi penumpuan
purata molekul berubah terhadap masa diperoleh dengan memodelkan n-lapisan
saluran sebagai n-perintang secara sesiri dan mempertimbangkan hukum keabadian
molekul. Jelmaan Fourier dan jelmaan Laplace telah digunakan untuk mendapatkan
penyelesaian bagi PDE, yang mewakili penumpuan purata molekul di penerima mesin
nano. Dalam pemformulaan, ciri-ciri bagi saluran seperti sambutan impuls, kelewatan
masa, perlemahan atau puncak maksimum, kelewatan penyebaran dan kapasiti telah
diperoleh secara analisis daripada ungkapan penumpuan purata molekul. Di peringkat
ini, saluran banyak lapisan dianggap sebagai satu saluran yang linear dan berketentuan.
Untuk penilaian prestasi, saluran udara-air-plasma darah yang mewakili model ringkas
peresapan banyak lapisan bagi sistem respirasi telah dipilih. Di dapati bahawa kedua-
dua keputusan analisis menggunakan Matlab dan simulasi menggunakan N3Sim
bagi penumpuan purata molekul adalah selari. Selain itu, keputusan-keputusan ini
juga menunjukkan bahawa semakin tinggi pekali resapan purata, mengakibatkan
semakin kecil penyebaran sambutan impuls bagi saluran dan memendekkan kelewatan
penyebaran saluran dan juga kelewatan masa.Walau bagaimanapun, pelemahan saluran
adalah kekal tidak berubah. Dalam penilaian prestasi saluran DBMC banyak
lapisan, penambahan jarak penghantaran sebanyak 100% meningkatkan kelewatan
masa sebanyak 300% tetapi mengurangkan penumpuan puncak maksimum molekul
sebanyak 87.5%. Kapasiti saluran yang tinggi boleh dicapai dengan lebar jalur
penghantaran yang besar, jarak penghantaran yang pendek dan kuasa penghantaran
purata yang tinggi. Dapatan kajian ini boleh digunakan sebagai panduan di dalam
pembangunan dan pembuatan sistem komunikasi nano dan rangkaian nano tiruan masa
depan yang melibatkan saluran penghantaran banyak lapisan. Implikasi kajian ini
adalah menerusi permodelan dan penganalisisan saluran DBMC banyak lapisan yang
penting bagi menyokong aplikasi-aplikasi bio-perubatan memandangkan peresapan
molekul boleh berlaku melalui banyak struktur lapisan di dalam tubuh manusia.
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CHAPTER 1

INTRODUCTION

1.1 Background

Rapid development in nanotechnology has motivated nanocommunication
and nanonetworks of large numbers of nanoscale devices or nanomachines.
Nanocommunication is a new research area where a communication process occurs
between nanomachines. In a nanonetwork, a group of nanomachines is interconnected
among them and expected to share information and coordinate activities to perform
a specific task. With nanonetworks, the limited capabilities of a single nanomachine,
such as only for computation, sensing, or actuation, can be expanded for executing
more complex tasks and a wide range of applications. Interaction among networked
nanomachines will allow the implementation of collaborative and synchronous tasks
such as in-body drug delivery, disease treatments, and monitoring and controlling of
environmental pollution [1].

Generally, nanocommunication can be realized through four different
mechanisms, which are nanomechanical communication through mechanical contact,
acoustic communication by using acoustic energy or pressure variations, nano-
electromagnetic communication based on the modulation of terahertz electromagnetic
waves, and molecular communication via transmission and reception of encoded
information molecules [1]. However, both nano-electromagnetic communication and
molecular communication have been envisioned as the two main options for wireless
nanocommunication and nanonetworks [2]. Due to a small-scale, bio-compatible with
the biological environment and energy efficiency of a molecular transceiver, molecular
communication offers the most promising approaches for nanocommunication and
nanonetworks among biological nanomachines as well as with the existing biological
system [1, 3–6]. Another reason is that molecular communication can be approached
through the observation of existing natural phenomena in biology [2, 7].
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In the past decade, research activities have shown significant interests in the
area of molecular communication to realize nanocommunication and nanonetworks.
Numerous research efforts can be found in the literature to investigate the various
models of molecular communication. Some of the proposed models are random
walk [8,9], flow based or random walk with drift [10–12], diffusion based [2,3,12–15],
diffusion-reaction based [16], walkway or active transport based [8, 17, 18] and
collision based [19]. The performances of the proposed models are then analyzed in
terms of channel capacity [9, 10], modulation schemes [9], normalized gain and delay
[3], probability of reaching a receiver [17], transmission rate [11,12,15,17,18], mutual
information [10,11], noise [13], throughput and efficiency [14], signal attenuation and
amplification [16], collision rate [19], and communication range [15].

