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ABSTRACT 

Sodalite is a type of zeolite having ultramicropore size and high thermal 

stability with strong basic property. However, microporous sodalite has several 

drawbacks in the catalyst application due to its small pore size (2.8 Å) and low 

surface area. To overcome these disadvantages microporous sodalite was modified to 

have mesoporous structure, while still maintaining its active sites suitable for catalyst 

applications. In this study, mesoporous sodalite was synthesized using various 

organic templates as structure directing molecules and used as a base catalyst in the 

Knoevenagel condensation reaction. A hierarchical mesoporous sodalite has been 

synthesized hydrothermally at 150ºC for crystallization using various mesotemplates. 

Results from  XRD and  FTIR spectroscopy showed that all templates being used in 

the synthesis produced sodalite phase. The sodalite synthesized using organosilane 

template and a dual template containing a mixture of tetrapropylammonium 

hydroxide and cetyltrimethylammonium bromide, have shown mesoporosity, as 

proven by nitrogen adsorption analysis. The field emission scanning electron 

microscopy (FESEM) micrographs of the mesoporous sodalite obtained showed 

spherical morphology in the size range ~ 10-16 nm. 
29

Si magic-angle spinning

nuclear magnetic resonance (MAS NMR) spectroscopy showed the sodalite 

framework has a Si/Al ratio equal to 1, while 
27

Al MAS NMR spectrum exhibited the

unsymmetrical tetrahedral Al. The synthesized sodalite samples which were modified 

with metal ions (K
+
, Cs

+
) enhanced the sodalite basicity. Results from Hammet

indicators and temperature programmed desorption of CO2 studies revealed that 

potassium mesoporous sodalite prepared using dual template has the highest strength 

and amount of basic sites. The reactivity for all of the prepared sodalite samples was 

evaluated in the Knoevenagel condensation of 2-nitrobenzaldehyde and ethyl 

acetoacetate, producing 4-(2-nitrophenyl)-but-3-en-2-one as the main product, and 

trans-2-nitrocinnamic acid as the side product. All synthesized mesoporous sodalites 

were more reactive than the microporous sodalites counterpart, producing > 70% 

selectivity for the main product. Based on the conversion of reactant, the potassium 

mesoporous sodalite using dual template has shown the most active catalyst which 

gave 95% conversion at 150
o
C and 6 hours reaction using 0.2 g catalyst. Result from

the experimental study was in accordance with the response surface methodology 

(RSM) findings for the optimum reaction parameters which were at 150
o
C, 6 hours

reaction time, 0.2 g catalyst for 97.1% conversion. This study has proven that besides 

basicity, hierarchical mesoporosity of sodalite is important for the enhancement of 

the reactivity of the sodalite catalyst for reactions involving larger molecules such as 

in the Knoevenagel reaction. 
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ABSTRAK 

