STRUCTURAL AND SPECTROSCOPIC PROPERTIES OF ZINC-TELLURITE DOPED SAMARIUM GLASS EMBEDDED WITH GOLD NANOPARTICLES

TANKO ALIYU YAKUBU

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > MAY 2017

The memory of my beloved father, Alhaji Aliyu Tanko who passed away while I am just graduating from junior secondary school; My beloved mother, Hajiya Fadimatu Abdullahi; My Uncle, Mohammad Tukur Tanko; My Brothers and Sisters; My wife, Rukayya Abubakar And My Children, Aliyu and Abubakar; For your love, support and encouragement.

То

ACKNOWLEDGEMENT

Alhamdulillah, All Praises and Thanks belong to ALLAH S.W.T, the Almighty and the merciful for giving me the strength and courage to successfully complete this research.

I would like to express my sincere gratitude and appreciation to my supervisor Professor Dr. Md. Rahim Sahar, you have been an incredible mentor to me. Your encouragement, support, and guidance throughout this research period have made this doctoral research a reality. I would also like to extend my gratitude to my co-supervisor, Assoc. Prof. Dr. Sib Krishna Ghoshal for his advice, critics, motivation, and guidance during all these years. Your brilliant comments and suggestions were greatly appreciated. The financial support from Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia through research grant of VOT 4F319, 4F424 (FRGS) and 05H45, 13H50, 05H36 and 12H42 (GUP) are gratefully acknowledged.

My special appreciation goes to my parents whom had offered support, help and prayers to me throughtout this study period which have made it possible to write this doctoral thesis. I would also like to show gratitude to my uncle, Mohammad Tukur Tanko for supporting me financially and through advices. I would especially like to thank my wife for all the sacrifices you made on my behalf, your support and encouragement towards the success of this thesis is highly commendable.

Finally, all financial supports from Kaduna State University (KASU), Kaduna, Nigeria and Tertiary Education Trust Fund (TETFund), Abuja, Nigeria are greatfully acknowledged.

ABSTRACT

Modification in the structural, thermal and optical properties of samarium ions (Sm³⁺) doped zinc-tellurite glass with gold nanoparticles (Au NPs) embedment was studied. In this regard, two series of zinc-tellurite glass systems with composition (80-y)TeO₂-20ZnO-ySm₂O₃, where $0.0 \le y \le 2.0$ mol% and (79x)TeO₂-20ZnO-1Sm₂O₃-xAuCl₃, where $0.00 \le x \le 0.10$ mol% were prepared using melt quenching technique. Sm³⁺ ions and Au NPs concentration dependent structural, thermal and optical properties of these glass samples were determined. Structural characterizations were made using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopy. Thermal properties were measured by differential thermal analyzer (DTA). The existence, size, and morphology of Au NPs in the glass matrix were examined via transmission electron microscopy (TEM). Optical properties of glass samples were determined using UV-Vis-NIR absorption and photoluminescence (PL) spectroscopy. The occurrence of broad hump in the XRD patterns verified the amorphous nature of glass samples. FTIR spectra exhibited three major bands which were allocated to the TeO₃, TeO₄ units and bending vibrations of Te-O-Te linkages or Zn-O vibrations. Raman spectra showed the bending vibrations mode of Te-O-Te and stretching vibration modes of nonbonding oxygen linked to the TeO₄ and TeO₃ units. TEM images manifested the existence of Au NPs of average diameter 17.12 nm. Both glass systems exhibited thermal stability and glass forming ability which was increased from 80 °C to 143 °C and from 0.37 to 1.03, respectively with the increase of Au NPs contents. The absorption spectra displayed ten prominent peaks corresponding to the transitions from the ground state (${}^{6}H_{5/2}$) to various excited states of Sm³⁺ ions. Surface plasmon resonance (SPR) bands of Au NPs were detected at 652 and 715 nm. The bonding parameters of the prepared glass samples that were calculated from the absorption spectra revealed the covalent/ionic nature of the rare earth-ligand (Sm-O) bond. Optical band gap energies and the Urbach energy values were determined. The ligand field parameters estimation showed that the crystal field strength and the degree of covalency between ions were increased. Besides, the interelectronic f-f repulsion Racah parameters were decreased with increasing NPs contents. The room temperature PL spectra disclosed four prominent emission bands centered at 562 nm (green), 600 nm (orange), 644 nm (red) and 709 nm (red) which were assigned to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}, {}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}, {}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2} \text{ and } {}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2} \text{ transitions, respectively.}$ Overall, the structural, thermal and optical properties of the studied tellurite glass system were strongly influenced by the embedment of Au NPs in the glass matrix. The alteration in the overall properties was attributed to the mediation of Au NPs surface plasmon, radiative transitions and cross-relaxation effects. The improvement in the properties of these glasses may be beneficial for different optical applications.

ABSTRAK

Pengubahsuaian struktur, sifat terma dan optik kaca zink-tellurite dengan nanopartikel emas (Au NPs) didop ion samarium (Sm³⁺) sentiasa diberi perhatian. Dalam hal ini, dua siri sistem kaca zink-tellurite dengan komposisi (80-y)TeO₂-20ZnO-ySm₂O₃ dengan $0.0 \le y \le 2.0$ mol% dan (79-x)TeO₂-20ZnO-1Sm₂O₃-xAuCl₃ dengan $0.0 \le x \le 0.10$ mol% telah disediakan menggunakan teknik pelindapan leburan. Kebergantungan struktur, terma dan sifat optik sampel kaca ini terhadap kepekatan ions Sm³⁺ dan Au NPs di tentukan. Pencirian struktur telah dibuat menggunakan pembelauan sinar-X (XRD), Spektoskopi infra-merah jelmaan Fourier (FTIR) dan spektroskopi Raman. Sifat terma telah diukur menggunakan penganalisa pembezaan terma (DTA). Kewujudan, saiz dan morfologi Au NPs dalam matrik kaca telah diukur menggunakan mikroskopi penghantaran elektron (TEM). Sifat optik sampel kaca telah ditentukan menggunakan penyerapan UV-Vis-NIR dan spektroskopi berpendaflor (PL). Kewujudan bonggol lebar pada corak XRD menunjukkan keadaan keamorfus semula jadi sampel kaca. Spektrum FTIR menunjuk tiga jalur utama yang sepadan dengan unit TeO₃, TeO₄ dan getaran membengkok Te-O-Te atau getaran Zn-O. Spektrum Raman menunjukkan mod getaran membengkok Te-O-Te dan mod getaran meregang oksigen tak-terikat yang terhubung kepada unit TeO₄ dan TeO₃. Imej TEM menunjukkan kewujudan Au Nps dengan diameter purata 17.12 nm. Kedua-dua sistem kaca mempunyai kestabilan terma dan keupayaan pembentukan kaca yang meningkat masing-masing daripada 80°C kepada 143°C dan daripada 0.37 kepada 1.03 dengan peningkatan kandungan Au NPs. Spektrum penyerapan memaparkan sepuluh puncak utama yang sepadan dengan transisi dari keadaan dasar (${}^{6}H_{5/2}$) ke pelbagai keadaan teruja ion Sm³⁺. Jalur resonans plasmon permukaan (SPR) bagi Au NPs telah dikesan pada 652 nm dan 715 nm. Parameter ikatan bagi sampel kaca yang disediakan telah dikira dari spektrum penyerapan untuk menunjukkan keadaan semulajadi ikatan kovalen/ionik atom ligannadir bumi (Sm-O). Tenaga jurang optik dan tenaga Urbach telah ditentukan. Anggaran parameter medan ligan menunjukkan bahawa kekuatan medan hablur dan darjah kekovalenan antara ion telah meningkat. Di samping itu, parameter Racah f-f tolakan interelektronik didapati mengurang dengan pertambahan kandungan NPs. Spektrum PL pada suhu bilik menunjukkan empat jalur pancaran utama pada 562 nm (hijau), 600 nm (oren), 644 nm (merah) dan 709 nm (merah) yang masing-masing mewakili transisi ${}^4G_{5/2} \rightarrow {}^6H_{7/2}$, ${}^4G_{5/2} \rightarrow {}^6H_{9/2}$ dan ${}^4G_{5/2} \rightarrow {}^6H_{11/2}$. Secara keseluruhannya, sifat struktur, terma dan optik dari sistem kaca tellurite yang dikaji dipengaruhi oleh penambahan NPs Au ke dalam matrik kaca. Perubahan pada keseluruhan sifat adalah disebabkan oleh plasmon permukaan NPs Au, transisi sinaran dan kesan santaian silang. Peningkatan sifat kaca ini mungkin berguna untuk aplikasi optik yang berbeza.