Among the proposed channel models, molecular communication by diffusion
or diffusion-based molecular communication (DBMC) with and without drift has been
the focus of interest in the research community [20]. The DBMC channel model
is chosen as it represents the most basic and widespread molecular communication
architecture found in nature [21, 22]. The concept of congestion in the DBMC
channel for drug delivery near the targeted or disease area is introduced in [20]. A
drug delivery system model using the DBMC with drift for drug transportation over
bloodstream to only unhealthy parts inside the body can be found in [23]. Recently, the
concept of body area nanonetworks (BANs) with DBMC for healthcare applications
has been introduced in [5]. Furthermore, the concept of the Internet of Bio-Nano
Things (IoBNT), involving the DBMC model for intra-body communication can be
found in [24]. It is expected that from the proposed IoBNT, a healthcare provider can
retrieve certain intra-body status parameters, such as glucose, sodium, and cholesterol
levels, and the presence of unwanted agent through bio-nano things inside the body by
using the Internet connection. The term bio-nano things can be referred to any type
of nanosystems including liposomes [25–27], dendrimers [28], metallic nanoparticles
[29], polymeric nanoparticles [30], carbon nanotubes [31] and nanowires [32, 33].

The current developments of nanotechnology in nanomedicine, tissue
engineering, nanorobots, bio-sensor, bio-marker, and implant technologies have
provided the possibilities of an intelligent system for an early disease detection
and spontaneous targeted drug delivery in the treatment of human diseases in the
near future. In these intelligent systems, a group of bio-nanomachines embedded
in the human body or implanted under the skin are expected to communicate and
cooperatively share information using molecular signals among each other or with the
surrounding cells to perform a specific function such as synthesis the human health
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condition, identifying the targeted drug delivery locations, and automatically control
the amount and time of drug release. Moreover, the molecules of the drug are expected
to be able to diffuse across a multilayer barrier or multiple environments towards the
bloodstream as well as to the other parts inside the body or the infected area. Thus,
a better understanding of how the drug’s molecules diffusing over the body and its
concentration over time are utmost important for an effective disease treatment with an
optimum amount of drugs.

1.2 Problem Statement

In nanoscale communication, the DBMC has emerged as one of the most
promising communication models, particularly for health monitoring and drug delivery
applications. In the DBMC, a transmitter nanomachine (TN) translates a message
into encoded molecules and transmits them to a propagation medium or channel by
opening a molecular gate. The transmitted molecules are then propagated from the TN
to a receiver nanomachine (RN) over the channel by a diffusion process via Brownian
motion. The RN captures the encoded molecules propagating in the channel and finally
decodes the captured molecules.

Although, numerous studies have been conducted to evaluate and analyze
DBMC system, investigation on DBMC through a multilayer channel due to variations
in the medium properties or medium temperature has had less attention. The
propagation of molecules over various mediums and environments or more complex
medium, such as intracellular environment and the human body needs to be considered
[4]. In practice, the diffusion of molecules can occur over the several layers in the
human body, for example, diffusion of oxygen and carbon dioxide over the alveolar-
blood barrier in the respiratory system [34], diffusion of digested particles, nutrients
or medicine across the stomach-blood barrier during the absorption process, and
diffusion of water, oxygen, carbon dioxide and lipid-soluble molecules through the
blood-brain barrier [34]. Additionally, a tissue, particularly an arterial wall, which has
the different material properties in each layer, is commonly modeled as a multilayer
medium [35, 36].

However, no works have been reported throughout the literature that
analytically modeled and evaluated the performance of multilayer DBMC channel
from the perspective of communications and an information theory. It is still not
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clear how molecules will propagate through the multilayer DBMC channel that is
consisting of different medium properties or different medium temperature. Thus,
it is utmost important to develop a mathematical model to predict the concentration
profile over time and characterize how molecules will propagate over a multilayer
channel. Modeling and analysis of molecules’ propagation over a multilayer channel
with different medium properties are important to be explored in order to support
the future biomedical applications such as regulating the release of drugs over a
multilayer structure of environment in living tissue, as well as for the BANs and IoBNT
applications. Therefore, this research work is proposed to model and evaluate the
performance of multilayer DBMC channel.

