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ABSTRACT 

This thesis presents an approach for controlling a mobile manipulator (MM) 

using a two degree of freedom (DOF) controller which essentially comprises a 

cascading proportional-derivative (CPD) control and feedforward active force control 

(FAFC). MM possesses both features of mobile platform and industrial arm 

manipulator. This has greatly improved the performance of MM with increased 

workspace capacity and better operation dexterity. The added mobility advantage to a 

MM, however, has increased the complexity of the MM dynamic system.  A robust 

controller that can deal with the added complexity of the MM dynamic system was 

therefore needed. The AFC which can be considered as one of the novelties in the 

research creates a torque feedback within the dynamic system to allow for the 

compensation of sudden disturbances in the dynamic system. AFC also allows faster 

computational performance by using a fixed value of the estimated inertia matrix (IN) 

of the system. A feedforward of the dynamic system was also implemented to 

complement the IN for a better trajectory tracking performance. A localisation 

technique using Kalman filter (KF) was also incorporated into the CPD-FAFC scheme 

to solve some MM navigation problems. A simulation and experimental studies were 

performed to validate the effectiveness of the MM controller. Simulation was 

performed using a co-simulation technique which combined the simultaneous 

execution of the MSC Adams and MATLAB/Simulink software. The experimental 

study was carried out using a custom built MM experimental rig (MMer) which was 

developed based on the mechatronic approach. A comparative studies between the 

proposed CPD-FAFC with other type of controllers was also performed to further 

strengthen the outcome of the system. The experimental results affirmed the 

effectiveness of the proposed AFC-based controller and were in good agreement with 

the simulation counterpart, thereby verifying and validating the proposed research 

concepts and models. 
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ABSTRAK 

Tesis ini membentangkan satu pendekatan untuk mengawal pengolah robot 

mudah alih (MM) menggunakan pengawal dua darjah kebebasan (DOF) yang terdiri 

daripada kawalan berkadaran-terbitan melata (CPD) dan kawalan daya aktif suap 

depan (FAFC). MM mempunyai kedua-dua ciri pelantar robot mudah alih dan 

pengolah robot industri. Ini dapat memperbaiki prestasi MM dengan peningkatan 

kapasiti ruang kerja dan ketangkasan operasi sistem. Kelebihan mobiliti kepada MM, 

walau bagaimanapun telah menambah kerumitan dinamik sistem tersebut. Oleh itu, 

sebuah sistem kawalan teguh yang boleh memampas kerumitan tambahan seperti 

dinyatakan adalah diperlukan. AFC merupakan salah satu novelti kajian dengan 

mewujudkan satu daya kilas suap balik ke dalam sistem dinamik untuk pemampasan 

terhadap sebarang gangguan mendadak. AFC juga mempercepatkan lagi prestasi 

kiraan komputer dengan menggunakan nilai pemalar tetap anggaran matriks inersia 

(IN) di dalam sistem. Satu model sistem dinamik suap depan juga telah dilaksanakan 

untuk mengimbangi IN demi menghasilkan prestasi pengesan trajektori yang lebih 

baik. Kawalan CPD-FAFC juga digabung dengan satu teknik penyetempatan 

menggunakan penapis Kalman (KF) yang akan membantu MM untuk mengatasi 

masalah berkaitan dengan pemanduan berarah. Kajian simulasi dan eksperimen telah 

dilakukan terhadap MM untuk mengesahkan keberkesanan sistem kawalan yang 

digunapakai. Simulasi dilaksanakan berdasarkan teknik simulasi bersama yang 

menggabungkan pelaksanaan dua perisian MSC Adams dan MATLAB/Simulink di 

dalam kerangka masa yang sama. Kajian eksperimen juga telah dilakukan 

menggunakan sebuah pelantar ujikaji MM (MMer) yang dibangunkan berdasarkan 

pendekatan mekatronik. Satu kajian perbandingan di antara sistem kawalan  CPD-

FAFC dengan beberapa sistem kawalan lain juga telah dilakukan untuk mengukuhkan 

lagi dapatan sistem. Hasil keputusan mengesahkan keberkesanan pengawal berasaskan 