TABLE OF CONTENTS

CHAPTER	ł	TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABSTRACT		
	ABST	ſRAK	vi
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	Х
	LIST	OF FIGURES	xiii
	LIST	OF ABBREVIATIONS	xix
	LIST	OF SYMBOLS	xxi
	LIST	OF APPENDICES	xxiii
1 I	NTRO	DDUCTION	1
	1.1	Introduction	1
	1.2	Research Background	1
	1.3	Problem Statement	3
	1.4	Objectives of Study	4
	1.5	Scope of Study	5
	1.6	Significance of Study	5
	1.7	Organization of Study	6
2 I	ITER	RATURE REVIEW	7
	2.1	Introduction	7
	2.2	Development of Glass Research	7
	2.3	Tellurite Glasses	9
		2.3.1 X-ray Diffraction	10

	2.3.2 Physical Properties of Tellurite Glasses	11
	2.3.3 Structural Properties of Tellurite Glasses	12
	2.3.4 Elemental Traces	20
	2.3.5 Transmission Electron Microscopy Imaging	21
	2.3.6 Thermal Properties of Tellurite Glasses	24
	2.3.7 Optical Properties of Tellurite Glasses	26
	2.3.7.1 UV-Vis-NIR Absorption Properties	26
	2.3.7.2 Photoluminescence Properties	33
2.4	Samarium Ions	36
	2.4.1 Energy Levels of Sm ³⁺ Ions	36
	2.4.2 Excitation and Emission in the Presence of	
	Activator and Sensitizer	37
	2.4.3 Energy Transfer Process and Cooperative	
	Effects	38
	2.4.4 Excited State Absorption	40
2.5	Metal Nanoparticles	40
	2.5.1 General Properties of Metal Nanoparticles	40
	2.5.2 Surface Plasmon Resonance (SPR)	41
	2.5.3 Gold Nanoparticles	43
	2.5.4 Formation of Au NPs by Thermo-chemical	
	Reduction	45
METH	ODOLOGY	46
3.1	Introduction	46
3.2	Sample Preparation	46
3.3	Density Measurement	48
3.4	X-Ray Diffraction Characterization	49
3.5	Fourier Transformed Infrared Spectroscopy and	
	Characterization	51
3.6	Raman Spectroscopy and Characterization	53
3.7	Transmission Electron Microscopy Characterization	55
3.8	Energy Dispersive X-ray Spectroscopy	
	Characterization	57
3.9	Differential Thermal Analyser	58

3

3.10	Absorption Spectroscopy Characterization	59
3.11	Photoluminescence Spectroscopy Characterization	60
4 RESUL	TS AND DISCUSSION	63
4.1	Introduction	63
4.2	Density, Molar Volume and Ionic Packing Density	63
4.3	Structural Properties Analysis	68
	4.3.1 Amorphous Phase Analysis	68
	4.3.2 Morphological Analysis	70
	4.3.3 Elemental Analysis	71
	4.3.4 Infrared Spectral Analysis	73
	4.3.5 Raman Spectral Analysis	76
4.4	Thermal Properties	81
4.5	Optical Properties	84
	4.5.1 UV-Vis-NIR Spectra	84
	4.5.2 UV-Vis Spectra for Surface Plasmon	
	Resonance (SPR) Analysis	86
	4.5.2.1 Optical Band Gap and Urbach Energy	87
	4.5.2.2 Refractive Index, Molar Refractivity and	
	Electronic Polarizability	90
	4.5.2.3 Nephelauxetic Ratio and Bonding Parameter	94
	4.5.2.4 Ligand Field Parameters	97
	4.5.3 Photoluminescence Spectral Analysis	102
	4.5.3.1 Mechanism of Upconversion	106
5 CONCL	USIONS AND RECOMMENDATIONS FOR	
FUTUR	E STUDY	109
5.1	Introduction	109
5.2	Conclusions	109
5.3	Recommendations for Future Study	111
REFERENCES		113
Appendices A – F	13	80 - 145

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Measured values of density (ρ), molar volume (V_m), and	
	ionic packing density (V_t) of some tellurite glass	
	systems. (DNA: Data not available)	12
2.2	Spectral range of IR radiation.	14
2.3	FTIR absorption peaks position (cm ⁻¹) for some tellurite	
	glass system	18
2.4	The Raman band assignment (cm ⁻¹) of some tellurite	
	glass systems	19
2.5	The EDX spectra of detected elements for TZNEA0.6 in	
	wt% and at%.	21
2.6	Measured values of T_g , T_c , T_m , ΔT and H_r of various	
	tellurite glasses.	25
4.1	Some physical properties of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃	
	glass system such as densities (ρ), molar volumes (V _m),	
	average molecular weights (Mav), and ionic packing	
	densities (Vt).	67
4.2	Some properties physical of (79-x)TeO ₂ -20ZnO-	
	1 Sm ₂ O ₃ -xAuCl ₃ glass system such as densities (ρ),	
	molar volumes (V_m), average molecular weights (M_{av}),	
	and ionic packing densities (Vt).	68
4.3	Calculated and EDX-measured weight% and atomic% of	
	elements for 79TeO ₂ -20ZnO-1Sm ₂ O ₃ glass sample.	73
4.4	Calculated and EDX-measured weight% and atomic% of	
	elements for 78.9TeO2-20ZnO-1Sm2O3-0.10AuCl3 glass	
	sample.	73

4.5	Assignments of vibration bands for (80-y)TeO ₂ -20ZnO-	
	ySm ₂ O ₃ glass samples.	76
4.6	Assignments of vibration bands for (79-x)TeO2-20ZnO-	
	1Sm ₂ O ₃ -xAuCl ₃ glass samples.	76
4.7	Raman shifts peak position for (80-y)TeO2-20ZnO-	
	ySm ₂ O ₃ glass system.	80
4.8	Raman shifts peak position for (79-x)TeO2-20ZnO-	
	1Sm ₂ O ₃ -xAuCl ₃ glass system.	80
4.9	Deconvoluted Raman peak assignment for 78.9TeO2-	
	20ZnO-1Sm ₂ O ₃ -0.10AuCl ₃ glass sample.	81
4.10	Thermal properties of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass	
	samples.	83
4.11	Thermal properties of (79-x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -	
	xAuCl ₃ glass samples.	84
4.12	Indirect optical band gap (E'g) and Urbach energy (ΔE)	
	of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass system.	90
4.13	Indirect optical band gap (E'g) and Urbach energy (ΔE)	
	of (79-x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -xAuCl ₃ glass system.	90
4.14	Refractive index (n), Molar refraction (R_m) , and	
	Electronic polarizability (α_m) for $(80-y)TeO_2-20ZnO-$	
	ySm ₂ O ₃ glass system.	93
4.15	Refractive index (n), Molar refraction (R_m) , and	
	Electronic polarizability (α_m) for $(79-x)TeO_2-20ZnO-$	
	1Sm ₂ O ₃ -AuCl ₃ glass system.	94
4.16	Nephelauxetic ratio (β), bonding parameter (δ) and their	
	associated transitions with varying Sm ₂ O ₃ concentration.	96
4.17	Nephelauxetic ratio (β), bonding parameter (δ) and their	
	associated transitions with varying AuCl ₃ concentration.	97
4.18	Racah parameters, Crystal field parameters and	
	Nephelauxetic function (η) for (80-y)TeO ₂ -20ZnO-	
	ySm ₂ O ₃ glass system.	101
4.19	Racah parameters, Crystal field parameters and	
	Nephelauxetic function (η) for (79-x)TeO ₂ -20ZnO-	
	1Sm ₂ O ₃ -xAuCl ₃ glass system.	102