Sodalit adalah sejenis zeolit yang mempunyai saiz ultramikroliang dan 
kestabilan haba yang tinggi dengan sifat bes yang kuat. Walau bagaimanapun, sodalit 
mikroliang mempunyai beberapa kelemahan dalam penggunaannya sebagai mangkin 
kerana saiz liang kecil (2.8 Å) dan luas permukaan yang rendah. Untuk mengatasi 
kelemahan ini sodalit mikroliang telah diubahsuai untuk mempunyai struktur 
mesoliang, di samping masih mengekalkan tapak aktif yang sesuai untuk aplikasi 
sebagai mangkin. Dalam kajian ini, sodalit mesoliang telah disintesis menggunakan 
pelbagai templat organik sebagai molekul pengarahan struktur dan digunakan sebagai 
mangkin bes dalam tindak balas kondensasi Knoevenagel. Sodalit mesoliang 
berhierarki telah disintesis secara hidroterma pada 150°C untuk penghabluran 
menggunakan pelbagai jenis mesotemplat. Keputusan  XRD dan spektroskopi  FTIR 
menunjukkan bahawa semua templat yang digunakan dalam sintesis menghasilkan 
fasa sodalit. Sodalit yang disintesis menggunakan templat organosilana dan dwi 
templat yang terdiri daripada campuran tetrapropilammonium hidroksida dan 
setiltrimetilammonium bromida, telah menunjukkan sifat mesoliang, seperti yang 
dibuktikan oleh analisis penjerapan nitrogen. Mikrograf dari mikroskopi elektron 
pengimbasan pancaran medan (FESEM) bagi sodalit mesoliang yang diperoleh 
menunjukkan morfologi sfera dalam julat saiz ~ 10-16 nm. Spektroskopi 29Si putaran 
sudut ajaib-resonans magnet nukleus (MAS NMR) menunjukkan bingkaian sodalit 
mempunyai nisbah Si/Al bersamaan dengan 1, sementara spektrum 27Al NMR MAS 
mempamerkan Al tetrahedron tak simetri. Sampel sodalit yang disintesis, diubah suai 
dengan ion logam (K+, Cs+) untuk meningkatkan sifat bes sodalit. Keputusan 
daripada kajian penunjuk Hammet dan suhu penyahjerapan terprogram CO2 
menunjukkan kalium sodalit mesoliang yang menggunakan dwi templat mempunyai 
kekuatan dan jumlah tapak bes tertinggi. Kereaktifan semua sodalit yang disediakan 
telah dinilai dalam kondensasi Knoevenagel antara 2-nitrobenzaldehid dan etil 
asetoasetat, menghasilkan 4-(2-nitrofenil)-but-3-en-2-on sebagai hasil utama dan 
trans asid 2-nitrosinamik sebagai hasil sampingan. Semua sodalit mesoliang yang 
disintesis adalah lebih reaktif berbanding dengan sodalit mikroliang, menghasilkan > 
70% kepilihan untuk hasil utama. Berdasarkan pertukaran bahan tindak balas, kalium 
sodalit mesoliang menggunakan dwi templat telah menunjukkan mangkin yang 
paling aktif yang memberikan 95% penukaran pada suhu 150°C dan 6 jam tindak 
balas, menggunakan 0.2 g mangkin. Keputusan daripada kajian eksperimen adalah 
selaras dengan kaedah permukaan respons (RSM) untuk parameter tindak balas 
optimum iaitu suhu 150°C, 6 jam masa tindak balas, 0.2 g mangkin bagi 97.1% 
penukaran. Kajian ini telah membuktikan bahawa di samping sifat bes, sodalit 
bermesoliang hierarki adalah penting untuk peningkatan kereaktifan pemangkin 
sodalit bagi tindak balas yang melibatkan molekul yang lebih besar seperti dalam 
tindak balas Knoevenagel. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

 Zeolites are microporous (1-20 Å diameters) crystalline solids with well-

defined structures. Zeolites are crystalline, hydrated aluminosilicates with open 

three-dimensional framework structure built of (SiO4)4─ and (AlO4)5─ tetrahedral 

linked by sharing of an oxygen atom, to form regular intracrystalline cavities and 

channels of molecular dimensions. The framework structure may contain linked 

cages, cavities or channels withthe size which allows the small molecules to enter the 

limiting pore sizes. The pore sizes are roughly between 3 and 10 Å in diameter. 

Zeolites are crystalline hydrated aluminosilicates of alkaline and earth-alkaline 

elements (particularly of sodium and calcium, compositionally similar to clay 

minerals, but differing in their well-defined three-dimensional neon- and micro-

porous structure. Aluminum, silicon, and oxygen are arranged in a regular structure 

of [SiO4]4─ and [AlO4]5─ tetrahedral units that form a framework with small pores 

(also called tunnels, channels, or cavities) of about 0.1-2 nm diameter running 

through the material. Because of their unique porous properties, zeolites are used in a 

variety of applications. Zeolites have been used as ion-exchange (water softening and 

purification), and in the separation and removal of gases and solvents. Other 

applications are in agriculture, animal husbandry and construction. They are also 

often referred to molecular sieves. Zeolites are porous, hydrated aluminosilicates. 

They may be natural minerals or synthetic materials. The general chemical 

composition of a zeolite is: 
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M x/n [(AlO2) x (SiO2) y]. wH2O 

 

where M is an alkali or alkaline earth cation, n is the valence of the cation, w is the 

number of water molecules per unit cell, x and y are the total number of tetrahedral 

per unit cell, and the ratio y/x usually has values of 1 to 5, though for the silica 

zeolite y/x can be ranging from 10 to 100 [1]. 