AFC yang dicadangkan dan juga sejajar dengan keputusan simulasi, dengan demikian 

memperakukan konsep dan model penyelidikan yang dicadangkan.  
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INTRODUCTION 

1.1.    Research Background 

 

Recent developments in mobile robot and robot arm manipulator have attracted 

abundant research efforts to combine these two robotic features into one to create a 

new type of robot, i.e., mobile manipulator. Precision and reliability of a typical 

industrial robot arm is well proven to be an essential part in modern manufacturing 

processes. These industrial robot arms have a wide application range: expanding from 

a simple process like point-to-point material transfer to a more complicated operation, 

like continuous trajectory tracking, spray painting, and welding. The fixed base of the 

industrial robot arm limits the working range and flexibility of the system. By adding 

mobility to the robot arm, it can significantly increase the working range and flexibility 

of the robot, but at the same time, this will increase the control system complexity. 

Most of the recent industrial manipulators are still using PID position controller by 

neglecting the dynamic model of manipulator. This approach is sufficient, since most 

of the parameters surrounding the manipulator is controllable. Adding mobility to the 

manipulator, however, will change the system dynamics and may expose the system 

to an unexpectable external disturbance and the dynamic system of mobile manipulator 

is coupled which means any movement from the mobile platform will affect the arm 

manipulator and vice versa. The dynamic model is also highly nonlinear and difficult 

to control using conventional control method. To further complicate the system most 

of mobile robot is consider as a nonholonomic system with constrains which require 
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some consideration when dealing with the system kinematics, and hence, a robust 

control system is required. 

A typical mobile manipulator (MM) is comprised of a mobile platform and an 

industrial arm or manipulator placed on top of it. Over the years, the performance of 

the MM has greatly improved with increased workspace capacity and better operation 

dexterity. The added mobility advantage to a MM, however, has increased the 

complexity of robotic control system management. In this research, a new and 

enhanced method for controlling a MM with a three degree-of-freedom (DOF) 

articulated arm or manipulator mounted on top of the mobile platform is studied and 

presented. A robust controller using an active force control (AFC) based strategy was 

introduced to eliminate the effect of any disturbances present in the system. AFC 

creates a force or torque feedback within the dynamic system to allow the 

compensation of sudden disturbance spike in the dynamic system, before passing the 

loop to the position and velocity controller. AFC also allows for a faster computational 

performance by using a fixed estimated inertia matrix, IN of the system dynamics 

instead of the entire system dynamic model. A feedfoward of a simplified model of the 

dynamic system was implemented to complement the IN for a better trajectory tracking 

performance of the system. Another control method called the computed torque control 

(CTC) was also considered to benchmark the robustness and performance of the 

proposed AFC. The dynamic model of the system is developed using Lagrangian 

approach. A 3D simulation of the 3 DOF manipulator attached to a skid-steering non-

holonomic four wheeled drive mobile platform was carried out to show the 

effectiveness of the proposed system. The simulation of the system is to be performed 

using MATLAB software together with the MSC Adams software, hence the term - 

co-simulation. An experimental rig was also designed and developed, taking into 

account the control algorithms to validate the effectiveness of the proposed system in 

the wake of the prescribed disturbances. 
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1.2.    Research Objectives 

The main objectives of the proposed research are: 

1. To introduce and implement a new method of refining the positioning and 

tracking accuracy of a MM using a simplified feedfoward model based AFC 

and Kalman filter (KF) localisation by taking into consideration the effect of 

dynamic interactions between the mobile platform and manipulator in the 

presence of disturbances. 

2. To evaluate and validate the robustness of the system experimentally on the 

MM prototype executing the proposed controller while performing specific 

tasks. 

1.3.    Research Scope 

The scope of the research includes the theoretical and the experimental aspects of 

the proposed MM control system and is defined as follows: 

1. The configuration of the mobile platform is constrained to skid steering with 

four wheel drive setup. Although skid steering drive setup was used in this 

research, the kinematic of the skid steering setup is assumed to be similar to 

the differential drive setup. The difference between the differential drive and 

skid steering setup is in the computation for the centre of rotation of the mobile 

platform. In skid steering drive system, the centre of rotation can be varied 

compared to a differential drive system where the centre of rotation is always 

fixed. This condition usually affects the automated trajectory generation of the 

MM and has minimal effect on the dynamic model of the MM. 