4.20	PL maximum enhancement factor with varying content	
	of Sm ₂ O ₃ for (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass system.	106
4.21	PL maximum enhancement factor with varying content	
	of AuCl ₃ for (79-x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -xAuCl ₃ glass	
	system.	106
D.5.1	Concentration and atomic mass (u) of each element and	
	total glass system having composition 78.9TeO2-20ZnO-	
	1Sm ₂ O ₃ -0.10AuCl ₃ .	138

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	XRD pattern of a tellurite glass [50]	11
2.2	A Schematic diagram of TeO ₄ tbp structural unit in α -	
	TeO ₂ .	13
2.3	Schematic representation of TeO ₄ , TeO ₃₊₁ , and TeO ₃	
	structural units [61].	14
2.4	Typical in-plane symmetric and asymmetric stretching	
	of a diatomic molecule.	15
2.5	Typical in-plane bending motion (scissoring and	
	rocking).	16
2.6	Typical out of plane bending movements (twisting and	
	wagging).	16
2.7	A typical FTIR spectra of tellurite glass [64].	17
2.8	A typical Raman spectra of tellurite glass [69].	19
2.9	A typical EDX spectra of Er ³⁺ doped tellurite glass with	
	Au NPs [65].	20
2.10	A TEM image of Ag NPs embedded K ₂ O-B ₂ O ₃ -Sb ₂ O ₃	
	glass system (Ag NPs are encircled by red) [79].	22
2.11	TEM image for TZNEA showing non-spherical size of	
	Au NPs (encircled in blue). Inset shows the Gaussian	
	distribution of Au NPs with an average diameter of 8.6	
	nm.	23
2.12	TEM images of tellurite glass containing (b) Gaussian	
	distribution (c) HRTEM image of lattice constant for Ag	
	NPs [80].	23
2.13	Typical DTA curve for a tellurite glass [86].	24

2.14	Light absorption phenomenon in a glass sample.	27
2.15	Tauc plot for direct optical band gap $(\alpha h \upsilon)^2$ and indirect	
	optical band gap $(\alpha h \upsilon)^{1/2}$ against photon energy of	
	TeO ₂ -MgO-Sm ₂ O ₃ -AgCl glass system [97].	28
2.16	Schematic diagram of direct (Eg) and indirect band gap	
	(E'g) in semiconductor.	29
2.17	Urbach tail, conduction and valence band [99].	30
2.18	A UV-Vis absorption spectra for TeO2-MgO-Sm2O3-	
	AgCl glass system [78].	33
2.19	A schematic energy representation of fluorescence and	
	phosphorescence.	34
2.20	Schematic representation showing the process of	
	luminescence.	35
2.21	Fluorescence spectra of Sm ³⁺ ions in tellurite glass	
	system under 477 nm excitation wavelength [38].	36
2.22	Energy level diagram of Sm^{3+} ion [110].	37
2.23	Schematic diagram showing (a) direct excitation of the	
	activator and (b) indirect excitation followed by energy	
	transfer from the sensitizer or host to the activator [113].	38
2.24	Different energy transfer processes from a sensitizer (S)	
	to an activator (A) in its ground state. (a) Resonant	
	radiative transfer, (b) resonant energy transfer, (c)	
	energy transfer assisted by phonons and (d) example of	
	quenching of the fluorescence of S by energy transfer to	
	A [114].	39
2.25	Schematic diagram of excited-state absorption (ω ' > ω_1 ,	
	ω_0) [117].	40
2.26	Schematic diagram demonstrating surface plasmon	
	resonance for a spherical metallic nanoparticle [122].	42
2.27	Electronic absorption spectra with SPR band for (a) Au	
	NPs at 525 nm and (b) Ag NPs at 400 nm synthesized in	
	Aqueous solution.	43
2.28	Schematic diagram illustrating the interaction between	
	incident radiation and free electrons Au NPs	44

3.1	A schematic representation of glass preparation	
	processes.	47
3.2	Schematic design of X-ray diffractometer [141].	50
3.3	Typical Bragg diffraction in crystal lattice.	51
3.4	Schematic diagram of FTIR spectroscopy [143].	52
3.5	Typical scattering geometry of Raman measurement	
	[145].	53
3.6	Various Raman scattering processes (a) Rayleigh	
	scattering, (b) Raman scattering with energy lost and (c)	
	Raman scattering with energy gain [146].	54
3.7	Inner architecture of a TEM [147].	56
3.8	Schematic representation of an energy dispersive	
	spectrometer [148].	57
3.9	Schematic design of a typical differential thermal	
	analyser [149].	58
3.10	A simplified diagram for UV-Vis-NIR	
	spectrophotometer.	60
3.11	Optical arrangement of a steady-state	
	spectrofluorometer.	61
4.1	Variation of density and molar volume for (80-y)TeO2-	
	20ZnO-ySm ₂ O ₃ glass system.	65
4.2	Variation of density and molar volume for (79-x)TeO ₂ -	
	20ZnO-1Sm ₂ O ₃ -xAuCl ₃ glass system.	66
4.3	A plot of ionic packing density for (80-y)TeO ₂ -20ZnO-	
	ySm ₂ O ₃ glass system.	66
4.4	A plot of ionic packing density for (79-x)TeO ₂ -20ZnO-	
	1Sm ₂ O ₃ -xAuCl ₃ glass system.	67
4.5	XRD patterns of (80-y)TeO2-20ZnO-ySm2O3 glass	
	system.	69
4.6	XRD patterns of (79-x)TeO2-20ZnO-1Sm2O3-xAuCl3	
	glass system.	69
4.7	(a) TEM image of 79.9 TeO ₂ - 20 ZnO- 0.10 AuCl ₃ glass	
	sample showing NPs with black spot (b) Corresponding	

	Gaussian distribution with average diameter of ~17.12	
	nm.	70
4.8	(a) The SAED pattern of Au for 79.9TeO2-20ZnO-	
	0.10AuCl ₃ glass sample (b) HRTEM image of Au NPs	
	showing d-spacing corresponding to (111) plane.	71
4.9	EDX spectrum of 79TeO ₂ -20ZnO-1Sm ₂ O ₃ glass sample.	72
4.10	EDX spectrum of 78.9TeO2-20ZnO-1Sm2O3-0.10AuCl3	
	glass sample.	72
4.11	FTIR spectra of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass samples.	75
4.12	FTIR spectra of (79-x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -xAuCl ₃	
	glass samples.	75
4.13	Raman spectra of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass	
	system.	78
4.14	Raman spectra for (79-x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -xAuCl ₃	
	glass system.	79
4.15	Deconvoluted Raman spectra for 78.9TeO ₂ -20ZnO-	
	1Sm ₂ O ₃ -0.10AuCl ₃ glass.	79
4.16	DTA curves of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass	
	system.	82
4.17	DTA curves of $(79-x)$ TeO ₂ -20ZnO-1Sm ₂ O ₃ -xAuCl ₃	
	glass systems.	83
4.18	Absorption spectra of (80-y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass	
	system.	85
4.19	Absorption spectra of (79-x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -	
	xAuCl ₃ glass system.	85
4.20	Absorption spectra of 78.9TeO ₂ -20ZnO-0.10AuCl ₃ glass	
	system showing SPR band positions for Au NPs at 652	
	and 715 nm.	86
4.21	A typical Tauc plot of indirect optical band gap for (80-	
	y)TeO ₂ -20ZnO-ySm ₂ O ₃ glass system.	88
4.22	A typical Tauc plot of indirect optical band gap for (79-	
	x)TeO ₂ -20ZnO-1Sm ₂ O ₃ -xAuCl ₃ glass system.	88