 

 There are five characteristics of zeolites. The first characteristic is 

tectosilicates, which three dimensional structure is built from tetrahedra of Si and Al. 

However,some of the silicon atoms have been replaced by aluminum, (i.e. the 

(Si+Al)/O = ½), which usually denotes the T-atoms. The second characteristic isopen 

framework structure, which is built from TO4-tetrahedra, consisting pores and voids 

with the periodic manner (i.e. crystalline materials). The third characteristic is 

counter ions (cations) which are presented in order to compensate for the negative 

framework charge that is created by aluminum substitution. The counter ions are 

situated and mobile in the pores and voids. The four characteristic of zeolite is that 

the voids and pores are filled through the water molecules (present zeolitic water). 

One measure of the porosity is the amount of adsorbed water which is presented in 

the pores and voids, and may remove by the heating and readsorbed at lower 

temperatures. The fifth characteristic of zeolites refers to Loewensteins rule, which 

imposes a limit amount of aluminum, may be substituted into the framework.There is 

no Al-O-Al presented in the tectosilicates. It means, only half of the silicon atoms 

may be substituted by aluminum which indicates the Si/Al ratio is 1. 

 

 Zeolites have the ability to act as catalyst for chemical reactions which takes 

place within the internal cavities. An important class of reactions is that catalyzed by 

hydrogen-exchanged zeolites, whose framework-bound protons give rise to very high 

acidity.  This has been exploited in many organic reactions, including crude oil 

cracking, isomerization and fuel synthesis. Microporous crystalline aluminosilicate 

zeolites are widely used in petrochemical and fine-chemical industry because of their 

large surface area, high adsorption capacity, high thermal and hydrothermal 

stabilities, strong acid sites within their defined micropores, and shape selectivity in 

catalysis. According to Zaarour et al. [2], zeolites with uniform pore size, adjustable 

acidity, and good stability have been regarded as one of the most important catalysts 
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in petrochemical industry due to their excellent catalytic performance. Zeolite can 

also serve as oxidation or reduction catalysts.  

 

 However, zeolite with sole micropores are imposed by severe mass-transfer 

constrains, which results in poor catalytic performance (such as life time and 

convention in bulky substrate catalytic reaction. The relatively small pore size of the 

microporous zeolites (pore diameter < 1.5 nm) restricts their further applications 

because of slow diffusion of reactants and products from the active sites of the 

zeolites [3]. 

 

 In many catalytic applications, the main drawback of zeolites is their intricate 

pore and channel systems in the molecular size ranging from 0.3 to 1.5 nm. It makes 

large molecules cannot react effectively over these microporous materials because of 

the limitation of their small pore sizes. To solve the diffusion problems of guest 

species in zeolites, mesoporous aluminosilicate materials with adjustable larger pore 

sizes, such as MCM-41 and SBA-15 have been successively invented [4]. These 

materials can overcome the pore size constraint of microporous zeolites and allow 

the diffusion of larger molecules. However, as compared with conventional zeolites, 

these mesoporous materials exhibited insufficient hydrothermal stability and acidity, 

which limits their use as catalysts in a wide range of industrial processes and 

reactions. 

 

 Several different methods have been proposed to overcome the drawback of 

these limitations of microporous zeolites. To overcome these problems, many efforts 

have been devoted to synthesize nanosized zeolite, ultralarge pore zeolites, and 

hierarchical mesoporous zeolite. These approaches consist of synthesizing ordered 

mesoporous materials with ordered pore (2-50 nm).The exploitation of template in 

mesoporous zeolites has clearly been receiving a great deal of attention for those 

working in zeolite synthesis. Since mesopore-modified zeolites have shown 

promising properties (activity and selectivity) in catalytic processes, the next portion 

of this contribution deals with the hottest current topics and important progress in 

this field. 
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 Up to date zeolites with mesoporosity have been successfully synthesized 

such as ZSM-5 [4], zeolite Y [5], zeolite A [6] and zeolite X [7]. It pave a way to 

introduce mesoporous into the zeolite crystals in recent years, and thus have the 

advantages of both meso structured materials (fast diffusion and accessible for bulky 

molecules) and microporous zeolite crystals (strong acidity and high hydrothermal 

stability). Mesoporous ZSM-5 and A zeolites were synthesized using an 

amphiphilcorganosilicate as mesopore-directing agent [8]. Later mesoporous ZSM-5 

zeolite was also prepared using a silylatedpolyethylenimine as mesopore-directing 

agent. Following these attempts, mesoporous zeolites have been widely investigated 

and the most used templates are polymers, long chain organosilicates, and 

amphiphilc surfactants. For example, mesoporous ZSM-11 templated by polyvinyl 

butyral, mesoporous Y templated by long chain organosilicates [9] and mesoporous 

ZSM-5 templated by CTAB or F127 or P123 have been reported [10]. Hwang et al. 

[11] designed a kind of bifunctional surfactants, such as C22H45–N+(CH3)2–C6H12–

N+(CH3)2–C6H13(C22–6–6) and C18H37–N+(CH3)2–C6H12–N+(CH3)2–C6H12–N+(CH3)2–

C18H37(C18–6–6–18), which can direct the formation of zeolite structures on the 

mesoporous and microporous length scales simultaneously, yielding ZSM-5 zeolite 

nanosheets with a thickness (2 nm) of only a single unit cell or ordered mesoporous 

zeolites with hexagonal mesophase and MFI-like zeolite framework, respectively. 

Qin et al. [6] described that a novel synthetic route was designed, employing both 

high temperature and a nontoxic organic structure-directing agent (SDA), for the 

synthesis of high silica zeolite Y. The N-methylpyridinium is used as an organic 

SDA that is stable during the synthesis, and the high silica zeolite Y shows high 

hydrothermal stability and good catalytic performance, as well as excellent 

adsorptive properties. 

 

 Zeolite nanocrystals from three-dimensionally ordered mesoporous-imprinted 

(3DOm-i) silicalite-1 prepared by a fragmentation method involving sonication and 

dissolution within a certain pH range. 3DOm-i silicalite-1 with spherical elements 

with diameters ranging from 10 to 40 nm and a wide range of crystal sizes (100-200 

nm, 500-600 nm, and 1-2 μm) were used as the starting material [12]. 

 

 According to Saada et al.[13], BEA (Beta polymorph A), LTA (Linde Type 

A, zeolite A), FAU (Faujasite) and LTL (Linde Type L, zeolite L) with ordered 
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mesoporosity have been synthesized within the confined space of 3DOm carbon by 

conventional hydrothermal treatment. They can be easily tuned by varying the 

mesopore size of carbon and mesoporous structure of the carbon template.A wide 

range of crystal morphologies can be achieved by varying the nucleation and crystal 

growth rate. 

 

 Wang et al. [14] synthesized a mesoporous zeolite beta using mesoscale 

cationic polymers as soft template, which was used as catalyst in alkylation of 

benzene with 2-propanol.Mesoporous beta sample exhibited much higher activity 

and isopropylbenzene selectivity (both close to 100%) than the conventional beta, 

and more importantly, remarkably slow deactivation over the mesoporous sample 

could be also observed. 

 

 Sodalite is kind of zeolite with ultramicropore size, high aluminum content 

(Si/Al = 1), and high stability in basic solution. Sodalite is an ultramicropore zeolite, 

which aluminosilicate framework consists of a 4-membered ring aperture with a pore 

size of 2.8 Å, known to be the smallest pore size in zeolite family. Because of its 

small pore size and high ion exchange capacity, sodalite has been considered as a 

good candidate material for a wide range of applications such as hydrogen storage, 

optical materials and hydrogen separation but one disadvantage of sodalite is the 

pore sizes which are too small to allow access to bulky organic molecules therefore 

mesoporous sodalite, with a surface area of around 190 m2/g, has been synthesized 

and used as a catalyst for base-catalyzed reactions and a catalyst support of 

palladium metal particles for crosscoupling reactions [15]. Figure 1.1 shows the 

structure of sodalite.   

 
Figure 1.1: Sodalite framework [16] 

Sodalite cage 

Pore opening 
2.8 Å 
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 Knoevenagel condensation is a classic C-C bond formation reaction in 

organic chemistry field. These condensations occur between aldehydes or ketones 

and active methylene compounds with ammonia or another amine as a basic catalyst 

in an organic solvent. Knoevenagel reaction carries out at the presence of sodalite 

with mesoporosity as a base catalyst. It causes to produce product that is useful for 

green chemistry, in the pharmaceutical, and in the line of calcium channel blockers. 

It works by blocking voltage-gated calcium channels in cardiac muscle and blood 

[15]. 

 

 According to Shanbhag et al.[15], Knoevenagel condensation of 4-

isopropylbenzaldehyde (4-IPB) with ethyl cyanoacetate (ECA) is catalyzed by mild 

basic catalysts. The activity of KMPSOD (mesoporous sodalite modified with K+) 

was compared with that of KAlMCM-41 (AlMCM-41 modified with K+) and 

CsNaX(NaX modified with Cs+) which contained similar Si/Al ratios but differed in 

pore size, pore structure, and basicity. KMPSOD was the most active catalyst (78%) 

followed by MPSOD (mesoporous sodalite) (70%), KAlMCM-41 (46%), and CsNaX 

(35%) after 1 h reaction. The higher activity of KMPSOD was attributed to the basic 

sites located in their mesopores, which facilitated the diffusion of bulky molecules. It 

showed the possibility of modifying the ultramicropore zeolite such as sodalite to 

having high specific surface area and mesoporosity [16]. 

 

 

1.2 Statement of the Problem 

 

 Zeolites are microporous crystalline aluminosilicate with open three 

dimensional framework structures. Because of their unique porous properties, they 

are used in various reactions. Zeolites have the ability act as catalyst for chemical 

reactions.The relatively small pore size of the microporous zeolite (pore diameter 

less than 2 nm), restricts their applications because of slow mass transfer of bulky 

reactants and products from the active sites of the zeolite. 

 

Sodalite is kind of zeolite with ultramicropore size, high aluminum content 

(Si/Al = 1), and high stability in basic solution. In general, the composition of 

sodalite is M8 [T12O24] X2, where X is a monovalent guest anion such as chloride in 
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the mineral sodalite, M is an alkali or alkaline earth cationandT is Si and Al. Because 

of its small pore size and high ion exchange capacity, sodalite has been considered as 

a good candidate material for a wide range of applications such as hydrogen storage, 

optical materials and hydrogen separation, but one disadvantage of sodalite is the 

pore sizes which are too small to allow access to bulky organic molecules. Thus it 

has not found any significant catalytic application due to its inaccessibility cages 

with small pore openings. The slow diffusion of sodalite which refers to the 

intracrystalline diffusion is the most problematic issue for using sodalite as a 

heterogeneous base catalyst in various reactions [17]. In order to solve this problem, 

the pore size must increase in the mesoporous rangewith ordered pore (2-50 nm) and 

make particle size in the nano size range with the decrease path length to prepare 

sodalite with improving the accessibility to the active sites.In fact,having 

mesoporosity lead to more active sitesthat can be reached by the reactants.  The 

active sites which are located inside mesopores and the large external surface area of 

mesoporous sodalite, exhibit much higher effectiveness factors for the reaction 

involving bulky molecules.  Therefore, it is a challenge to modify the microporous 

sodalite to mesoporous sodalite with special properties including high aluminum 

content, highly mesoporous crystalline zeolitic walls, and high surface area that 

facilitated the diffusion of bulky molecules. 

 

 Shanbhag et al. [15] reported the mesoporous sodalite synthesized using 

amphiliphic organosilane surfactant as structure directing molecule.  The long chain 

length of this surfactant has great effect on micelle size, pore volume and 

mesoporosity.  It is shown possibility of modifying the ultramicropore zeolite, such 

as sodalite to mesoporous sodalite. Since the synthesized mesoporous sodalite has 

highly aluminum content, so the active basic sites of mesoporous sodalite are strong 

enough to catalyze the reaction, and it leads to high conversion of reactants to 

products.  Previous study has shown that sodalite with micropore has special basic 

sites which equivalent to that of basic metal oxides when tested on Knoevenagel 

reaction [15].  As such, the study of the basicity of the obtained mesoporous sodalite 

in Knoevenagel might give different result from that of microporous sodalite.  

