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ABSTRACT

The drastic rise in the usage of electric vehicles (EV) in recent years has
negatively impacted the distribution system, especially on the apparent losses and
harmonic distortion. In order to mitigate these issues, optimal placement and sizing of
multiple passive filters for medium and low voltage network are determined using
proposed modified lightning search algorithm (MLSA). Weight summation approach
is used to identify the best location for the filter in the design stage, while Pareto with
the assistance of fuzzy technique is used to determine a suitable sizing for the passive
filter switching that will operate 24 hours a day based on EV consumer behavior. In
addition, the proposed method also considers fast charging station (CS) and slow CS
analysis for medium and low voltages, respectively. All power system harmonic flow,
load profile, EV charging pattern, passive filter, CS and battery modelling are
programmed in MATLAB. The performance of MLSA is compared with other meta-
heuristic techniques, such as particle swarm optimization (PSO), firefly algorithm
(FA) and lightning search algorithm (LSA). From the results, the MLSA is able to
minimize the apparent losses and harmonic distortion at 33 bus radial distribution
system (medium voltage) by considering worst harmonic distortion scenario from all
17 units of fast CS. The MLSA has provided superior result compared to PSO, FA,
and LSA. Next, the proposed method was tested at 449 bus radial distribution system
(medium and low voltage) with variance load and EV charging pattern for 24 hours,
with fifteen minutes interval, using slow CS. The analysis shows that the optimal
placements and sizes of variable passive filters were able to reduce the maximum total
harmonic distortion (THD) for voltage, current and also the total apparent losses up to
39.14%, 52.5%, and 2.96 %, respectively. Furthermore, the results prove that the
variation of passive filter is able to provide superior solution compared to single sizing.
Therefore, it can be concluded that the multiple passive filters with an assistance of
the MLSA algorithm is suitable to be implemented in minimizing overall apparent
losses and harmonic distortions. This study is very useful as a guide for distribution
network owners to control the impact of large-scale CS deployment in the future
distribution system.
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ABSTRAK

Pertambahan drastik dalam penggunaan kenderaan elektrik (EV) dalam
beberapa tahun kebelakangan ini telah memberi kesan negatif terhadap sistem
pengagihan terutama kepada kerugian tenaga ketara dan herotan harmonik. Dalam
usaha untuk mengurangkan isu-isu ini, lokasi dan ukuran yang optimum beberapa
penapis pasif untuk rangkaian voltan sederhana dan rendah ditentukan dengan
menggunakan algoritma carian petir diubah (MLSA) yang dicadangkan. Pendekatan
penjumlahan berat digunakan untuk mengenal pasti lokasi terbaik untuk penapis pada
peringkat reka bentuk, manakala Pareto dengan bantuan teknik kabur digunakan untuk
menentukan saiz sesuai untuk penukaran penapis pasif yang akan beroperasi dalam 24
jam sehari, berdasarkan kepada kelakuan pengguna EV. Di samping itu, kaedah yang
dicadangkan juga mengambil kira analisis stesen pengecasan (CS) pantas dan CS yang
perlahan untuk voltan sederhana dan rendah. Semua aliran harmonik sistem kuasa,
profil beban, corak pengecasan EV, penapis pasif, CS dan pemodelan bateri
diprogramkan dalam MATLAB. Prestasi MLSA dibandingkan dengan teknik meta-
heuristik yang lain iaitu pengoptimuman kerumunan zarah (PSO), algoritma kunang
(FA) dan algoritma carian petir (LSA). Berdasarkan hasil kajian, MLSA dapat
meminimumkan kehilangan tenaga ketara dan herotan harmonik pada sistem
pembahagian radial 33 nod (voltan sederhana) dengan mempertimbangkan senario
herotan harmonik yang paling teruk dari 17 unit CS pantas. MLSA memberikan hasil
yang lebih baik berbanding PSO, FA dan LSA. Seterusnya, kaedah yang dicadangkan
diuji pada sistem pembahagian radial 449 nod (voltan sederhana dan rendah) dengan
beban varians dan pola pengecasan EV selama 24 jam, dengan selang lima belas minit,
menggunakan CS perlahan. Analisis menunjukkan lokasi dan saiz optimum untuk
penapis pasif berganda mampu mengurangkan nilai jumlah herotan harmonik
maksimum (THD) untuk voltan, arus dan jumlah kehilangan tenaga ketara masing-
masing sehingga 39.14%, 52.5% dan 2.96%. Tambahan pula, keputusan membuktikan
variasi penapis pasif mampu memberikan penyelesaian lebih baik berbanding saiz
tunggal. Oleh itu, dapat disimpulkan bahawa beberapa penapis pasif dengan bantuan
algoritma MLSA sesuai untuk digunakan dalam meminimakan keseluruhan kerugian
tenaga ketara dan herotan harmonic. Kajian ini berguna sebagai panduan untuk pemilik
grid untuk mengawal kesan penggunaan CS berskala besar dalam sistem pembahagian
pada masa hadapan.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Electric Vehicle

The vision to have less carbon dioxide (CO,) emissions and less dependency
on natural resources has encouraged electric vehicle (EV) to become an important
option compared to conventional vehicles. EV is predicted to play a major role in the
future urban transportation system, to cater to the increases in urban population and
need to reduce environment pollution [1]. Based on the statistics, in early 2016 there
were 1.3 million units of EV produced and China aims by 2020 to boost the production
of EV to about 11.9 million units [1]. Next, based on a report in 2016, around 50.21%
of global crude oil is used for transportation sector [2]. Furthermore, the unstable price
for crude oil has also influenced EV to become a more suitable alternative. Also, many
incentives are offered by the government in most countries especially to manufacturers
and customers such as tax reduction and rebate on buying EV. There are many
initiatives that have been implemented globally to enable EV technology to grow into
a massive production which then will lead to cheaper price to own EV [1]. Due to
aggressive research on EV technology, it is predicted that between 40 million and 90
million EV units will be on the road by 2025 [1]. It is noted that EV battery must be
charged using electricity from the grid, normally through a charging station (CS). Due
to the need for EV to replace the conventional vehicle, this has indirectly caused many
CS being installed in the distribution system [3]. Installation of CS in the network may
cause problems in certain issues such as power losses increment, power quality issues.
Increasing power loss and harmonic distortion in the distribution network is a vital
issue, especially when dealing with an increasing number of CS in the system. The
increase of CS is proportional with the increasing usage of EV. Based on the statistics,
in early 2016, there are 1.3 million units of EV produced and China aims by 2020 to

boost the production of EV to about 11.9 million units [1]. Therefore, the amount of



power consumed by EV will increase, indirectly impacting the power system increases

also.

Generally, there are three categories of CS, which are CS Level 1, Level 2 and
Level 3. Level 1 and 2 CSs are considered as having a slow charging characteristic
which are normally installed at low voltage distribution system. CS Level 3 has a fast
charging characteristic which has higher power consumption and normally installed at
medium voltage network. Normally, when many CS are installed in the distribution
system, total load will be increased, causing the distribution transformer to transfer
extra amount of power to EV customer [4]. The unplanned CS installation may cause
high power losses especially when all EV are operated simultaneously and causing
utility loss in profit. Other than that, some researchers’ works have shown that the
uncoordinated EV charging can introduce higher peak demand which is a drawback to
the overall power losses of the grid [4,5]. Furthermore, it will also introduce harmonic
distortion due to the non-linear load, which is power electronic devices that convert
alternating current (ac) to direct current (dc) at CS [6-7]. This harmonic distortion will
cause negative impact such as increment in heating loss, shorter insulation lifespan,
increased temperature and insulation stress, decreased power factor and lower

efficiency [7-8].

There are many approaches to overcome these problems in improving the
distribution system performance. In the case of power loss problem, the most popular
approaches currently are by placing a capacitor bank [9-16] and coordinating EV
charging schedule [17-29]. Both techniques can be used to reduce losses in the
distribution system. Next, filter placement [30-39] and improving CS topology [40-
44] are the examples of approaches that can be used in minimizing harmonic distortion
impact in the distribution system caused by CS. Other than that, due to the complexity
of the distribution system at present, especially after the rapid development of EV and
presence of distributed generation, the method to solve the problems has become
critical and unique for every problem. It is important to have an effective tool to
determine the optimal solution which will give maximum benefits to the utility and

user.



Therefore, installation of CS is no longer at selected places but it will be placed
at almost all houses, offices, car park and many strategic places to accommodate the
users’ needs. The increment in electricity usage for all the places will certainly cause
a burden to the existing distribution system in terms of higher losses and harmonic
distortion impact. This research will focus on mitigating harmonic distortion and

power loss impacts of large scale EV in the distribution system.

1.2 Problem Statement

Worldwide projection shows that the usage of EV is increasing annually and
this has caused the installation of CS to increase. CS generally draws higher power
consumption and harmonic distortion, especially for level 3 CS. Although CSs are
generally equipped with harmonic filter, which is to cater to IEEE 519 standard, due
to the large number of CS installed and operated at the same time to charge the EV,
the proper analysis still needs to be conducted to determine the impact of EV usage

towards apparent losses and harmonic distortion injection to the distribution system.

Passive filter can be used in minimizing the harmonic distortion as well as
reducing power losses. However, the placement and sizing of passive filter become
crucial when involving a large system and many parameters need to be considered. For
example, the passive filter needs to be placed in the system with correct size range
based on harmonic load flow and harmonic flow, otherwise it will cause harm to the
distribution system. Based on literature review, meta heuristic is the most popular
technique used around the globe to assist in finding placement and sizing of proposed
element. Since the placement and sizing of the passive filter are very crucial, it is
important to have suitable meta heuristic technique that has the ability to explore better

compared to common technique.

Since the optimum placement and sizing of the passive filter in distribution
system involve complex parameters, especially for large scale system, it is important
to have an appropriate approach to explore the optimum placement and sizing of the

passive filter. For example, multiple objectives need to be considered in finding the



optimum point where the improvement for all objectives must be put as a priority to
show the effectiveness of the proposed approach. Other than that, the practicality of
the proposed approach must be considered such as the ability to find better optimal
value. Therefore, it is important to have a superior optimization algorithm for ensuring

the optimal results can be obtained.

Furthermore, the harmonic produced by EV depends on battery state of charge
(SOC) where normally higher SOC may produce higher harmonic distortion to the
distribution system. The behaviour of customers have caused uncertainty when
analysing power system condition. Due to that, harmonic load flow will have different
flow depending on SOC and need to consider 24 hour load profile including CS
operation behaviour. Therefore, optimal placement and sizing of passive filters will
assist with new improved meta heuristic technique, which is MLSA. Other than that,
multi objective solution approach was used together with MLSA to obtain the best
optimal placement and sizing for multiple passive filters. The proposed method is also

able to solve dynamic changes in EV load profile.

1.3 Research Objectives

The main objectives of this project are:

1. To analyse the impact of EV load profile towards power losses and harmonic

distortion injection in low and medium voltage distribution network.

ii. Todevelop an improved meta heuristic technique, which is a modified lightning
search algorithm (MLSA), by introducing the Laplacian distribution function,

learning factor and updating improvement.

iii. To formulate optimal passive filter placement and sizing by considering
combination weight summation approach and Pareto fuzzy approach in

minimizing harmonic distortion and power losses in the distribution network.
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To analyse the performance of the proposed method using the variable passive
filter in minimizing the apparent losses and harmonic distortion problems due to

the dynamic system with large scale EV for 24 hours with 15 minute interval.

Research Scope

The scopes of work considered in this research are summarized as follows:

This research only focused on minimizing low harmonic order, which are 3%,
5t 7t and 9™ in the simulation distribution system produced by CS since the
impact is very significant compared to higher harmonic order. All other loads
were assumed as linear load since the focus of this research is more on harmonic

distortion produced by CS.

A passive filter in this research was designed based on a series resistor, inductor,
and capacitor which is a single tuned filter to cater to only one harmonic order.
The selection of single tune filter is based on a common passive filter popularly

used by the customer.

The number of passive filter units allowed in this research was based on
distribution system size. The passive filter installed in the network is based on
minimum number required to improve all objective functions in distribution

network.

Since the application of this research focuses in design stage, the computational

time required to get a proper passive filter placement and sizing will be ignored.

The impact from distribution transformers that have delta connection, which
normally caters for 3™ order harmonics, will be ignored since not all transformers

in the practical application are using delta connection.
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This research ignored the transformer and cable overload issues in the
distribution system by considering loading for new EV can be borne by existing

network.

Passive filter reactive range to be placed at a medium voltage distribution system
is set between 0.001 MV Ar and 5 MVAr. The reactive range is chosen based on
typical practical application where the value is more significantly large to cater

reactively to the overall network.

For a low voltage distribution system application, sizing of the variable passive
filter was based on harmonic and power loss profile gathered at 15 minute
interval. Passive filter reactive range to be placed at a low voltage distribution
system is set between 0 kVAr and 40 kVAr. The reactive range is chosen based
on typical practical application where the value normally in lower due to the size

of the passive filter is small.

For a low voltage distribution system application, plug-in and plug-out time are
according to the customer request together with requested SOC. This assumption
shows the power of customer to decide when to charge the EV. For a low voltage
distribution system application, requested time for each CS must be greater than

charging time required to charge the battery.

Since the passive filter sizing value is flexible for this research purpose, it is

assumed that the passive filter is specially made for this research purpose.

Voltage profile constraint at all buses is configure to be between 0.9 pu until 1.1
pu. Voltage profile for all buses will be checked before considering to install the

passive filter in the network.



1.5 Significance of the Research

The main enthusiasm from this research is to determine the optimal placement
and sizing for the passive filter in the distribution system which can reduce harmonic
distortion as well as power losses simultaneously due to large number of CS

installation at medium voltage and low voltage distribution network.

Although passive filter can improve the power system, it is also capable to harm
the system if placed at wrong places with wrong sizing. It is important to coordinate
passive filters operation based on the system’s needs. For example, the sizing for
passive filters is different when all CS’s are not operated at all compared to when all
CS are in standby mode. Other than that, the harmonic distortion produced by CS
depends on battery SOC, where normally low level SOC may only produce small
harmonic distortion compared to high SOC level. Therefore, this research will focus
on data analysis such as battery SOC and harmonic distortion injection due to charging

process before proceeding with passive filter placement and sizing.

Level 3 CS, which has higher power consumption and normally connected to
medium voltages buses, will give significant impact to the power losses and harmonic
distortion in the distribution system. Meanwhile, Level 1 CS, which has minimal
impact on the distribution system due to low power consumption, somehow will create
tremendous impact if the number of CS’s that operate increases dramatically. The
proposed method introduced in this research is able to make use of the passive filter to
solve apparent losses and harmonic distortion problems using meta heuristic
technique. The new proposed Modified Lightning Search Algorithm (MLSA) will
assist in finding the optimal placement and sizing which will give low harmonic
distortion in the overall distribution system as well as apparent losses. Other than that,
multi objective function was used to give a superior solution among non-dominated

solutions.

The process in achieving optimal placement and sizing of passive filter started
with finding the optimal sizing using MLSA with assistance of multi objective

technique, which is weight summation approach. The weight summation was chosen



based on the validation from best solution from all possible combinations between all
parameters. Next, with the optimal placement, optimal sizing was determined using
MLSA with assistance of another evolution multi objective technique, which is Pareto
fuzzy approach. The solution from Pareto technique gave improvement for all

parameters.

The analysis in this research is useful as a guide for distribution network owner

to control the impact of large scale CS deployment in the distribution system.

1.6 Thesis Organization

The thesis is organized into seven chapters. The outline of these chapters is as

follows:

Chapter 2 reviews previous works by researchers throughout the world on
harmonic distortion and loss reduction in distribution systems. Next, the researches on
EV are discussed, such as on charging strategy. Harmonic load flow technique used in
this research has also been discussed. Moreover, the research on meta heuristic
technique in finding placement and sizing for specifying element are discussed. The

significant findings from past works were used as guidelines in this research.

Chapter 3 describes harmonic load flow and apparent losses equation. Next,
passive filter design, CS and battery modelling have also been discussed in detail. The
new meta heuristic technique, which is MLSA, is developing. The basic process of

finding the optimal placement and sizing are also discussed.

Chapter 4 discusses the new improved MLSA. MLSA had also been tested using

mathematical benchmark function and compared with other meta heuristic technique.

Chapter 5 describes the result obtained from the analysis involving fast CS in
medium voltage at the distribution system. The impact of passive filter placement and

sizing is discussed with results.



Chapter 6 describes the result obtained from the analysis involving slow CS in
low voltage at the distribution system. The impact of variable passive filter placement

and sizing is also discussed with results.

Chapter 7 provides the thesis conclusion with recommendation for future works

to improve current research.
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