2. The manipulator is limited to 3 DOF with articulated arm configuration. In the 

dynamic model of the MM, the centre of gravity of each link is considered at 
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the half length of the link. The inertia of each link is assumed to be equal to a 

thin cylinder rod to simplify the dynamic model. 

3. The theoretical framework involves the study of various underlying principles 

related to AFC, cascading proportional-derivative (CPD) control, feedforward 

control and MM localisation. Computed torque control (CTC) was used as the 

basis for a comparative study against the proposed controller. Simulation of the 

above framework model was executed considering a co-simulation 

environment involving MSC Adams and MATLAB computing platforms, 

noting that MSC Adams is a multibody dynamic software used for studying the 

complex interaction of the MM dynamics while MATLAB is dedicated for the 

controller computation. A multibody dynamic software was used to provide 

better physical dynamic assimilation to a real world application. However, it 

should be noted that the dynamic model in the MSC Adams software did not 

consider the friction effect of each joint in the MM. This limitation was 

necessary to provide reasonable computation time in MATLAB. 

4. The experimental MM prototype was designed and developed using the 

mechatronic approach comprising a PC-based system, embedded 

microcontroller, brushless DC motor equipped with encoder and various 

sensors. The proposed controller was programmed into an embedded 

microcontroller system based on Microchip dsPIC 16 bit chip. A PC based 

system was used to provide graphical user interface (GUI) where data logging 

and command for the MM was sent. Data obtained from the experimental setup 

was analysed using MATLAB. 

5. The research concentrates on the capability of the MM controller to follow a 

prescribed trajectory as accurately as possible. There are some limitations that 

are related to specific research area, i.e., mobile robot navigation and 

localisation problem. Due to the vastness of the mobile robot navigation area, 

some forms of localisation methods need to be introduced to demonstrate the 

navigation capability of the MM for performing a specific task. A localisation 

method used is based on Kalman filter (KF) technique. It requires a map of the 

MM operating environment to be made known. The map is assumed to be static 
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with no moving object taken into consideration. The map should also be in 2D 

configuration. The initial starting point of the mobile platform is provided and 

the “robot kidnap” problem is not considered in this research.  

1.4.    Research Methodology 

The research methodology used to guide the direction of the research can be 

described as follows: 

1. Literature review on various works performed by other researchers in areas 

related to MM control, design, dynamics and localisation technique. 

2. Derive the mathematical models of the MM, proposed CPD-FAFC controller 

and CTC. 

3. Implement full mechatronic system design approach involving the followings:  

a. Design the mechanical concept of the MM to include the number of 

joints and DOF, torque capacity requirement, type of actuators to be 

used, structure supports and mounting, parts drawing and fabrication 

and manufacturing processes.  

b. Design the electrical/electronic and programming aspects of the MM 

including the motor driver connection, various sensors connection and 

mounting, power system management, embedded microcontroller 

design, system communication requirements and GUI for the PC 

system.  

c. Design the proposed CPD-FAFC controller together with the CTC 

controller for benchmarking, concurrently identifying and solving the 

dynamic model of the MM. 
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4. Simulate the above controllers based on the co-simulation technique using 

MSC Adams and MATLAB through various testing, loading and operating 

conditions. Thereafter, perform a comparative study between the two 

controllers to derive a meaningful conclusion. Various models are converted 

into suitable embedded system coding for simulation. 

5. Develop the MM test rig through complete system integration including the 

fabrication and assembly processes. 

6. Perform experiments on the MM test rig which is already loaded with the 

proposed CPD-FAFC embedded controller under various testing conditions. A 

study on the MM test rig localisation capability using the KF localisation 

method is also experimented. 

7. Evaluate and analyse both results obtained through simulation and 

experimental works of the MM system.  

The flow chart of the research methodology is shown in Figure 1.1, noting that 

some of the research activities do not necessarily and strictly follow the above 

description sequentially. 
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Figure 1.1: Flowchart of the proposed research methodology 
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1.5.    Problem Statement 

In describing the control of a MM, the added mobility also increases the 

complexity of the MM dynamic system caused by the interaction between mobile 

platform and manipulator. This problem greatly limits the application of the MM in 

the real world. A robust control method is needed to control the complex dynamic of 

the MM. In (Mailah et al., 2005) a MM equipped with a two-link planar manipulator 

was tested using the AFC-based method with various IN (estimated inertia matrix) 

tuning algorithms applied. The tuning methods which include iterative learning and 

knowledge based fuzzy techniques were performed on-line in an experimental setup. 