1.3 Research Objectives

The main objective of this research is to mathematically model and evaluate
the performance of multilayer DBMC channel. This research study has the following
specific objectives:

(i) To develop a mathematical model of multilayer DBMC channel in deriving
a closed-form expression of the mean molecular concentration at the RN
location.

(ii) To formulate channel characteristics of multilayer DBMC channel.

(iii) To evaluate the performance of the multilayer DBMC channel generated from
different medium properties.

1.4 Research Scopes

In order to achieve the objectives, the following scopes have been employed:

(i) The research focuses on mathematical modeling of a point to point (a pair
of nanomachines) DBMC channel without any noise sources or propagation
impairments to derive the mean molecular concentration at the RN location
over a multilayer channel. Furthermore, the propagation of molecules from the
point-source TN to the point and passive RN is governed by the Fick’s law of
diffusion.
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(ii) Pulse-based modulation (an impulsive transmission) with concentration
encoding scheme as well as amplitude detection technique is considered in
formulating the multilayer DBMC channel characteristics such as channel
impulse response, channel time delay, channel attenuation or the maximum
amplitude of mean molecular concentration, channel delay spread, and channel
capacity.

(iii) The performance evaluation is done for multilayer diffusion over the air-water-
blood plasma medium representing the simplified model of the alveolar-blood
capillary barriers in the human respiration system. The interlayer between two
different mediums and membranes is considered thin and permeable to the
transmitted information molecules which have a radius similar to an oxygen
atom.

The detailed explanations on the assumptions made in mathematical modeling
of multilayer DBMC channel are given in Chapter 4. Thus, the developed
mathematical model has the following limitations:

(i) The mean molecular concentration at the RN location is derived for a point-
source TN and a point-source RN with an infinite boundary. For more realistic
and accurate models, propagation of molecules between a spherical TN and a
spherical RN in a confined medium needs to be considered in the future [37].

(ii) The propagation of molecules in the 3-D environment over a multilayer
channel is without any reaction and drift velocity. Therefore, the movement of
molecules is subjected to a free diffusion from the higher concentration region
to the lower concentration region [7, 38], and the viscous forces within the
medium dominate the propagation process [38–40]. In other words, the derived
closed-form equation is not considered for the cases when the concentration of
molecules is very high compared to the medium molecules, and the collisions
between molecules affect their movement.

(iii) The developed mathematical model is independent of any noise exists in the
DBMC system such as sampling noise at the TN [13], diffusion or Brownian
noise due to randomness propagation of molecules [13, 38], and reception or
residual noise at the RN [38, 41].

(iv) Modeling of the ligand-binding reception and decoding process at the RN is
beyond the scope of this research. In this work, an amplitude detection scheme
is considered, where bits ’1’ and ’0’ represented by the higher and the lower
concentration of molecules inside the RN sensing volume.
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1.5 Research Contributions

The contributions of this research work are as follows:

(i) A derived closed-form equation of mean molecular concentration for
multilayer DBMC channel.

In this work, the diffusive flux of molecules in single layer medium
is interpreted analogously to Ohm’s law. The electrical current, I in Ohm’s
law represents the diffusion flux of molecules, J(r, t), the electrical resistance,
R represents the total length per unit diffusion coefficient, `/D or diffusive
resistance of the medium, and the voltage difference, (v0 − v1) represents the
concentration difference, c(r0, t) − c(r0 + `, t) of the information molecules
between two points [42]. Then, a multilayer channel of DBMC is modeled
as an n-resistor in series where the average diffusive flux of molecules over
a multilayer medium is obtained by adding the diffusive resistance of each
layer analogous to the addition of series resistors in electrical circuit theory as
proposed in [43]. By considering a conservation law of molecules, the partial
differential equation (PDE) of time rate change at distance, r and time t of
molecular concentration over a multilayer medium is obtained from the average
diffusive flux and the continuity equations. Finally, the closed-form equation
of mean molecular concentration for multilayer DBMC channel is derived by
finding the solution of the PDE for an impulsive transmission of molecules
using the Fourier and Laplace transforms method.

It is found that the mean molecular concentration of multilayer DBMC
is dependent on the total number of transmitted molecules, transmission
distance, and an average diffusion coefficient. In addition, the average diffusion
coefficient is inversely proportional to the summation of each layer fraction per
layer diffusion coefficient.

(ii) A formulated closed-form equation of channel characteristics of multilayer
DBMC channel in terms of channel impulse response, channel time delay,
channel attenuation, channel delay spread, and channel capacity.

Channel delay spread expression for multilayer DBMC channel is
derived by considering 10 dB below the maximum peak of mean molecular
concentration as the minimum level using the MAPLE software. The
delay spread is obtained by subtracting two-time instants at which the mean
molecular concentration equals one-tenth of the maximum peak of mean
molecular concentration or channel attenuation. In this work, the maximum
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peak of mean molecular concentration is obtained by substituting time delay
into the closed-form equation of mean molecular concentration. While, the
time delay is obtained by finding the time instant at which the time derivative
of the closed-form equation of mean molecular concentration is equal to zero.

In summary, both time delay and delay spread are directly proportional
to the square of transmission distance and inversely proportional to the average
diffusion coefficient. Moreover, the channel attenuation is directly proportional
to the number of transmitted molecules and is inversely proportional to the cube
of transmission distance.

In addition, a capacity expression for multilayer DBMC channel is
also derived in this research work. The entropy of the number of transmitted
molecules per time sample of transmitted signal is obtained by modeling
the time function of the transmitted signal as a band-limited ensembles
function within a bandwidth, W . By performing Fourier transforms, variable
substitution, manipulating the integration part, and simplification using de
Moivre’s formula, the transfer function Fourier transform of the channel
impulse response is obtained. This equation is then used to determine the
conditional entropy per second of the transmitted signal given the received
signal as well as the expression of mutual information of multilayer DBMC
channel. Finally, the capacity expression is obtained by maximizing the mutual
information between the transmitted signal and the received signal with respect
to the probability density function of the transmitted signal.

The capacity of multilayer DBMC is dependent on the bandwidth
of transmitted signal, an average thermodynamic power spent by the TN to
transmit molecules, a temperature of the system, transmission distance, and
the average diffusion coefficient. The capacity is linearly dependent on the
bandwidth of transmitted signal. However, the upper and lower bound of
capacity are affected by the transmission distance and the average diffusion
coefficient of multilayer medium.

(iii) Performance analysis of multilayer DBMC channel due to different medium
properties.

Performance analysis of multilayer DBMC channel in terms of
channel attenuation, channel time delay, and channel delay spread for
different layer fraction, transmission distance, and the number of transmitted
molecules is evaluated analytically using MATLAB software. In addition,
numerical evaluation of the effects of parameter variation such as an average
thermodynamic power for molecule transmission, the bandwidth of the
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transmitted signal, transmission distance, and layer fraction on the capacity
of multilayer DBMC channel are also presented and discussed.

In general, it is found that the impulse responses of multilayer DBMC
channel rapidly increases from zero to a maximum peak and then decrease over
time, forming a long tail and approaching zero as t becomes infinity. Moreover,
the higher average diffusion coefficient, the faster the rate of the mean number
of received molecules reaching its maximum peak and the shorter the channel
delay spread. The results also show that doubling the transmission distance
increases both time delay and delay spread by four-fold, and decreases the
maximum peak or channel attenuation by eight-fold. In addition, increasing
the number of molecules increases the maximum peak of mean molecular
concentration; however, the delay spread and pulses spreading as well as
time delay remains unchanged. The numerical results showed that the wider
the transmission bandwidth, the higher the channel capacity, and the shorter
transmission distance, the higher the channel capacity. Increasing the average
transmitted power increases the channel capacity as well.

1.6 Significance of Research

The findings from this research work are valuable as a foundation in the
development and fabrication of future artificial nanocommunication and networks
system, which involves the propagation of molecules through a multilayer medium.
Mathematical models of the molecular communication system will allow a
researcher to perform mathematical analysis, design and optimization on molecular
communication systems. It is expected that performance evaluations of the study
provide insight to help engineers in developing or realizing the multilayer DBMC
system due to different medium properties.

1.7 Thesis Outline

The entire structure of the thesis is organized into six chapters. A brief
overview of research background and information related to the research work such
as problem statement, research objectives, scopes of research, research contributions,
and the importance of the work are addressed in Chapter 1.
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