According to Shanbhag et al. [15], mesoporous sodalite with a 

mesoporous/microporous hierarchical structure was successfully synthesized using 

an organosilane surfactant.  It showed about 10-fold high surface area and 4-fold 
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large pore volume, as compared with sodalite with solely microporous structure.  The 

basicity of mesoporous sodalite was higher than that of microporous sodalite.  The 

catalytic activities of this mesoporous sodalite were tested for various base catalyzed 

reactions involving bulky and small substrates. The catalyst showed higher activity 

and longer lifetime than microporous sodalite. 

 

 Since 2012, there has been no reported on other types of structure directing 

molecule beside amphiliphic organosilane in the formation of the mesoporous 

sodalite. Thus, this research focuses on finding the other types of structure directing 

agents as organic templates (organosilane 

(trimethoxsilylpropyldimethyloctadecylammonium chloride) and mixture of 

tetrapropylammonium hydroxide (TPA) with cetyltrimethylammonium bromide 

(CTABr) with mole ratio of 1:1), which can interact strongly with silicate solution 

and can be used to form mesoporous sodalite. 

 

 

1.3 Objectives of the Study 

 

1. To synthesize mesoporous sodalite using different structure directing 

organic templates and characterize the physical and chemical 

properties of mesoporous sodalite.  

 

2. To modify the basicity of mesoporous sodalite by ion-exchanging 

with different alkali metals.  

 

3. To study the strength and amount of basic sites of mesoporous 

sodalite. 

 

4. To evaluate the activity of mesoporous sodalite as a catalyst in 

Knoevenagel reaction and compare with microporous sodalite. 
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1.4 Scope of the Study 

 

 The scope of this study included hydrothermal synthesize of mesoporous 

sodalite as a catalyst.  Sodium aluminate was used as Al source, while fumed silica, 

was used as silica source and Na+ as a counter ion.  Different templates were used for 

synthesis of mesoporous sodalite include organosilane 

(trimethoxsilylpropyldimethyloctadecylammoniumchloride),dimethyldioctadecylam

monium bromide (DDAB), cetyltrimethylammonium bromide (CTABr), 

tetreaethylammonium hydroxide (TEA), polyvinyl butyral (PVB), 

poly(ethyleneglycol)-block-poly(propyleneglycol)-block-poly(ethyleneglycol) (PEG-

PPG-PEG),and mixture of tetrapropylammonium hydroxide (TPA) with 

cetyltrimethylammonium bromide (CTABr) with mole ratio of 1:1.  

 

 X-ray diffraction (XRD) patterns were recorded with a Rigaku Multiflex 

Diffractometer equipped with Cu Kα radiation (40 kV, 40 mA).  The presence of 

tetrahedral TO4 (T = Si or Al) bonding and formation of zeolite were determined 

using Fourier transform infrared spectroscopy (FTIR).  The spectrum was elucidated 

for zeolite framework structure at wavenumbers between 400-1500 cm-1. The 

textural properties of the samples were measured by N2 sorption at liquid nitrogen 

temperature by Micromeritics 2010 v3.01g volumetric adsorption analyzer. Samples 

were dried at 300°C in a dynamic vacuum for 2 h before the N2physisorption 

measurements.  The specific surface area was determined using the standard BET 

method on the basis of adsorption data.  The pore size distributions were calculated 

from both the adsorption and desorption branches of the isotherms using the BJH 

method and the Kelvin equation.  Morphology and elements in the sample were 

observed by FESEM equipped with energy dispersion X-ray spectrometer (FESEM-

EDX, JEOL JSM-6710F).  After the morphology was observed on the FESEM, the 

composition of the element in specific area was determined by using EDX.  The 

EDX was determined by using FESEM equipped with energy dispersion X-ray 

spectrometer (FESEM-EDX, JEOL JSM-6710F). 29Si and 27Al nuclear magnetic 

resonance MAS NMR was carried out by using Bruker Advance 400 with 4 mm 

zirconia motor 79.47 MHz and 104.23 MHz for 29Si and 27Al MAS NMR 

respectively to determine the local environment of tetrahedral SiO4 and tetrahedral 
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