The results show encouraging performance when tracking a prescribed trajectory. The 

capability of the MM was however limited in terms of its manipulability because of 

the planar configuration. An articulated 3 DOF MM was thus proposed in this research 

to enhance the capability of the MM. In the two-link planar MM, the dynamic model 

is relatively simple and the on-line computation readily implementable. However, with 

an articulated 3 DOF manipulator MM, the mathematical model of its dynamic has 

become too intensive for IN on-line computation of the AFC-based controller. Thus, 

a new control algorithm dealing with this problem is needed to counter the given 

condition. 

In this research, the advantages of AFC was enhanced using a feedfoward 

model control where a simplified inertia of the MM derived from its dynamic equation 

was injected into the AFC scheme. The feedfoward model was made available from 

the outside of the AFC control loop, thus enabling for a lesser computation time in the 

AFC loop. The feedfoward model control helps to estimate some of the dynamic 

interactions within the system and produces better tracking error performance. AFC 

also requires adding a position and velocity control scheme to operate effectively. 

Instead of conventional type of pure PD control, this research introduces the use of a 

cascading PD control into the position and velocity control loop. The cascading PD 

control should improve the steady state error and helps the AFC capability to reject 

disturbances by monitoring the velocity loop. By presenting a viable and physically 

executable solution to this problem, it will hopefully escalate the application of a MM 

in the real world environment. 
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1.6.    Research Contributions 

The research contributions are described as follows:  

1. The work on the MM is actually an extension to the previous works done by 

Pitowarno (2006) who only considered a two-link planar manipulator as the 

mounted device on the mobile platform. The proposed research uses an articulate 

3 DOF manipulator which is more complex and highly non-linear. Besides the 

present work employs a skid steering drive system compared to differentially 

driven wheels for the physical navigation of MM. The controller utilises an 

improved version of AFC, i.e., cascaded PD with feedforward AFC (CPD-FAFC) 

scheme unlike the previous works that employed AFC-Resolve Accelerated 

Control (RAC) and knowledge-based fuzzy (KBF) AFC MM schemes.  

2. The research employs a co-simulation technique based on MSC Adams and 

MATLAB/Simulink computing platform which provide a new method of 

evaluating and testing the proposed controller through simulation. Compared to a 

more common simulation method which usually employs a single 

MATLAB/Simulink computing tools the co-simulation method provide the 

advantages of not having to fully rely on manually computing the complicated 

dynamic system model of the MM by incorporating the multibody dynamic 

software solution such as the MSC Adams. The co-simulation technique also 

present a new approach to solving the MM problem through virtual rapid 

prototyping concept which in turn could be extended into a rapid embedded system 

prototyping. 

3. As a continuation from the co-simulation technique a method of rapid embedded 

system prototyping concept was introduce to construct a seamless transfer of 

program from the co-simulation MATLAB/Simulink software into an embedded 

system for the MM. The automated transferring of the controller algorithm from 

the MATLAB/Simulink to the MM embedded system would significantly reduce 

the development time and eliminate the possibility of human error to occur if the 

transfer were to be performed manually.  



10 

 

4. The AFC method can be considered to be robust, accurate and simple to 

implement; thus it is deliberately chosen as the main controller in the research. 

However, the AFC relies heavily on effective use of the system sensors. In the 

proposed research, using the MM sensors effectively in AFC will be one of the 

main contributions of this research. Acceleration measurement technique using the 

indirect method as mentioned in the above literature hopefully will provide better 

implementation of AFC in an embedded system of MM compared to previous 

solution.  

5. Another factor that need attention with AFC application in a control system is 

tuning of the IN. Tuning the IN parameter within the AFC feedback loop can be 

the limiting factor of a successful implementation of the AFC system in a practical 

solution. The calculation of the tuning process is performed simultaneously with 

the measurement from the sensors, thereby increasing the system bandwidth. In the 

proposed research, a feedfoward model based control is utilised to help estimate 

the inertial effect of the system outside the feedback control loop and hopefully 

reduce the system tracking error. 

6. The control system of the MM alone cannot provide an accurate enough 

localisation in its environment. The non-deterministic parameters affecting the 

wheel of the MM will cause it to deviate from the goal and cause error even if the 

control system is perfect. Localisation is a big research topic in mobile robotic but 

application of localisation in MM is not common. This is probably caused by the 

assumption that if the localisation is applied to conventional control system (PID 

control) is suitable for control of a mobile platform than the system is assumed also 

suitable for a mobile platform attached with a manipulator. In the purposed 

research, combining a localisation technique using the KFs together with the AFC 

control to achieve better tracking performance of a MM is another contribution of 

the research. 

7. As previously mentioned, the reported research works on mobile manipulator 

(MM) are relatively scarce due to its higher level of complexity and sophistication. 

The undertaken research serves to enrich the subject matter academically as it 
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focuses on the robust motion control and localisation of MM based on enhanced 

AFC-based strategy.  

1.7.    Organization of the thesis 

This thesis is organized into eight chapters. Chapter 2 discusses about the 

literature review that is relevant to the proposed research. This chapter provides some 

insights about past and current research trend which in turn yields some general 

guidelines towards developing a suitable methodology for the research. A research gap 

is also explicitly identified to ensure that the proposed research is indeed relevant, up-

to-date and aligned with the latest development in the research area. 

 Chapter 3 relates the main theoretical ideas and concept which was further 

conceptualised through a detailed extraction of the mathematical models of various 

essential components in the proposed system. These include the MM dynamics, 

various selected controllers to be implemented in the research, i.e., the proposed CPD-

FAFC and CTC controllers and KF localisation method. All the derivations of the 

dynamic equations were done based on the Euler-Lagrange method. 

Chapter 4 presents a simulation study on the proposed MM design. The 

simulation was performed based on the co-simulation technique where two simulation 

programming software were executed simultaneously by swapping and exchanging 

data in-between the two computing platforms. The two are MSC Adams and 

MATLAB/Simulink software packages; the former is a multibody dynamic software 

which simulates the dynamic aspect of the MM while the latter simulates the controller 

aspect in the simulation. The CPD, CPD-FAFC and the CTC were simulated 

considering three sets of different scenario settings. The relevant results related to the 

position time response, position tracking error and joint driving torque were rigorously 

analysed and discussed.  
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Chapter 5 provides a detailed explanation on the development and construction 

of the MM experimental rig (MMer) using full mechatronic system design approach. 

The development of MMer includes several aspects of the design mainly related to 

mechanical, electrical/electronics and computing elements, i.e., pertaining to the 

software and hardware of the MMer core system. The use of a rapid prototyping 

software to hardware application which enables a fast development on the proposed 

controller hardware was also highlighted and discussed.  

Chapter 6 discusses the MMer actual experimental test procedure, data and 

results obtained from the experiments based on the CPD-FAFC control scheme. In the 

experimentation, the proposed CPD-FAFC controller was tested through similar test 

environments, taking into account three scenarios as previously described in Chapter 

4. Chapter 6 also describes the implementation of a localisation technique based on the 

adaptive Kalman filter (KF) algorithm. It also explains the procedure for performing 

the localisation test on the developed MMer system. The experiment was performed 

by integrating a well-known robot operating software (ROS) into the MMer system. 

Data gathered from a laser range finder sensor was combined with the position data 

obtained from the CPD-FAFC controller into the ROS vector of simultaneous 

localisation and mapping (SLAM) node which estimates the position of the MMer 

based on the KF algorithm. 

Chapter 7 presents a comparative study between the simulation and the 

experimental results. The results obtained from both simulation and experimental 

works are compared, side by side to verify the effectiveness of the proposed CPD-

FAFC controller in performing specific trajectory tracking and pick-and-place tasks 

considering various loading and operating conditions. 

Finally, Chapter 8 presents an overall conclusion of the research. A brief 

discussion on some recommendations for future research works and possible extension 

that can be performed were explained and elaborated. Some of the relevant 

specifications and datasheet related to the research are also included in the appendices 

for further clarification and references. 
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