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ABSTRACT 

 

 

 

 
The existence of toxic nitrate (NO3

-
) and nitrite (NO2

-
) ions above the permissible 

level causes environmental pollution and human health hazard.  Therefore, many studies 

have been carried out to improve sensitivity and selectivity of sensors for the ion detections.  

In this study, polyvinylpyrrolidone (PVP), graphene oxide (GO), and polyvinylpyrrolidone-

graphene oxide (PVP-GO) were prepared, characterized, and tested for their ability to detect 

nitrate and nitrite ions.  A series of PVP with concentration of 1-10% was prepared by 

dissolvation in deionized water.  The PVP has –C=O and –N–C sensing sites, with excitation 

wavelength of 285 nm and 330 nm and emission wavelength of 408 nm and 410 nm, 

respectively.  All the PVP sensing materials showed greater sensitivity towards nitrite than 

nitrate.  It was found that 7% PVP showed the best sensitivity for the analytes detection at 

both sensing sites.  Nitrate preferred the –C=O site, while nitrite preferred the –N–C site.  

The selectivity tests demonstrated that 7% PVP gave great selectivity towards analytes even 

in the presence of SO4
2-

, HCO3
-
, or Cl

-
, but not OH

-
 ion.  The high interference from OH

-
 

could be due to hydrogen bond formation.  Computational simulation for PVP and analytes 

was investigated using B3LYP/6-311G(d,p).  The simulation studies revealed that PVP 

formed greater interaction with nitrite than nitrate.  Characterization results showed that the 

GO was successfully prepared by the improved Hummers’ method.  GO showed greater 

sensitivity for the detection to nitrite than nitrate in the range of 0-100 mM.  Selectivity tests 

found that GO showed great selectivity tawards analytes even in the presence of SO4
2-

 or Cl
-
, 

but low selectivity in the presence of HCO3
-
 or OH

-
 ion, due to the formation of hydrogen 

bond.  Simulation results demonstrated that GO formed greater interaction with nitrite 

compared to nitrate.  The high binding energies between hydroxyl or carboxyl site and the 

analytes showed that they might be the possible sensing sites in GO.  A series of PVP-GO(x) 

composite was prepared by mixing and sonication treatment of 7% PVP (100 mL) and 

various amounts of GO (x = 0.0075-0.03 g).  The characterizations supported the successful 

formation of the composites.  All composites showed superior sensitivity towards nitrite than 

nitrate.  Among the composites, the PVP-GO(0.01) showed the highest sensitivity for the 

detection of both analytes.  For the selectivity tests, PVP-GO(0.01) showed great selectivity 

for the detection of analytes even in the presence of SO4
2-

, HCO3
-
, or Cl

-
, but not for OH

-
 ion.  

The simulation tests exhibited that the –C=O site of PVP interacted with hydroxyl site of GO 

to form PVP-GO composite.  The PVP-GO showed greater interaction with nitrite compared 

to nitrate.  All computational results matched with the experimental results.  The addition of 

GO to the PVP was found to increase the sensitivity and selectivity for nitrate detection, but 

not for nitrite detection.  However, the composite gave better limit of detection (LOD) than 

the 7% PVP and GO.  This study showed that among all the investigated materials, 7% PVP 

was the most potential fluorescence sensor for nitrate detection with LOD of 4.00 mM at      

–C=O site, while PVP-GO(0.01) was the most potential one for nitrite detection with LOD 

of 0.26 mM at –N–C site.  Real sample testing using UTM lake water demonstrated the 

potential application of 7% PVP as a fluorescence sensor. 
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ABSTRAK 

 

 

 

 
Kewujudan ion nitrat (NO3

-
) dan nitrit (NO2

-
) yang bertoksik di atas paras dibenarkan 

telah menyebabkan pencemaran alam sekitar dan membahayakan kesihatan manusia.  Justeru, 

banyak kajian telah dijalankan untuk meningkatkan kepekaan dan kepilihan pengesan bagi 

pengesanan ion.  Dalam kajian ini, polivinilpirolidon (PVP), grafina oksida (GO) dan 

polivinilpirolidon-grafina oksida (PVP-GO) telah disediakan, dicirikan, dan diuji keupayaan 

mereka untuk mengesan ion nitrat dan nitrit.  Satu siri PVP dengan kepekatan 1-10% telah 

disediakan dengan pemelarutan di dalam air ternyahion.  PVP mempunyai tapak pengesanan         

–C=O dan –N–C, masing-masing dengan panjang gelombang pengujaan pada 285 nm dan 330 

nm dan panjang gelombang pemancaran pada 408 nm dan 410 nm.  Kesemua bahan pengesanan 

PVP menunjukkan kepekaan yang lebih terhadap nitrit berbanding nitrat.  Didapati 7% PVP 

menunjukkan kepekaan yang terbaik untuk pengesanan analit di kedua-dua tapak pengesanan.  

Nitrat lebih suka tapak –C=O, manakala nitrit lebih suka tapak –N–C.  Ujian kepilihan 

menunjukkan bahawa 7% PVP memberikan kepilihan yang baik terhadap analit walaupun 

dengan kehadiran ion SO4
2-

, HCO3
-
, atau Cl

-
, tetapi bukan ion OH

-
.  Gangguan yang tinggi 

daripada OH
-
 mungkin disebabkan oleh pembentukan ikatan hidrogen.  Simulasi berkomputer 

untuk PVP dan analit telah disiasat dengan menggunakan B3LYP/6-311G(d,p).  Kajian simulasi 

mendedahkan bahawa PVP membentuk interaksi yang lebih baik dengan nitrit berbanding nitrat.  

Keputusan pencirian menunjukkan bahawa GO telah berjaya disediakan dengan kaedah 

peningkatan Hummers’.  GO menunjukkan kepekaan yang lebih tinggi bagi pengesanan nitrit 

berbanding nitrat dalam julat 0-100 mM.  Ujian kepilihan mendapati bahawa GO menunjukkan 

pemilihan yang baik terhadap analit walaupun dengan kehadiran SO4
2-

 atau Cl
-
, tetapi kepilihan 

yang rendah dengan kehadiran ion HCO3
-
 atau OH

-
, disebabkan oleh pembentukan ikatan 

hidrogen.  Keputusan simulasi menunjukkkan bahawa GO membentuk interaksi yang lebih baik 

dengan nitrit berbanding nitrat.  Tenaga pengikat yang tinggi antara hidroksil atau tapak 

karboksil dengan analit menunjukkan bahawa kemungkinan ia adalah tapak pengesanan di dalam 

GO.  Satu siri komposit PVP-GO(x) telah disediakan dengan pencampuran dan rawatan sonikasi 

antara 7% PVP (100 mL) dan pelbagai jumlah GO (x = 0.0075-0.03 g).  Pencirian telah 

menyokong bahawa komposit telah berjaya dibentuk.  Semua komposit menunjukkan kepekaan 

yang unggul terhadap nitrit berbanding nitrat.  Antara komposit-komposit, PVP-GO(0.01) 

menunjukkan kepekaan tertinggi bagi pengesanan kedua-dua analit.  Bagi ujian kepilihan, PVP-

GO(0.01) menunjukkan kepilihan yang baik bagi pengesanan analit walaupun dengan kehadiran 

SO4
2-

, HCO3
-
, atau Cl

-
, tetapi bukan OH

-
.  Ujian simulasi mempamerkan bahawa tapak –C=O 

daripada PVP berinteraksi dengan tapak hidroksil daripada GO untuk membentuk komposit PVP-

GO.  PVP-GO menunjukkan interaksi yang lebih baik dengan nitrit berbanding dengan nitrat.  

Semua keputusan simulasi berkomputer sepadan dengan keputusan eksperimen.  Penambahan 

GO kepada PVP didapati meningkatkan kepekaan dan kepilihan bagi pengesanan nitrat, tetapi 

bukan bagi pengesanan nitrit.  Bagaimanapun, komposit memberi had pengesanan (LOD) yang 

lebih baik berbanding 7% PVP dan GO.  Kajian ini menunjukkan bahawa antara semua bahan 

kajian, 7% PVP adalah pengesan pendaflour yang paling berpotensi bagi pengesanan nitrat 

dengan LOD 4.00 mM di tapak –C=O, manakala PVP-GO(0.01) adalah paling berpotensi bagi 

pengesanan nitrit dengan LOD 0.26 mM di  tapak –N–C.  Ujian sampel sebenar menggunakan air 

tasik UTM menunjukkan potensi aplikasi 7% PVP sebagai pengesan pendaflour.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background  

 

 

Nitrate (NO3
-
) and nitrite (NO2

-
) are negatively charged inorganic ions that 

have high solubility in water.  Unfortunately, they are toxic and hazardous to human 

and aquatic creatures.  Both inorganic ions are the major constituents in fertilizer 

production.  Poor management in conventional agricultural practices and use of 

massive dosage of chemical fertilizer to land and crops led to the presence of 

excessive nitrate and nitrite ions in the environment.  The high level of nitrate and 

nitrite ion concentrations in the aquatic environment of agriculture area has led to 

serious environmental problems, such as eutrophication, and algae blooms 

(Moorcroft et al., 2001, Smil, 1997).  Besides, if ingested, they also cause life-

threatening methemoglobinemia (blue baby syndrome) to baby infants, abdominal 

pain and diarrhea (Hord et al., 2009, Namasivayam and Sangeetha, 2005).  In 

addition, the ingested nitrate can be converted to nitrite, a precursor for carcinogenic 

compound nitrosamines (Kyrtopoulos, 1988).  The previous reports claimed that 

nitrite is highly hazardous to human as it can impair our nervous system, spleen and 

kidney (Liu et al., 2013).  Since the presence of high level of nitrite and nitrate ions 

can cause environmental and human health problems, it is important to monitor the 

level of nitrate and nitrite ions in the environment.  To date, numerous efforts have 

been carried out to obtain excellent materials to be employed as nitrite and nitrate 

sensor.  
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Many materials have been explored for sensitive detection of hazardous 

nitrate and nitrite ions.  In 1879, Peter Griess developed an assay to detect nitrate and 

nitrite ions (Griess, 1879).  With his great effort, he successfully developed a 

sensitive and simple assay, which was able to detect nitrite directly and nitrate 

indirectly to certain sensitivity.  Since different amounts of nitrite will cause different 

absorbance, the colour observed indicate the amount of nitrite present in a sample.  

Though Griess reagent is a simple and widely used until today, the assay contains 

toxic sulfonamides reagent and yet produces toxic diamine product (Guevara et al., 

1998, Miranda et al., 2001, Sastry et al., 2002, Senra-Ferreiro et al., 2010, Wang et 

al., 2016).  

 

 

Previous studies investigated various types of metals for nitrate or nitrite ion 

detection.  For example, metal such as  silver has been employed as sensor for 

simultaneous detection of nitrate and nitrite ions (Madasamy et al., 2014, Manea et 

al., 2010).  Further, multivalency transition metal such as copper (Shariar and 

Hinoue, 2010) or copper complex (Shiddiky et al., 2006) has been employed for 

nitrate and nitrite ions detection.  Though metal has been widely explored as sensing 

material, but they could be easily suffered from corrosion which will lead to 

attenuation in their sensitivity.  Moreover, some of the transition metal are expensive  

 

 

Other than the simple Griess assay and metal sensing materials, some efforts 

have also been carried out to design and synthesize macromolecule complex for 

selective detection of nitrate and nitrite ions.  The complex molecule with suitable 

cavity shape and size has been designed for selective sensing of nitrate or nitrite ion.  

The complex sensing molecule seems to bring a promising material to detect nitrate 

or nitrite, but it involves extensive and complex synthesis protocol (Işıklan et al., 

2011, Singh and Sun, 2012, Strianese et al., 2013, Whittington et al., 2012).  

Therefore, a more environmental friendly material with less complex synthesis 

method such as biomolecule has also been developed for nitrate or nitrite ion 

detection (Adeloju and Sohail, 2011, Almeida et al., 2010, Ho et al., 2009, Quan et 

al., 2005).  Inspired by the natural detection in the environment, the use of 

biomolecule can bring selective detection (Saleem, 2013).  For example, polypyrrole-

nitrate reductase-nicotinamide adenine dinucleotide (PPy-NaR-NADH) has been 
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used to convert nitrate to nitrite ion for sensitive detection of both nitrate and nitrite 

ions (Adeloju and Sohail, 2011).  The biomolecule normally is incorporated with 

polymer to improve the detection for nitrate or nitrite ion (Albanese et al., 2010, 

Cosnier et al., 2008, Madasamy et al., 2014, Plumeré, 2013, Wang et al., 2013b).  

Though this combination is expected to give sensitive yet selective detection, but this 

sensitive material still suffers from thermal instability and could be easily affected in 

the presence of heat and interference material, respectively.  

 

 

Another type of material, which is polymeric material, has been explored 

vastly due to its tunable properties and robustness.  There are varieties of organic 

scaffolds containing polymer that have been tested for their feasibilities to be used as 

sensing materials in anion recognition.  It has been reported that the nitrogen 

containing moieties showed rather good selectivity for anion binding.  For instance, 

the positively charged ammonium salts such as quaternized amines (Bianchi et al., 

1996, Hossain et al., 2003b, Sisson et al., 2003, Späth and König, 2010) and 

imidazolium cation (Chellappan et al., 2005) have found their application in anion 

binding.  Besides, the neutral species such as amide (Amendola et al., 2010, Chen et 

al., 2007, Choi and Hamilton, 2003, Hossain et al., 2003b, Hossain et al., 2003a, 

Kang et al., 2006, Kang et al., 2003, Qu et al., 2009, Singh and Sun, 2012), urea 

(Custelcean et al., 2008, Zhu et al., 2008), pyrrole (Aldakov and Anzenbacher, 2004, 

Sessler et al., 2003, Späth and König, 2010, Wu et al., 2006a, Yoon et al., 2008), and 

thioamide (Devaraj et al., 2009, Hossain et al., 2003a) also showed great affinity for 

anion binding.  Particular attention has been made on the use of amide moieties 

containing compound for anion recognition owing to its good selectivity and 

sensitivity.  In this study, amide moiety containing polyvinylpyrrolidone (PVP) was 

explored for its feasibility to be used as a fluorescence sensor.  

 

 

PVP is a long chain polymer consisting of tertiary amide functional group and 

vinylpyrrolidone monomer that makes up to different molecular weight polymer.  

PVP is a bio-compatible polymer which is soluble in many solvents such as water 

and other organic solvents.  From literature, PVP has been applied as sensor for 

glucose (Mano and Heller, 2005), acyclovir (Wang et al., 2013a), alcohol (Lee et al., 

2011), hydrazine (Li and Wang, 1997), ascorbic acid (Han et al., 2010), gold 
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nanoparticle (Behera and Ram, 2012), hydrogen (He et al., 2010), and humidity 

(Zhang et al., 2010a).  It is worth noting that PVP contains electron lone pair in 

tertiary amide vinylpyrrolidone structure, and this structure makes PVP has 

remarkable luminescence property (Minh et al., 2013).  Though PVP shows great 

luminescence property, up to date PVP has never been reported as nitrate and nitrite 

sensor. 

 

 

On the other hand, graphene oxide (GO) possesses a large surface area with a 

great number of oxygenated functional groups, and fascinated electronic properties.  

Due to the distinct properties of GO, it has been used as electronic devices, energy 

storage, and sensor (Georgakilas et al., 2012, Gilje et al., 2007, Huang et al., 2011, 

Zhu et al., 2010).  Particularly in sensing application, GO has been used to quench 

the intensity of fluorescence material (Liu et al., 2011, Wang et al., 2009b) and has 

been applied as gas sensor (Schedin et al., 2007), pH sensor (Chen and Yan, 2011, 

Mohanty and Berry, 2008, Ohno et al., 2009), pressure sensor (Kazemzadeh et al., 

2015), and temperature sensor (Sahoo et al., 2012).   Incorporation or 

functionalization of polymeric material on GO is known to improve mechanical, 

thermal, electrical, and optical properties of GO (Du and Cheng, 2012).   The 

produced polymer-GO composite has been developed to improve the sensing 

performance in many aspects especially on the sensitivity and selectivity (Al-Mashat 

et al., 2010, Eswaraiah et al., 2012, Kundu et al., 2012, Wang et al., 2011, Zhang et 

al., 2014, Zhang et al., 2010a).  In this study, a novel PVP-GO composite was 

synthesized as a fluorescence sensor for nitrate and nitrite detection. 

   

 

Apart from the lack of sensitive material from the aspect of sensitivity and 

selectivity, the employed sensing technique also gives a different extent of sensitivity 

and selectivity in sensing performance.  The commonly used conventional techniques 

in detection of nitrate and nitrite ions include high performance liquid 

chromatography (HPLC), ion chromatography (IC) and Griess colorimetric assay.  

However, these techniques come with several shortcomings. In HPLC measurement, 

several tedious purification steps are required to eliminate the interfering such as 

chloride and biogenic amines (El Menyawi et al., 1998, Jobgen et al., 2007, Stratford 

et al., 1997).  While for the IC method, extensive maintenance and sample pre-
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treatment are needed prior to sample measurement (Blount and Valentin-Blasini, 

2006, Ito et al., 2005, Moorcroft et al., 2001, Stalikas et al., 2003).  In Griess assay, 

all the nitrate ions are converted to nitrite ion which later are transformed to colored 

azo dye, but this method lacks sensitivity (Badea et al., 2001).  Therefore, a sensitive 

and simple detection technique is still highly required.  In this study, fluorescence 

spectroscopy was applied as a sensitive and simple detection method for the nitrate 

and nitrite ions. 

 

 

With the great evolution of technology, computational study has been 

exploited in aiding researcher to predict the experimental results.  Vast simulation 

techniques have been developed to match with its purpose.  The selection of 

simulation technique would be based on the properties of interest.  The calculation 

for computational simulation was done by solving a bunch of mathematical equations, 

with Schrödinger equation as the basic for almost all calculation (Young, 2004).  

Particularly, the generally used technique to simulate the sensing condition is the 

density functional theory (DFT).  It is a calculation technique based on electron 

density which able to give superior accuracy when calculating the involved energy in 

a system (Ghosh et al., 2010, Ghosh et al., 2004, Jose et al., 2007).  Semi-empirical 

Parameterized Model number 3 (PM3) is another well-known technique with faster 

calculation that is good for geometry optimization (House, 2003).  Both techniques 

were employed in this study to support the experimental results. 

 

 

 

 

1.2 Statement of Problem  

 

 

Nitrate and nitrite ions are toxic and hazardous compounds to human.  

Furthermore, the simultaneous existence of both anions led to environmental 

pollution and yet there is still a lack of material which is good in both sensitivity and 

selectivity for both analytes.  Though there are some sensitive materials being 

proposed, there are still some limitations on those reported sensitive materials.  For 

instance, the Griess reagent consists of toxic compounds and produces toxic diamine 

products during the detection process (Griess, 1879, Guevara et al., 1998, Miranda et 
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al., 2001, Sastry et al., 2002, Senra-Ferreiro et al., 2010, Wang et al., 2016).  On the 

other hand, the macromolecule complex involves complicated synthesis procedures 

(Işıklan et al., 2011, Singh and Sun, 2012, Strianese et al., 2013, Whittington et al., 

2012) and biomolecules cannot stand with interference materials (Adeloju and Sohail, 

2011, Almeida et al., 2010, Ho et al., 2009, Quan et al., 2005).  The later means that 

the existing sensitive material still showed low selectivity for the detection of nitrate 

and nitrite ions in the presence of foreign ions.  Therefore, simple synthesis of 

sensitive materials that are non-toxic, environmentally safe, and having good 

selectivity is still highly required.  

 

 

In this study, three novel materials were proposed, which were PVP, GO, and 

PVP-GO composites that were prepared by a simple mixing method.  PVP has been 

reported to act as a good sensor for several organic compounds (Han et al., 2010, He 

et al., 2010, Lee et al., 2011, Li and Wang, 1997, Mano and Heller, 2005, Wang et 

al., 2013a), gold nanoparticle (Behera and Ram, 2012), and humidity (Zhang et al., 

2010a).  PVP has been also recognized to give fluorescence emission property when 

being illuminated by light energy (Thi et al., 2012).  On the other hand, GO has been 

employed as a sensor for organic materials (Chen and Yan, 2011, Mohanty and Berry, 

2008, Ohno et al., 2009, Schedin et al., 2007), pressure (Kazemzadeh et al., 2015), 

and temperature (Sahoo et al., 2012).  It is known that GO has fluorescence property 

which enabled it to be used as biosensor (Dong et al., 2010, Jung et al., 2010, Loh et 

al., 2010).  Despite these, PVP and GO materials have never been reported yet as 

fluorescence sensors for nitrate and nitrite detection.  Since these PVP and GO 

materials are highly potential as fluorescence sensors for nitrate and nitrite detection, 

the important sensing sites for high sensitivity and selectivity towards nitrate and 

nitrite ions need to be clarified.  In order to improve the performance of these 

materials, a novel composite of PVP-GO was also synthesized by a simple mixing 

method.  

 

 

Even though the development of novel materials with high sensitivity and 

selectivity has been investigated, the important factors determining the sensitivity 

and selectivity of the sensor materials are sometimes neglected.  Yet, the sensing 

process when the analyte presents have not yet been clearly understood.  This 
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limitation can be overcome with the aid of computational simulation.  In recent years, 

the fast development in computer software has aided researchers to visualize the 

molecule in multi-aspects via state of art of computational program.  This includes 

the geometry of molecule, molecular bonding, interaction energy, or binding energy 

of a design system (Adejoro et al., 2012, Adejoro et al., 2013, Ghosh et al., 2004, 

Ghosh et al., 2010, House, 2003, Mohammed, 2014, Momany et al., 2005, Odiaka et 

al., 2012).  Numerous programs have been designed with different theories to aid 

researchers to gain better understanding on their experimental works.  In current 

work, two simulation methods, namely semi empirical and density functional theory 

(DFT) methods were used to configure the molecular geometry with the lowest 

energy.  Moreover, the interaction between the sensing sites and the analytes was 

also investigated computationally by calculating the binding energy and interatomic 

distance between the sensing sites and the analytes. 

 

 

 

 

1.3 Objectives 

 

 

There are several objectives in this current study as stated below.   

 

 

(a) To prepare and characterize PVP, GO, and PVP-GO composites as novel 

fluorescence sensors. 

(b) To examine the sensitivity ad selectivity of the PVP, GO, and PVP-GO 

composites for detection of nitrate and nitrite ions. 

(c) To investigate the interaction between the sensitive materials and the analytes 

by computational simulation. 

 

 

 

 

 

 

 

 

 

1.4 Scope of Study 
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 This research can be divided into three parts.  The first part discussed about 

the preparation, characterizations, and performance of PVP as also supported by 

computational study.  The PVP was prepared by dilution method, where the 

concentration was fixed at 1, 3, 5, 7, and 10%.  The characterizations were carried 

out by Fourier transform infra red (FTIR), X-ray diffraction (XRD), transmission 

electron microscopy (TEM), thermogravimetric analysis (TGA), and fluorescence 

spectroscopy.  The performance of PVP was evaluated via sensitivity and selectivity 

tests by fluorescence spectroscopy.  The excitation wavelengths were fixed at 285 

and 330 nm, while emission wavelength was monitored at 408 and 410 nm.  

Sensitivity tests were carried out on all PVP samples by evaluating the quenching 

study in the presence of nitrate (0-100 mM) and nitrite (0-100 mM) ions.  Selectivity 

tests were carried out only on the best sample, which was 7% PVP, in the presence of 

Na2SO4, NaHCO3, NaCl, or NaOH foreign ions.  For selectivity tests, the 

concentration for nitrate and nitrite was fixed at 100 mM and 10 mM, respectively.  

Gaussian 09 program was used for computational simulation study. B3LYP/6-

311G(d,p) level of theory was implemented to calculate the binding energy between 

the PVP and nitrate or nitrite ions with water induced polarizable continuum model 

(PCM).  

 

 

In the second part, GO was used as sensitive material for nitrate and nitrite 

ion detection.  Overall, the preparation, characterization, and performance of GO 

were discussed, supported by computational simulation.  GO was synthesized using 

an improved Hummers’ method and further ground to get GO fine powder.  The 

properties of GO were studied using FTIR, XRD, TEM, TGA, and fluorescence 

spectroscopy.  The sensing performance of GO was examined from two aspects, 

sensitivity and selectivity, using fluorescence spectroscopy.  GO was excited at 

wavelengths of 367 nm, and its emission was monitored at 567 nm.  The sensitivity 

tests were evaluated from quenching study in the presence of nitrate or nitrite ion at 

0-100 mM.  On the other hand, the selectivity tests were conducted in the presence of 

Na2SO4, NaHCO3, NaCl, or NaOH foreign ions.  For the selectivity of GO to nitrate, 

the concentration of nitrate and foreign ion were fixed at 100 mM while for nitrite 

selectivity test, the concentration of nitrite and foreign ion were fixed at 10 mM.  
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Further support from computational simulation was carried out using Gaussian 09 

program. B3LYP/6-311G(d,p) level of theory was implemented to calculate the 

binding energy between the GO and nitrate or nitrite ions with PCM.  

 

 

In the third part, the PVP-GO composites were prepared for nitrate and nitrite 

ion detection.  The composites were prepared by simple mixing between 100 mL 7% 

PVP and various mass of GO, where the weight per volume percent of the 

composites was fixed at 0.0075, 0.01, 0.02, and 0.03%.  The prepared composites 

were further put under sonication for 30 min.  In this context, the preparation, 

characterizations, and sensing performance of PVP-GO were discussed, with support 

from computational simulation.  The properties of the PVP-GO were studied using 

FTIR, XRD, TEM, TGA, and fluorescence spectroscopy.  The sensing performance 

of PVP-GO to analyte ion was examined from sensitivity and selectivity via 

fluorescence spectroscopy.  The excitation wavelengths were set at 285 and 330 nm, 

whereas the emission wavelengths were monitored at 408 and 410 nm respectively.  

The sensitivity of PVP-GO composites was interpreted from quenching study in the 

presence of nitrate or nitrite ion at concentration of 0-100 mM.  The selectivity tests 

were conducted in the presence of Na2SO4, NaHCO3, NaCl, or NaOH foreign ions.  

For the selectivity tests, the concentration of nitrate and foreign ions were fixed at 

100 mM, while for nitrite selectivity test, the concentration of nitrite and foreign ions 

were fixed at 10 mM.  The interaction site between PVP and GO was pre-optimized 

from PM3, and further optimized using Gaussian 09 program.  The interaction 

between PVP-GO and analyte was further computed using B3LYP/6-311G(d,p) level 

of theory via calculation of the binding energy with PCM. 
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