4.23	Variation of indirect optical band gap and Urbach energy	
	with Sm ₂ O ₃ concentration.	89
4.24	Variation of indirect optical band gap and Urbach energy	
	with Au NPs concentration.	89
4.25	Refractive index as a function of Sm ₂ O ₃ concentration.	91
4.26	Refractive index as a function of Au NPs concentration.	92
4.27	Molar refraction and electronic polarizability against	
	Sm ₂ O ₃ concentration.	92
4.28	Molar refraction and electronic polarizability against Au	
	NPs concentration.	93
4.29	Average nephelauxetic ratio and bonding parameter as a	
	function of Sm ₂ O ₃ concentration.	95
4.30	Average nephelauxetic ratio and bonding parameter as a	
	function of Au NPs concentration.	95
4.31	Higher energy region absorption spectra for (80-y)TeO ₂ -	
	20ZnO-ySm ₂ O ₃ glass system.	98
4.32	Higher energy region absorption spectra for (79-x)TeO ₂ -	
	20ZnO-1Sm ₂ O ₃ -xAuCl ₃ glass system.	98
4.33	Racah parameters B and C as a function of Sm ₂ O ₃	
	concentration.	99
4.34	Racah parameters B and C as a function of Au NPs	
	concentration.	100
4.35	Crystal field strength and nephelauxetic function against	
	Sm ₂ O ₃ concentration.	100
4.36	Crystal field strength and nephelauxetic function against	
	Au NPs concentration.	101
4.37	Luminescence spectra of (80-y)TeO2-20ZnO-ySm2O3	
	glass system under 945 nm excitation wavelength.	104
4.38	Luminescence spectra of (79-x)TeO2-20ZnO-1Sm2O3-	
	xAuCl ₃ glass system under 945 nm excitation	
	wavelength.	104
4.39	Integrated PL intensity versus Sm ₂ O ₃ concentration.	105
4.40	Integrated PL intensity versus AuCl ₃ concentration.	105

4.41	Partial energy diagram of Sm ³⁺ ion on tellurite glass	
	matrix in the presence of Au NPs describing the	
	mechanism of absorption and emission processes [22].	108

LIST OF ABBREVIATIONS

at%	-	Atomic Percentage
Au	-	Gold
BO	-	Bridging Oxygen
CB	-	Conduction Band
CR	-	Cross Relaxation
DNA	-	Data Not Available
DTA	-	Differential Thermal Analyser
EDX	-	Energy Dispersive Electron Microscope
EM	-	Electromagnetic
ESA	-	Excited State Absorption
ET	-	Energy Transfer
eV	-	Electron Volt
FFT	-	Fast Fourier Transformation
FTIR	-	Fourier Transform Infrared
GSA	-	Ground State Absorption
HMO	-	Heavy Metal Oxide
HRTEM	-	High Resolution Transmission Electron Microscopy
IR	-	Infrared
KBr	-	Potassium Bromide
Ln	-	Lanthanide
LSPR	-	Localized Surface Plasmon Resonance
NBO	-	Non-Bridging Oxygen
NIR	-	Near Infrared
NMEF	-	Nanometal Enhanced Fluorescence
NPs	-	Nanoparticles
NR	-	Non-radiative
O _{ax}	-	Axial Oxygen

\mathbf{O}_{eq}	-	Equatorial Oxygen
PL	-	Photoluminescence
RE	-	Rare Earth
REIs		Rare Earth Ions
Ref	-	Reference
RT	-	Room Temperature
SEM	-	Scanning Electron Microscope
SPR	-	Surface Plasmon Resonance
TEC	-	Thermal Expansion Coefficient
tbp	-	Trigonal Bipyramid
TEC	-	Thermal Expansion Coefficient
TEM	-	Transmission Electron Microscopy
tp	-	Trigonal Pyramid
UC	-	Upconversion
UV	-	Ultraviolet
VB	-	Valence Band
Vis	-	Visible
wt%	-	Weight Percentage
XRD	-	X-Ray Diffraction
ZnO	-	Zinc Oxide

LIST OF SYMBOLS

2θ	-	Angle of Diffraction
σ	-	Spin of Metal ion
A_b	-	Absorbance
Α	-	Activator
β	-	Nephelauxetic Ratio
D	-	Crystal Lattice Planar Spacing
Dq	-	Crystal Field Strength
E°	-	Reduction Potential
E_{opt}	-	Optical Band Gap
$E_{ m g}$	-	Direct Band Gap
E'g	-	Indirect Band Gap
ρ	-	Density
δ	-	Bonding Parameter
ν	-	Band Position
υ	-	Wavenumber
hv	-	Photon Energy
ΔE	-	Urbach Energy
η	-	Nephelauxetic Function
h	-	Planck's Constant
Q	-	Charge of Electron
М	-	Mass of Electron
λ	-	Wavelength
Hr	-	Hruby Parameter
n	-	Refractive Index
n_t	-	Order of Reflection
M_{av}	-	Average Molecular Weight

α	-	Absorption Coefficient
α_m	-	Electronic Polarizability
χ-TeO ₂	-	Mineral Tellurite
Ψ-TeO ₂	-	Paratellurite
S	-	Sensitizer
S_0	-	Ground State
Sa	-	Angular Spin
S_I	-	Excited Singlet State
ΔT	-	Stability Factor
N_A	-	Avogadro's Number
$V_{ m i}$	-	Packing Density Factor
V_t	-	Ionic Packing Density
V_m	-	Molar Volume
R_m	-	Molar Refraction
T_c	-	Glass Crystallization Temperature
T_g	-	Glass Transition Temperature
T_m	-	Glass Melting Temperature
W_a	-	Weight of Sample in Air
W_b	-	Weight of Sample When Immersed in an
		Immersion Liquid

xxiii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	List of Publications	130
В	Batch Calculation of Glass Systems	132
С	Calculation of Physical Parameters	134
D	Calculation of Weight and Atomic Percentages of Glass	138
	Constituents	
Е	Calculation of Racah Parameter	140
F	Instruments Pictures and Make Used for Characterization	143

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides a brief background on the development of glass research, in particular, the tellurite-based glass systems, aims towards potential application in solid state lasers and other optical devices. It also introduces the problem statement, objectives, scope of the study and significance of the research.

1.2 Research Background

Tellurium dioxide (TeO₂) host based glasses are of scientific and technological interest due to their unique properties. These properties include good rare earth (RE) solubility, better thermal stability, wide transparency window in UV-Vis-NIR region (0.4-6 μ m), high refractive index (~2.0), low melting temperatures (~800 °C) and low cut off phonon energy (700 cm⁻¹) [1-4]. Tellurite glasses shows interesting and significant optical properties which have received significant attention in their potential applications over the last few years; several devices including optical amplifiers, planar waveguides, and nano wires have been fabricated using tellurite glasses. However, TeO₂ itself is a conditional glass-former, which requires a special fast-quenching procedure to vitrify [5]. Due to the difficulty of vitrifying TeO₂ alone by traditional method, the high transparent tellurite glasses are obtained by introducing other oxides such as transition metal oxides, alkaline oxides and alkaline-earth oxides without adding any conventional glass former [6].

The incorporation of RE into oxide glasses have provided us with useful materials with several photonic applications such as optical fiber, laser emission and optical application [7, 8]. The trivalent samarium ion (Sm^{3+}) is preferred to other RE family due to its diligently lying energy level from the ground state to other excited states [9]. It also shows upconversion luminescence for ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2}$ (green), ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$ (orange), and ${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{9/2}$ (red) anti-Stokes transitions [10], which is potentially used for obtaining upconverted solid state lasers [11]. In addition to the upconverted luminescence enhancement, luminescence quenching is also experienced at a higher concentration of the RE due to an increasing ion-ion interaction between the RE ions (REIs). Therefore, a new way to further enhance these hosts need to be applied which makes researchers to incorporate metallic nanoparticles (NPs) into these oxide glasses [12, 13].

Due to its enhancement in luminescence and non-linear optical properties arise from the NPs on the host material, RE-doped oxide glasses embedded with metallic NPs have attracted attention [14]. The luminescence efficiency could be affected as a result of energy transfer (ET) between the NPs and REIs and sometimes due to the local field improvement which acts on the REIs closely sited around the NPs. Malta et al. in 1985 describes the fluorescence enhancement of silver particles on Eu³⁺ doped glass [15]. Subsequently, the effect of the luminescence enhancement of gold (Au) or silver (Ag) NPs on various RE-doped glasses have been studied over the years [16, 17]. The known characteristics low phonon energy for TeO₂ glasses makes them outstanding materials to weaken the loss of non-radiative (NR) and multiphonon relaxation that enables an enhanced upconversion efficiency in the REIs-doped glasses [18]. In an REIs: metal NPs-doped tellurite glass, plasmonenhanced fluorescence results from two contending processes: (1) increased excitation rate of the REIs due to local field modification and (2) quenching rate due to energy transfer by the excited REIs to the surface of metal NPs. Hence, to maximize the luminescence, the ratio between metal NPs and REIs concentrations must be less than unity. As the localized electric field produced by the metal NPs, plasmons has a distribution maximum in its vicinity, so there is a critical distance between the REIs and the metal NPs surface where the fluorescence enhancement is largest. Thus, at distances shorter than this REIs - GNP critical distance, the quantum efficiency diminishes due to the coupling to nonresonant higher-order plasmon modes [19].

Essentially, structure of anisotropic NPs possessing sharp edges form such as ellipsoids, nanorods, nanowires and concentric shells are more preferred candidates for nanometal enhanced fluorescence (NMEF) [20]. NMEF, as well called surface plasmon-enhanced luminescence is a phenomenon where plasmonic metal nanostructures in the area of the REIs enhance their free space spectroscopic features and enormously rise the production of their weak optical transitions through the generation of strong electric fields upon electromagnetic (EM) excitation [21]. Surface charges are induced on the NPs upon EM excitation. And the surface charge densities are significantly improved and confined close to the sharp edges of the anisotropic nanostructures that behaves like light-harvesting nano-optical antennas, transforming visible light to large localized electric field referred to as lightning-rod effect [22]. Consequently, NPs, if sited near REIs, RE's excitation rate is significantly enhanced. Therefore, intensive efforts are being dedicated to the study and exploring of surface plasmons and local field characteristics of non-spherical metal NPs. Some of the most predominant application of nanostructured materials at the surface are surface-enhanced fluorescence, surface-enhanced resonance imaging, and spectroscopy, surface enhanced Raman scattering.

1.3 Problem Statement

Over the years, the linear and nonlinear optical properties of RE-doped glasses with metallic NPs embedment have been investigated. Dousti et al. [23] has investigated the enhanced upconversion emissions in Er^{3+} doped tellurite glass containing gold NPs. Mahraz et al. [24] have studied the effect of silver NPs enhanced luminescence of Er^{3+} ions in boro-tellurite glasses. Although there are some reports on the influence of Sm³⁺ ions on zinc tellurite glass [25], there is no report on the role of gold NPs on structural, thermal, optical and ligand field parameters of this glass systems. Despite many spectroscopic studies, the role of Au NPs and enhancement of optical properties on Sm³⁺ ions in tellurite glass is far from

being understood. The effect of Au NPs on the thermal stability and thermal properties is not much studied. Additionally, the enhancement or quenching in the luminescence by adding NPs is not correlated to the ligand field parameters of Sm³⁺ doped zinc-tellurite glasses. It is proclaimed that the SPR wavelength depends on the host and metal-dielectric as well as on the dimensions and shape of the NPs [16]. The tunability of plasmon band positions at different wavelengths giving an effect to the plasmon resonance facilitates varieties of applications [26]. However, the correlation between SPR and ligands fields interaction due to the growth of NPs is not established yet.

It has been shown that glass formation in the ZnO-TeO₂ system depends strongly on the cooling rate, particularly in the TeO₂-rich region. Bürger et al. [27] shows that a glass system with composition 80TeO₂-20ZnO being melted at 1123K in platinum crucible and cooled with a rate of about ~10 K/s was found to be most stable. In this study, tellurite glass has been used as a host whereas samarium oxide as a dopant and Au NPs will be embedded into it. We prepared the glass systems using the conventional melt-quenching method. Therefore, we aim to explore, examine, identify and determine the effects of Au NPs on the structural and thermal characterizations of the prepared glass samples. Furthermore, optical absorption, emission, bonding between ligands and oxide glasses are determined.

1.4 Objectives of Study

- i. To prepare samarium doped zinc-tellurite glass systems without and with gold nanoparticles embedment by melt quenching technique.
- ii. To determine the structural characteristics of the synthesised glass systems using Infrared and Raman spectroscopy.
- To determine the influence of varying samarium and Au NPs concentration on the absorption and photoluminescence properties of the synthesised glass systems.
- iv. To evaluate the mechanism of luminescence enhancement and quenching in the synthesised glass system.

1.5 Scope of Study

In this study, conventional melt quenching technique is used to prepare samarium doped zinc-tellurite glass systems without and with gold nanoparticles embedment having composition of (80-y)TeO₂-20ZnO-ySm₂O₃, where $0 \le y \le 2.0$ in mol% and (79-x)TeO₂-20ZnO-1Sm₂O₃-xAuCl₃, where $0 \le x \le 0.1$ in mol%. The amorphous nature of the prepared glass is confirmed by X-ray diffraction (XRD), the existence and the size distribution of the Au NPs inside the glass is verified by TEM and HRTEM imaging technique. Archimedes method is used in measuring the density of the prepared glass systems. And these measured densities are employed in determining the molar volume and ionic parking density. The glass transition temperature (T_g) , crystallization temperature (T_c) , and melting temperature (T_m) are determined using the thermogram from the Differential Thermal Analyser (DTA) as well as its stability. The vibrational Structural features are demonstrated using FTIR and Raman spectroscopy. The optical absorption parameters such as refractive index, optical band gap, Urbach energy, and electronic polarizability are measured by means of UV-Vis-NIR spectroscopy. Also, the bonding and ligand field parameters are calculated from the higher energy region of the UV-Vis optical absorption spectra. The emission spectra will be studied using photoluminescence spectrometer.

1.6 Significance of Study

In the realm of nanoglass (glass containing NPs), this research might be of much significance because it reached out to current knowledge which exist in that field. Tellurite glass is characterized by large refractive index and low maximum phonon energy which helps to improve fluorescence emission compared to another oxide host.

This study can provide great knowledge on the structural, optical and thermal behaviour of NPs in the vicinity of Sm³⁺ doped zinc tellurite glass. The results can establish the role of Au NPs on the optical, structural and thermal properties of Sm³⁺

REFERENCES

- Ahmmad, S. K., Samee, M. A., Edukondalu, A., and Rahman, S. (2012). Physical and optical properties of zinc arsenic tellurite glasses. *Results in Physics*. 2, 175-181.
- Ferreira, E. A., Cassanjes, F. C., and Poirier, G. (2013). Crystallization behavior of a barium titanate tellurite glass doped with Eu³⁺ and Er³⁺. *Optical Materials*. 35(6), 1141-1145.
- Jose, R., Suzuki, T., and Ohishi, Y. (2006). Thermal and optical properties of TeO₂–BaO–SrO–Nb₂O₅ based glasses: New broadband Raman gain media. *Journal of Non-Crystalline Solids*. 352(52-54), 5564-5571.
- Lezal, D., Pedlikova, J., Kostka, P., Bludska, J., Poulain, M., and Zavadil, J. (2001). Heavy metal oxide glasses: preparation and physical properties. *Journal of Non-Crystalline Solids*. 284(1-3), 288-295.
- Rinke, M. T., Zhang, L., and Eckert, H. (2007). Structural integration of tellurium oxide into mixed-network-former glasses: connectivity distribution in the system NaPO₃-TeO₂. *A European Journal of Chemical Physics and Physical Chemistry*. 8(13), 1988-1998.
- Xu, T., Chen, F., Dai, S., Shen, X., Wang, X., Nie, Q., Liu, C., Xu, K., and Heo, J. (2011). Glass formation and third-order optical nonlinear properties within TeO₂-Bi₂O₃-BaO pseudo-ternary system. *Journal of Non-Crystalline Solids*. 357(11-13), 2219-2222.
- Snitzer, E. (1961). Optical Maser Action of Nd³⁺ in a Barium Crown Glass. *Physical Review Letters*. 7(12), 444-446.
- 8. Wang, J. S., Vogel, E. M., and Snitzer, E. (1994). Tellurite glass: a new candidate for fiber devices. *Optical Materials*. 3(3), 187-203.
- Carnall, W. T. (1968). Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺ and Tm³⁺. *The Journal* of Chemical Physics. 49(10), 4424.

- Som, T., and Karmakar, B. (2008). Infrared-to-red upconversion luminescence in samarium-doped antimony glasses. *Journal of Luminescence*. 128(12), 1989-1996.
- Jha, A., Richards, B., Jose, G., Teddy-Fernandez, T., Joshi, P., Jiang, X., and Lousteau, J. (2012). Rare-earth ion doped TeO₂ and GeO₂ glasses as laser materials. *Progress in Materials Science*. 57(8), 1426-1491.
- de Almeida, R., da Silva, D. M., Kassab, L. R. P., and de Araújo, C. B. (2008). Eu³⁺ luminescence in tellurite glasses with gold nanostructures. *Optics Communications*. 281(1), 108-112.
- Rivera, V. A. G., Osorio, S. P. A., Manzani, D., Messaddeq, Y., Nunes, L. A. O., and Marega, E. (2011). Growth of silver nano-particle embedded in tellurite glass: Interaction between localized surface plasmon resonance and Er³⁺ ions. *Optical Materials*. 33(6), 888-892.
- Kassab, L. R. P., de Araújo, C. B., Kobayashi, R. A., de Almeida Pinto, R., and da Silva, D. M. (2007). Influence of silver nanoparticles in the luminescence efficiency of Pr³⁺ -doped tellurite glasses. *Journal of Applied Physics*. 102(10), 103515.
- Malta, O. L., Santa-Cruz, P. A., De Sa, G. F., and Auzel, F. (1985).
 Fluorescence Enhancement Induced by the Presence of Small Silver Particles in Eu³⁺-Doped Materials *Journal of Luminescence*. 33, 261-272.
- da Silva, D. M., Kassab, L. R. P., Lüthi, S. R., de Araújo, C. B., Gomes, A. S. L., and Bell, M. J. V. (2007). Frequency upconversion in Er³⁺ doped PbO-GeO₂ glasses containing metallic nanoparticles. *Applied Physics Letters*. 90(8), 081913.
- Sazali, E. S., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., and Amjad, R. J. (2015). Efficient optical enhancement of Er³⁺ doped leadtellurite glass embedded with gold nanoparticles: role of heat-treatment. *Journal of Non-Crystalline Solids*. 410, 174-179.
- Kumar, K., Rai, S. B., and Rai, D. K. (2007). Upconversion and concentration quenching in Er³⁺-doped TeO₂–Na₂O binary glasses. *Journal of Non-Crystalline Solids*. 353(13), 1383-1387.
- Osorio, S. P., Rivera, V. A. G., Nunes, L. A. O., Marega Jr, E., Manzani, D., and Messaddeq, Y. (2011). Plasmonic coupling in Er³⁺: Au tellurite glass. *Plasmonics*. 7(1), 53-58.

- Tréguer-Delapierre, M., Majimel, J., Mornet, S., Duguet, E., and Ravaine, S. (2008). Synthesis of non-spherical gold nanoparticles. *Gold Bulletin*. 41(2), 9447-9452.
- Som, T., and Karmakar, B. (2009). Surface plasmon resonance in nano-gold antimony glass-ceramic dichroic nanocomposites: One-step synthesis and enhanced fluorescence application. *Applied Surface Science*. 255(23), 9447-9452.
- Som, T., and Karmakar, B. (2010). Enhanced frequency upconversion of Sm³⁺ ions by elliptical Au nanoparticles in dichroic Sm³⁺: Au-antimony glass nanocomposites. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 75(2), 640-646.
- Dousti, M. R., Amjad, R. J., and Mahraz, Z. A. S. (2015). Enhanced green and red upconversion emissions in Er³⁺-doped boro-tellurite glass containing gold nanoparticles. *Journal of Molecular Structure*. 1079, 347-352.
- Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., and Amjad, R. J. (2013). Silver nanoparticles enhanced luminescence of Er³⁺ ions in boro-tellurite glasses. *Materials Letters*. 112, 136-138.
- 25. Eraiah, B. (2006). Optical properties of samarium doped zinc-tellurite glasses. *Bulletin of Materials Science*. 29(4), 375-378.
- 26. Kauranen, M., and Zayats, A. V. (2012). Nonlinear plasmonics. *Nature Photonics*. 6(11), 737-748.
- Bürger, H., Kneipp, K., Hobert, H., Vogel, W., Kozhukharov, V., and Neov,
 S. (1992). Glass formation, properties and structure of glasses in the TeO₂ ZnO system. *Journal of Non-Crystalline Solids*. 151(1-2), 134-143.
- Shelby, J. E. (2005). *Introduction to Glass Science and Technology*, ed. 2nd.
 United Kingdom: The Royal Society of Chemistry.
- Kothiyal, G. P., Ananthanarayanan, A., and Dey, G. K., *Preparation, Processing and Applications*, in *Functional Materials:*, Banerjee, S., and Tyagi, A., Editors. 2012, Elsevier: USA. p. 323-386.
- 30. Elliott, S. R. (1984). *Physics of amorphous materials*. London: Longman.
- Kumar, K., Rai, S. B., and Rai, D. K. (2006). Upconversion studies in Er³⁺ doped TeO₂–M₂O (M=Li, Na and K) binary glasses. *Solid State Communications*. 139(7), 363-369.

- Obadina, V. O., and Reddy, B. R. (2013). Investigation of Silver Nanostructures and Their Influence on the Fluorescence Spectrum of Erbium-Doped Glasses. *Optics and Photonics Journal*. 03(01), 45-50.
- Tanabe, S. (2006). Optical properties and local structure of rare-earth-doped amplifier for broadband telecommunication. *Journal of Alloys and Compounds*. 408-412, 675-679.
- Souza Neto, N. M., Ramos, A. Y., and Barbosa, L. C. (2002). Er³⁺ environment in TeO₂-ZnO-Na₂O glasses. *Journal of Non-Crystalline Solids*. 304, 195-199.
- 35. Berzelius, J. J. (1834). Tellurite Glasses. Annal. Physike Chemie. 32, 577.
- 36. Lehner, V., and Wolesensky, E. (1913). A study of the metallic tellurites. *Journal of the American Chemical Society*. 35(6), 718-733.
- 37. Stanworth, J. E. (1952). Tellurite Glasses. Nature. 169(4301), 581-582.
- Babu, A. M., Jamalaiah, B. C., Sasikala, T., Saleem, S. A., and Moorthy, L. R. (2011). Absorption and emission spectral studies of Sm³⁺-doped lead tungstate tellurite glasses. *Journal of Alloys and Compounds*. 509(14), 4743-4747.
- 39. Kassab, L. R. P., Bomfim, F. A., Martinelli, J. R., Wetter, N. U., Neto, J. J., and de Araújo, C. B. (2008). Energy transfer and frequency upconversion in Yb³⁺–Er³⁺-doped PbO-GeO₂ glass containing silver nanoparticles. *Applied Physics B*. 94(2), 239-242.
- de Araujo, C. B., Silverio da Silva, D., Alves de Assumpcao, T. A., Kassab,
 L. R., and Mariano da Silva, D. (2013). Enhanced optical properties of germanate and tellurite glasses containing metal or semiconductor nanoparticles. *ScientificWorldJournal*. 2013, 385193.
- Rivera, V. A. G., Ledemi, Y., Osorio, S. P. A., Manzani, D., Ferri, F. A., Ribeiro, S. J. L., Nunes, L. A. O., and Marega, E. (2013). Tunable plasmon resonance modes on gold nanoparticles in Er³⁺-doped germanium-tellurite glass. *Journal of Non-Crystalline Solids*. 378, 126-134.
- Jha, A., Shen, S., and Naftaly, M. (2000). Structural origin of spectral broadening of 1.5-μm emission in Er³⁺-doped tellurite glasses. *Physical Review*. 62(10), 6215-6227.
- 43. El-Mallawany, R. (1992). The optical properties of tellurite glasses. *Journal* of *Applied Physics*. 72(5), 1774.

- Ghoshal, S. K., Sahar, M. R., Rohani, M. S., and Sharma, S. (2011). Temperature dependent luminescence in erbium-doped zinc tellurite glass: A model investigation. *Indian Journal of Pure and Applied Physics*. 49, 509-515.
- 45. Cheremisinov, V. P., and Zlomanov, V. P. (1962). Vibrational spectra and the structure of crystalline and glasslike tellurium dioxide. *Optics and Spectroscopy*. 12(2), 208-214.
- Lambson, E. F., Saunders, G. A., Bridge, B., and El-Mallawany, R. A. (1984). The elastic behaviour of TeO₂ glass under uniaxial and hydrostatic pressure. *Journal of non-crystalline solids*. 69(1), 117-133.
- 47. Mochida, N., Takahashi, K., Nakata, K., and Shibusawa, S. (1978). Properties and structure of the binary tellurite glasses containing mono-and di-valent cations. *Journal of the Ceramic Association, Japan.* 86(7), 317-326.
- 48. Kozhukharov, V., Marinov, M., and Grigorova, G. (1978). Glass formation range in binary tellurite systems containing transitions metal oxides. *Journal of Non-Crystalline Solids*. 28, 429-430.
- 49. El-Mallawany, R. A. H., *Tellurite glasses handbook: physical properties and data*. 2002, CRC Press: Boca Raton.
- Awang, A., Ghoshal, S. K., Sahar, M. R., and Arifin, R. (2015). Gold nanoparticles assisted structural and spectroscopic modification in Er³⁺-doped zinc sodium tellurite glass. *Optical Materials*. 42, 495-505.
- 51. Wang, Y., Dai, S., Chen, F., Xu, T., and Nie, Q. (2009). Physical properties and optical band gap of new tellurite glasses within the TeO₂-Nb₂O₅-Bi₂O₃ system. *Materials Chemistry and Physics*. 113(1), 407-411.
- Sidek, H. A. A., Rosmawati, S., Talib, Z. A., Halimah, M. K., and Daud, W. M. (2009). Synthesis and Optical Properties of ZnO-TeO₂ Glass System. *American Journal of Applied Sciences*. 6(8), 1489-1494.
- 53. Pavani, P. G., Suresh, S., and Mouli, V. C. (2011). Studies on boro cadmium tellurite glasses. *Optical Materials*. 34(1), 215-220.
- Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., and Effendi, M. (2013). Thermal, structural and magnetic properties of zinctellurite glasses containing natural ferrite oxide. *Materials Letters*. 108, 289-292.

- 55. Upender, G., Babu, J. C., and Mouli, V. C. (2012). Structure, glass transition temperature and spectroscopic properties of 10Li₂O-xP₂O₅-(89-x TeO₂-1CuO (5 ≤ x ≤ 25 mol%) glass system. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 89, 39-45.
- 56. Damas, P., Coelho, J., Hungerford, G., and Hussain, N. S. (2012). Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. *Materials Research Bulletin*. 47(11), 3489-3494.
- 57. Nawaz, F., Sahar, M. R., Ghoshal, S. K., Awang, A., and Ahmed, I. (2014). Concentration dependent structural and spectroscopic properties of Sm³⁺/Yb³⁺ co-doped sodium tellurite glass. *Physica B: Condensed Matter*. 433, 89-95.
- 58. Sazali, E. S., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., and Awang, A. (2014). Optical properties of gold nanoparticle embedded Er³⁺ doped lead-tellurite glasses. *Journal of Alloys and Compounds*. 607, 85-90.
- 59. Awang, A., Ghoshal, S. K., Sahar, M. R., Dousti, M. R., Amjad, R. J., and Nawaz, F. (2013). Enhanced spectroscopic properties and Judd–Ofelt parameters of Er-doped tellurite glass: Effect of gold nanoparticles. *Current Applied Physics*. 13(8), 1813-1818.
- 60. Wells, A. F., *Sulphur, Selenium and Tellurium*, in *Structural Inorganic Chemistry*. 1975, Clarendon Press, Oxford. p. 570-604.
- Grelowska, I., Reben, M., Burtan, B., Sitarz, M., Cisowski, J., Yousef, E. S., Knapik, A., and Dudek, M. (2016). Structural and optical study of telluritebarium glasses. *Journal of Molecular Structure*. 1126, 219-225.
- 62. Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy. 2th ed.: CRC press.
- 63. Pavia, D., Lampman, G., Kriz, G., and Vyvyan, J. (2008). *Introduction to Spectroscopy*. Cengage Learning.
- Dousti, M. R., Sahar, M. R., Ghoshal, S. K., Amjad, R. J., and Samavati, A. R. (2013). Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass. *Journal of Molecular Structure*. 1035, 6-12.
- Ghoshal, S. K., Awang, A., Sahar, M. R., and Arifin, R. (2015). Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er³⁺ doped zinc–sodium tellurite glass. *Journal of Luminescence*. 159, 265-273.

- 66. Maheshvaran, K., Linganna, K., and Marimuthu, K. (2011). Composition dependent structural and optical properties of Sm³⁺ doped boro-tellurite glasses. *Journal of Luminescence*. 131(12), 2746-2753.
- 67. Rajeswari, R., Babu, S. S., and Jayasankar, C. K. (2010). Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium. *Spectrochim Acta A Mol Biomol Spectrosc*. 77(1), 135-40.
- Mahraz, Z. A. S., Sahar, M. R., Ghoshal, S. K., and Dousti, M. R. (2013). Concentration dependent luminescence quenching of Er³⁺-doped zinc borotellurite glass. *Journal of Luminescence*. 144, 139-145.
- Wang, G., Zhang, J., Dai, S., Yang, J., and Jiang, Z. (2005). Thermal analyses, spectral characterization and structural interpretation of Yb³⁺ doped TeO₂–ZnO–ZnCl₂ glasses. *Physics Letters A*. 341(1-4), 285-290.
- Pan, Z., and Morgan, S. H. (1997). Raman spectra and thermal analysis of a new lead-tellurium-germanate glass system. *Journal of non-crystalline solids*. 210(2), 130-135.
- Jaba, N., Mermet, A., Duval, E., and Champagnon, B. (2005). Raman spectroscopy studies of Er³⁺-doped zinc tellurite glasses. *Journal of Non-Crystalline Solids*. 351(10-11), 833-837.
- Tikhomirov, V. K., Jha, A., Perakis, A., Sarantopoulou, E., Naftaly, M., Krasteva, V. L. R., and Seddon, A. B. (1999). An interpretation of the Boson peak in rare-earth ion doped glasses. *Journal of non-crystalline solids*. 256, 89-94.
- Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M. (1992). Raman spectra of MO_{1/2}-TeO₂ (M = Li, Na, K, Rb, Cs and TI) glasses. *Journal of Non-Crystalline Solids*. 144, 128-144.
- Kaur, A., Khanna, A., Pesquera, C., González, F., and Sathe, V. (2010). Preparation and characterization of lead and zinc tellurite glasses. *Journal of Non-Crystalline Solids*. 356(18-19), 864-872.
- Khatir, S., Bolka, J., Capoen, B., Turrell, S., and Bouazaoui, M. (2001).
 Raman spectroscopic characterization of Er³⁺-doped tellurite-based glasses. *Journal of Molecular Structure*. 563, 283-287.
- 76. Ghribi, N., Dutreilh-Colas, M., Duclère, J. R., Gouraud, F., Chotard, T., Karray, R., Kabadou, A., and Thomas, P. (2015). Structural, mechanical and

optical investigations in the TeO₂-rich part of the TeO₂–GeO₂–ZnO ternary glass system. *Solid State Sciences*. 40, 20-30.

- 77. Fortes, L. M., Santos, L. F., Gonçalves, M. C., Almeida, R. M., Mattarelli, M., Montagna, M., Chiasera, A., Ferrari, M., Monteil, A., Chaussedent, S., and Righini, G. C. (2007). Er³⁺ ion dispersion in tellurium oxychloride glasses. *Optical Materials*. 29(5), 503-509.
- Yusoff, N. M., and Sahar, M. R. (2015). The incorporation of silver nanoparticles in samarium doped magnesium tellurite glass: Effect on the characteristic of bonding and local structure. *Physica B: Condensed Matter*. 470-471, 6-14.
- 79. Som, T., and Karmakar, B. (2011). Nano silver:antimony glass hybrid nanocomposites and their enhanced fluorescence application. *Solid State Sciences*. 13(5), 887-895.
- Dousti, M. R., Sahar, M. R., Rohani, M. S., Samavati, A., Mahraz, Z. A., Amjad, R. J., Awang, A., and Arifin, R. (2014). Nano-silver enhanced luminescence of Eu³⁺-doped lead tellurite glass. *Journal of Molecular Structure*. 1065-1066, 39-42.
- El-Mallawany, R. (1995). Devitrification and vitrification of tellurite glasses.
 Journal of Materials Science: Materials in Electronics. 6(1), 1-3.
- Hruby, A. (1972). Evaluation of glass-forming tendency by means of DTA Czechoslovak Journal of Physics B. 22(11), 1187-1193.
- Inoue, A., Zhang, T., and Masumoto, T. (1993). Glass-forming ability of alloys. *Journal of Non-Crystalline Solids* 156, 473-480.
- Babu, P., Seo, H. J., Kesavulu, C. R., Jang, K. H., and Jayasankar, C. K. (2009). Thermal and optical properties of Er³⁺-doped oxyfluorotellurite glasses. *Journal of Luminescence*. 129(5), 444-448.
- Jlassi, I., Elhouichet, H., and Ferid, M. (2011). Thermal and optical properties of tellurite glasses doped erbium. *Journal of Materials Science*. 46(3), 806-812.
- Sahar, M. R., Jaafar, E., and Ghoshal, S. K. (2014). Luminescence Spectra of Erbium Doped Zinc Tellurite Glass Embedded with Gold Nanoparticles. *Advanced Materials Research*. 895, 231-235.

- Özen, G., Demirata, B., Övecoğlu, M. L., and Genc, A. (2001). Thermal and optical properties of Tm³⁺ doped tellurite glasses. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 57(2), 272-280.
- Bahgat, A. A., Shaltout, I. I., and Abu-Elazm, A. M. (1992). Structural and thermal properties of some tellurite glasses. *Journal of Non-Crystalline Solids*. 150(1), 179-184.
- Chagraoui, A., Chakib, A., Mandil, A., Tairi, A., Ramzi, Z., and Benmokhtar,
 S. (2007). New investigation within ZnO–TeO₂–Bi₂O₃ system in air. *Scripta Materialia*. 56(2), 93-96.
- 90. O'Donnell, M. D., Richardson, K., Stolen, R., Seddon, A. B., Furniss, D., Tikhomirov, V. K., Rivero, C., Ramme, M., Stegeman, R., Stegeman, G., Couzi, M., and Cardinal, T. (2007). Tellurite and Fluorotellurite Glasses for Fiberoptic Raman Amplifiers: Glass Characterization, Optical Properties, Raman Gain, Preliminary Fiberization, and Fiber Characterization. *Journal of the American Ceramic Society*. 90(5), 1448-1457.
- Zuraini, C., Yusoff, W. M. D. W., Halimah, M. K., and Zaidan, A. W. (2011). Dielectric properties of B₂O₃–TeO₂–Sm₂O₃ gasses system. *Solid State Science and Technology*. 19(2), 285-300.
- 92. Dousti, M. R., Ghassemi, P., Sahar, M. R., and Mahraz, Z. A. (2014). Chemical durability and thermal stability of Er³⁺-doped zinc tellurite glass containing silver nanoparticles *Chalcogenide Letters*. 11(3), 111-119.
- Ghoshal, S. K., Awang, A., Sahar, M. R., Amjad, R. J., and Dousti, M. R. (2013). Spectroscopic and structural properties of TeO₂-ZnO-Na₂O-Er₂O₃-Au glasses. *Chalcogenide Letters*. 10(10), 411-420.
- Selvaraju, K., Marimuthu, K., Seshagiri, T. K., and Godbole, S. V. (2011). Thermal, structural and spectroscopic investigations on Eu³⁺ doped borotellurite glasses. *Materials Chemistry and Physics*. 131(1-2), 204-210.
- Davis, E. A., and Mott, N. F. (1970). Conduction in non-crystalline systems
 V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. *Philosophical Magazine*. 22(179), 903-922.
- Al-Ani, S. K. J., and Higazy, A. A. (1991). Study of optical absorption edges in MgO-P₂O₅ glasses. *Journal of materials science*. 26(13), 3670-3674.

- Yusoff, N. M., and Sahar, M. R. (2015). Effect of silver nanoparticles incorporated with samarium-doped magnesium tellurite glasses. *Physica B: Condensed Matter.* 456, 191-196.
- 98. Urbach, F. (1953). The Long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. *Physical Review*. 92(5), 1324-1324.
- 99. Choudhury, B., Dey, M., and Choudhury, A. (2013). Defect generation, d-d transition, and band gap reduction in Cu-doped TiO₂ nanoparticles. *International Nano Letters*. 3(1), 1-8.
- 100. Dimitrov, V., and Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. *Journal of Applied Physics*. 79(3), 1736.
- 101. El-Diasty, F., Wahab, F. A. A., and Abdel-Baki, M. (2006 El-Diasty, F., Wahab, F.A.A. and Abdel-Baki, M.,). Optical band gap studies on lithium aluminum silicate glasses doped with Cr³⁺ ions. *Journal of Applied Physics*. 100(9), 093511.
- Jørgensen, C. K. (1964). Absorption Spectra and Chemical Bonding in Complexes. London: Pergamon Press.
- 103. Morimoto, S., Khonthon, S., and Ohishi, