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ABSTRACT 

The ionospheric conditions over Malaysia are profoundly critical not only due 

to its location that is near to the equator but also due to the high solar activity that 

occurred during the 11-years solar cycle. The two-dimensional (2D) single thin layer 

model (SLM) has been widely used to monitor and model the ionosphere. However, 

this model only focuses on the height of the maximum densities of the electron, which 

lies within 300 kilometre (km) to 450 km above the Earth and therefore neglects the 

information of bottom and topside of the ionosphere. Hence, a three-dimensional (3D) 

ionospheric structure is proposed to address these limitations. The aim of this study is 

to model the electron density profile over Peninsular Malaysia using Global 

Positioning System (GPS) ionospheric tomography method. In doing so, the 

Malaysian Real-time Kinematic Network (MyRTKnet) over Malaysia was utilized to 

derive the total electron content (TEC) maps. It was found that the variations of the 

TEC increase with decreasing of latitude and longitude, and gradually change from 

East to West direction. The GPS-derived TEC from the years 2009 to 2014 shows that 

the maximum yearly mean TEC over Malaysia is up to 58 TEC unit (TECU), recorded 

during the year 2014 which was associated with high sunspot numbers. The maximum 

yearly mean and the minimum peak of diurnal variations occur at 08 universal time 

(UT) and 21UT respectively. Next, the receiver code bias (DCBr) was estimated for 

MyRTKnet stations using the adopted algorithm from IONOLAB-BIAS. For 

assessment purpose, this method shows a good estimation of DCBr with the 

International Global Navigation Satellite System (GNSS) Service (IGS) analysis 

centre compared to with Bernese software. Then, the GPS ionospheric tomography 

module was developed to reconstruct the electron density profile over Peninsular 

Malaysia. The results were validated with the nearest ionosonde station and the 

ionospheric global models such as the International Reference Ionosphere (IRI) model 

and NeQuick model. It was found that the differences between GPS ionospheric 

tomography with the models are small during the daytime but large at night-time. It 

was also found that, the GPS ionospheric tomography appears to be more agreeable 

with the IRI model than with NeQuick model. For the validation of the NmF2 

parameters with the IRI model and ionosonde measurements, the GPS ionospheric 

tomography is more agreeable with the ionosonde than with the IRI model. The results 

also show that the GPS ionospheric tomography is capable to show the vertical 

ionospheric profile over the study area during quiet ionospheric conditions and its 

irregularities during disturbed conditions of the ionosphere. Overall, it was found that 

the GPS ionospheric tomography method is suitable for examining and monitoring the 

ionospheric variations and irregularities in support of the space weather studies in 

Peninsular Malaysia. 
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ABSTRAK 

Keadaan ionosfera di Malaysia amat kriktikal bukan hanya kerana lokasinya 

yang berhampiran dengan garisan khatulistiwa, tetapi juga dipengaruhi oleh aktiviti 

suria yang berlaku ketika 11 tahun kitaran suria. Model dua dimensi (2D) lapisan tipis 

tunggal (SLM) telah digunakan secara meluas untuk pemantauan dan pemodelan 

ionosfera. Walau bagaimanapun, model ini hanya tertumpu kepada ketinggian 

maksimum kepadatan elektron, yang terletak dalam jarak 300 kilometer (km) hingga 

450 km di atas Bumi dan oleh itu ia mengabaikan informasi bahagian bawah dan atas 

ionosfera. Oleh yang demikian, struktur ionosfera tiga dimensi (3D) telah dicadangkan 

untuk mengatasi kekangan ini. Tujuan kajian ini adalah untuk memodelkan profil 

kepadatan elektron di Semenanjung Malaysia menggunakan kaedah tomografi 

ionosfera Sistem Penentududukan Sejagat (GPS). Oleh yang demikian, Jaringan GPS 

Kinematik Masa Hakiki Malaysia (MyRTKnet) telah digunakan untuk menerbitkan 

peta jumlah kandungan elektron (TEC). Didapati bahawa variasi TEC meningkat 

dengan penurunan latitud dan longitud, dan secara beransur berubah dari arah Timur 

ke Barat. TEC daripada GPS diperoleh, dari tahun 2009 hingga 2014 menunjukkan 

bahawa purata maksimum tahunan TEC ke atas Malaysia adalah 58 unit TEC (TECU), 

yang direkodkan pada tahun 2014 selari dengan nombor tompok matahari yang tinggi. 

Purata tahunan maksimum dan minimum bagi puncak variasi harian masing-masing 

berlaku pada jam 08 dan 21 waktu piawai (UT). Seterusnya, kecenderungan kod 

penerima (DCBr) telah dianggarkan bagi stesen MyRTKnet dengan menggunakan 

algoritma yang diadaptasi daripada IONOLAB-BIAS. Untuk tujuan penilaian, kaedah 

ini menunjukkan anggaran DCBr yang baik dengan pusat analisis Perkhidmatan 

Sistem Satelit Navigasi Sejagat (GNSS) Antarabangsa (IGS) berbanding dengan 

perisian Bernese. Kemudian, modul tomografi ionosfera GPS dibangunkan untuk 

membina semula profil ketumpatan elektron di Semenanjung Malaysia. Hasilnya telah 

disahkan dengan stesen ionosonde yang terdekat dan model global ionosfera seperti 

model Rujukan Ionosfera Antarabangsa (IRI) dan model NeQuick. Didapati bahawa 

perbezaan antara tomografi ionosfera GPS dan model adalah kecil pada waktu siang 

dan besar pada waktu malam. Selain itu, didapati juga tomografi ionosfera GPS 

kelihatan lebih sesuai dengan model IRI berbanding dengan model NeQuick. Bagi 

tujuan penilaian parameter NmF2 dengan model IRI dan ukuran ionosonde, tomografi 

ionosfera GPS menunjukkan ianya lebih sepadan dengan ukuran ionosonde 

berbanding dengan model IRI. Hasil kajian juga menunjukkan bahawa tomografi 

ionosfera GPS mampu menunjukkan profil ionosfera tegak bagi kawasan kajian ketika 

kodisi ionosfera yang senyap dan gangguan ketika kondisi ionosfera yang terganggu. 

Secara keseluruhannya, didapati bahawa kaedah ionosfera GPS tomografi sesuai 

digunakan di Semenanjung Malaysia bagi tujuan kajian dan pemantauan variasi 

ionosfera bagi membantu kajian cuaca angkasa di Semenanjung Malaysia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

1.1.1 Overview of Ionosphere 

The ionosphere is a layer that lies on the upper region of atmosphere 

approximately within 70 kilometre (km) to 1000 km above the Earth’s surface. It 

consists of free electrons and ions of thermal energy that exist under the control of 

gravity and magnetic field of the Earth (Zolesi and Cander, 2014). The ionization in 

the ionosphere layer often become turbulent and develop electron densities 

irregularities (Ray et al., 2006). The ionosphere layer can be categorized into several 

layers which are D-layer, E-layer and F-layer in ascending height order. This 

characterization is classified based on its free, neutral and charged particles that vary 

by time of day. 

Based on Figure 1.1, the D-layer lies at the bottom part of the ionosphere 

approximately between 70 km to 90 km that vary by sunlight. The rate of ionization 

of D-layer is due to the charged particles in the magnetosphere which is mainly 

depends on the geomagnetic latitudes and geomagnetic activities (Tan et al., 2017). 

According to Tan et al. (2015), since the recombination process are too fast over this 

layer, it makes the electron densities very low, particularly during the night-time. The 

D-layer absorbs the high frequency radio waves and reflect the low frequency waves. 

The E-layer lies above the D-layer approximately between 90 km to 160 km. 

The ionization in this layer is caused by the ultraviolet and x-rays during the day, and 

cosmic rails and meteor during the night-time. This layer remains weekly ionized 

during the night-time, but it did not completely disappear. The E-layer also exhibits 

the Chapman model behaviour of daily maximum at local noon, seasonal maximum in 
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summer and solar cycle dependence (Zolesi and Cander, 2014). The Sproadic E-layer 

or known as Es-layer also occurs at the E-layer. This layer varies between 80 km to 

120 km and appears at any time of day with a preference for the late morning and early 

evening.  

 

Figure 1.1 The profile of ionosphere during daytime and night-time (Source: 

Encyclopedia Britannica, 2017). 

The major layer of the ionosphere known as the F-layer lies above 150 km. It 

can be divided into two minor layers, F1-layer (within 150 km to 200 km) and F2-layer 

(within 200 km to 1000 km), due to the solar radiation. After sunset, both of this layer 

always merge and reshape to F-region. The F1-layer is ionized by extreme ultraviolet 

(EUV) solar radiation and always disappear during the night-time. Meanwhile, F2-

layer presents 24 hours a day under all solar terrestrial conditions. This layer has been 

main focus by most of the ionospheric studies due to its maximal densities of electron 

and its effects towards communication and navigation system (Hoffman-Wellenhof et 

al., 2007). 

1.1.2 The Ionospheric Conditions over the Equatorial Region 

The Earth are divided into three major geographical regions of ionosphere 

which are equatorial or low-latitude (±20° of geomagnetic equator), middle-latitude 
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(from ±20° to ±60° of geomagnetic equator) and high latitude or aurora region. Figure 

1.2 shows the classification of the ionosphere’s geographical regions 

 

Figure 1.2 The geographical region of the ionosphere (Modified from Wikipedia, 

2018). 

The equatorial region is well known with its unique conditions of the 

ionosphere due to the magnetic field (B) nearly parallel to the Earth’s surface (Ray et 

al., 2006). This region has been reported to have numbers of ionospheric irregularities, 

such as equatorial electrojet (EEJ), equatorial plasma bubbles (EPB), equatorial 

spread-F (ESF), equatorial ionization anomaly (EIA) and others. It has been reported 

that the global maximum of electron densities, time delay, scintillation and the large 

gradient in the spatial distribution of the electron densities are contributed by the 

occurrence of the ionospheric irregularities over equator (Abdu, 2005; Aggarwal, 

2011; Leong, 2013; Oryema et al., 2016).  

1.1.3 Global Positioning System for Ionospheric Studies 

Past two decades, the Global Positioning System (GPS) has been widely used 

in ionospheric studies and monitoring. Since the GPS has a dense continuously 

operating reference station (CORS) network over the world, it has been a powerful 

tool for ionospheric estimation and monitoring for local and global scale. Unlike GPS, 
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the other instruments such as ionosonde, magnetometer, airglow and scatter radar have 

high maintenance cost and dysfunctionality which may lead to the large data gap.  

By using GPS for ionospheric studies, the estimation of ionosphere usually 

presented in terms of total electron content (TEC) in two-dimensional (2D) (in terms 

of latitude-longitude), where the mapping function single layer model (SLM), is used. 

The SLM converted the line of sight TEC to the vertical TEC by assuming the 

ionosphere is compressed onto a thin shell at the ionospheric height within 300 km to 

450 km. At this height, the ionosphere is expected to have maximum numbers of 

electron densities and gives the largest effects on the GPS signals (Ya’acob et al., 

2010; Musa et al., 2012; Leong et al., 2015). 

However, the SLM mapping function neglect the vertical information of the 

ionosphere and limits the capability of GPS to map the vertical structure of ionosphere. 

Therefore, the three-dimensional (3D) models of electron density (in terms of latitude-

longitude-height) have been developed to obtain the vertical information of ionosphere 

using the tomography method. 

In this study, a 3D ionospheric electron density profile is reconstructed by 

using the tomography method. The reconstruction covered the Peninsular Malaysia 

area where a dense of GPS CORS network, i.e., the Malaysian Real-Time Kinematic 

Network (MyRTKnet), has been used. The tomography module has been developed 

and the assessment of the module has been carried out with global models and any in-

situ measurement that are available. This will act as a validation step to prove the 

capability of the tomography method to reconstruct the ionospheric distribution over 

the study area. In addition, some case studies have been selected to test the capability 

of the module in detection the ionospheric phenomenon over the study area.  

1.2 Problem Statement 

There are five (5) main problems that need to be solved in this study.  
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i. Ionospheric Global Model  

The existing global model such as International Reference Ionosphere (IRI) 

model and NeQuick model are widely used in ionospheric studies. Both models 

are based on the worldwide data measurements which best describe the global 

conditions of ionosphere. In Malaysia, there is no in-situ measurement that 

have been reported which contribute to the development of both models. 

Hence, the conditions of ionosphere from the models are only based on the 

interpolation data and it is less accurate in describing the local conditions of 

ionosphere. 

ii. Unique Ionospheric Conditions over Equatorial Region 

The equatorial region has a unique condition of ionosphere as it has many 

occurrences of ionospheric irregularities. This region is well-known as the 

highest values of the electron content and large gradient in the spatial 

distribution of the electron density. Malaysia is located near geomagnetic 

equator and its ionospheric conditions are profoundly severe. The conditions 

of the ionosphere over this region are also highly affected by the visibility of 

the sunspots, time of day, time of year and level of solar activity (Leong et al., 

2009). Therefore, it is important to understand the ionospheric conditions over 

Malaysian region. 

iii. Classical Technique Measurement 

Most of the ionospheric studies in Malaysia are based on the classical 

techniques, such as ionosonde and magnetometer. These instruments have a 

limited spatial and temporal coverage as well as high maintenance cost, which 

usually lead to large data gaps, hence limits the ability for continuous 

ionospheric studies. In contrast, the existing dense GPS CORS network over 

Peninsular Malaysia, MyRTKnet, could be utilized to estimate the ionospheric 

parameters and consequently give the opportunity to model the ionospheric 

profile over this region 
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iv. Limitation of Single Layer Model (SLM) 

Most of the ionospheric studies focus on the F-layer since this layer emits 

numbers of ionospheric phenomenon. By adopting SLM mapping function, the 

GPS measurement estimated the ionosphere at the altitude of the maximum 

densities of the electron approximately within 350 km to 450 km. This would 

limit the ability to obtain the variation of the ionosphere over the D-layer and 

E-layer. Hence, the ionospheric profile will remain unknown and it is difficult 

to obtain the electron density profile. 

v. Reconstruction Inversion Model  

The GPS measurements only provide slant TEC (STEC) along the signal path 

of satellites to receivers. Since the electron density profile of ionosphere is 

important in ionospheric studies, the STEC need to be inverted to reconstruct 

the electron density profile of the ionosphere. Hence, an appropriate inversion 

model is required. In addition, the reconstruction design needs to consider a 

large amount of STEC data from GPS CORS network over the Peninsular 

Malaysia. 

1.3 Aim and Objective 

The aim of this study is to model the electron density profile over Peninsular 

Malaysia. 

To achieve this aim, there are three (3) specific objectives need to be 

accomplished: 

i. To monitor the trend of ionosphere by using ionospheric TEC maps. 

The GPS observation data for six (6) years over Malaysian region have been 

used to generate the TEC maps. Then, the trend of ionosphere based on the 
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maps has been analysed by taking account on its diurnal, spatial and seasonal 

variation.  

ii. To reconstruct the electron densities profile using GPS tomography 

The ionospheric GPS tomography module has been developed for 

reconstruction of electron densities profile. The reconstruction over the study 

area has been conducted to determine the suitability of the module in estimation 

of the electron density profile. 

iii. To validate the assessment from (ii) by using ionosonde and global model 

Two global models, IRI model and NeQuick model, and ionosonde 

measurement have been used to validate the reconstruction of the electron 

density profile from GPS tomography method.  

1.4 Scope and Limitation 

This study had defined the scope and limitation in reconstruction of electron 

density profile as follows: 

i. A dense GPS CORS network in Malaysia, MyRTKnet, that managed 

by Department of Survey and Mapping Malaysia (DSMM) has been 

used for TEC estimation and reconstruction of electron density profile 

over the study area. Sumatran GPS Array (SuGAr) network has been 

used for the reconstruction of electron density profile with purposed to 

validate with ionosonde measurements at Sumatera Indonesia.  

ii. There are numbers of available software from open source, commercial 

and scientific software that can be used for TEC estimation. In this 

study, the high-scientific software, Bernese software version 5.0 has 

been utilized to estimate the TEC. This software has a capability to 

handle high precision processing for TEC estimation. Meanwhile, 

Matlab software has been used for development of the GPS ionospheric 
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tomography module as well as for visualization of TEC maps and 3D 

electron density profile. 

iii. The IRI model is managed by Committee on Space Research 

(COSPAR) and the International Union of Radio Science (URSI). 

Meanwhile, the NeQuick model has been developed by T/ICT4D 

Laboratory of the Abdus Salam International Centre for Theoretical 

Physics (ICTP). The nearest ionosonde station, located at Kototabang, 

Indonesia, is part of Southeast Asia Low-Latitude Ionospheric Network 

(SEALION) that is managed by the National Institute of Information 

and Communication Technology (NICT), Japan. In this study, the IRI 

model has been used as a background model/initial value for 

reconstruction of electron density profile. Kototabang ionosonde data 

act as a true value for comparison between IRI model, NeQuick model 

and reconstruction from tomography module. 

iv. The GPS ionospheric tomography has been reconstructed over the 

Peninsular Malaysia only. This is due to no GPS CORS stations over 

the South China Sea and thus interpolation while reconstructed the 

electron density profile might be wrong. Other than that, the GPS 

CORS networks over Peninsular Malaysia are denser compared to 

Sabah and Sarawak.  

1.5 Significance of Study 

The significance of this study are as follows: 

1. This study proposed a technique/method for reconstruction of electron 

densities profile over Peninsular Malaysia. This is due to the sparse 

network of the MyRTKnet stations over the Sabah and Sarawak. Since 

there is no GPS CORS over the South China Sea, the reconstruction of 

the GPS ionospheric tomography based on the interpolation might be 

wrong.  
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2. The tomography module using GPS measurements can be used to 

augment the classical technique such as ionosonde that has a limited 

spatial and temporal coverage as high in maintenance cost.  

3. The reconstruction of GPS ionospheric tomography in this study best 

describes the local conditions of the ionosphere compared to the IRI 

model and NeQuick model, where both only best describe the global 

conditions of ionosphere.  

4. The GPS ionospheric tomography capable to reconstruct the electron 

density profile, and can support in aviation, space weather studies, 

satellite communication and precise GPS positioning. For example, the 

reconstruction of the GPS ionospheric tomography can be applied for 

the real-time kinematic (RTK) application and high precision 

processing (post-process) to reduce the ionospheric delay that exists in 

the GPS measurements. 

5. This study supports the developments in fundamental aspect on space 

weather studies and modelling the impact of the equatorial ionosphere 

in Malaysia that aligned with the National Space Policy 2023.  

1.6 Research Methodology 

The research methodology and workflow can be divided into five (5) main 

phases.  

PHASE I: Research Planning and Study Area 

1. In this phase, the research flow has been planned as shown in Figure 

1.3. 

2. Critical literature for this research has been continued together with the 

planning. 

3. The research methodology has been designed based on literature to 

support the modelling of the electron densities profile over study area. 



10 

In this phase, the voxel size for GPS tomography was designed and proposed 

based on the study area. 

PHASE II: Data Acquisition 

1. GPS Measurement Data 

In this study, two dense GPS CORS network, MyRTKnet and SuGAr network 

has been used to reconstruct the electron density profile over the study area.  

Global Ionospheric Model 

The global ionospheric models, IRI model and NeQuick model have been 

retrieved for validation of the reconstruction of GPS ionospheric tomography. 

The IRI model also used as a background model during the reconstruction. The 

IRI data have been retrieved from IRI website (http://irimodel.org/) while the 

NeQuick has been retrieved from the NeQuick 2 Web Model website (https://t-

ict4d.ictp.it/nequick2/nequick-2-web-model).  

Ionosonde Data 

The ionosonde data from Kototabang, Indonesia also used to validate the 

reconstruction of electron density profile from GPS ionospheric tomography. The data 

have been retrieved from the NICT, Japan. 
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Figure 1.3 The schematic flow of the study. 
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PHASE III: TEC Estimation and Analysis 

1. In this phase, the TEC has been estimated by using Bernese software 

version 5.0 for TEC trend analysis. The precise point positioning 

module has been used, where this module adopted the SLM mapping 

function. In this study, the height of the maximum densities of electron 

is assumed about 400 km (Leong et al, 2009). 

2. For GPS tomography module, the estimation of STEC has been 

computed using Matlab software (refer Appendix D). This estimation 

process takes into consideration of the design voxel for study area that 

has been proposed in Phase I.  

PHASE IV: GPS Tomography 

1. In this phase, the STEC that has been estimated from Phase III and 

secondary data from Phase II have been used as input for the 

tomography.  

2. The electron density profile has been reconstructed in this phase by 

adopting the tomography technique. The global ionospheric model has 

been retrieved and used as a background model during the 

reconstruction.  

3. The validation of the reconstruction from GPS ionospheric tomography 

has been carried out with the global model and ionosonde 

measurements trend analysis of the tomography has been discussed 

briefly in this phase.  

PHASE V: Summary and Recommendation 

All the procedure, results and assessment have been summarized in this phase. 

The recommendation and improvement for modelling the electron density profile over 

Malaysia has been suggested in this phase. 
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1.7 Thesis Structure and Organization 

The thesis outline was carefully organized to clearly show the research flow 

from the first chapter to the seventh chapter.  

Chapter 1: Introduction 

This chapter gives an overview of the background of the study, identifying the problem 

statements and the objectives to overcome those issues. This chapter also contains the 

significance of this study to highlight the importance of this study towards current 

infrastructure.  

Chapter 2: Literature Review 

 This chapter review on the morphology of the ionosphere over the Malaysian region, 

where the GPS TEC mapping and its trend over the study area. The TEC maps are 

presented in 2D maps and discussed based on its temporal, diurnal, spatial and month-

to-month variations. A thorough and critical reviews in limitation 2D TEC maps 

presents the ideas and concepts to this current study. 

Chapter 3: Methodology I: Estimation of Receiver Code Bias 

This chapter present a method to obtain a reliable method in estimation of receiver 

code bias in support the development of the tomography module. This chapter also 

explains the method of the calculation and analysis of the receiver code bias that will 

be used in this study.  

Chapter 4: Methodology II: Reconstruction of Ionospheric Profile using 

Tomography technique 

This chapter discussed on a method to reconstruct the 3D ionospheric profiles over the 

study area. This reconstruction has been proposed to overcome the limitation of the 

2D TEC maps as well as to achieve the aim of this study. This method has been 

reviewed, and its theories and concept has been discussed briefly in this chapter.  

Chapter 5: Result and Analysis 
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Chapter 5 presented the result and analysis with the discussion. The assessment of the 

GPS ionospheric tomography with the global ionospheric models and ionosonde 

measurements has been carried out during the quiet and disturbed conditions of the 

ionosphere. At the end of this chapter, the analysis of the assessment will be presented.  

Chapter 6: Case Study: Detection of Equatorial Plasma Bubble using 

Tomography 

This chapter presents the tomography methods to detect the signature of equatorial 

plasma bubbles (EPB), one of the ionospheric irregularities that occurred over the 

equatorial region. In doing so, two (2) previous studies has been used as a reference to 

detect the signature of EPB. The results and analysis of the detection of EPB signatures 

has been presented at the end of the chapter.  

Chapter 7: Conclusion and Recommendation 

Lastly, this chapter contains summary of the main findings of this study as well as the 

recommendation that can be used to support the space weather studies and continuous 

ionospheric monitoring in the study area.  
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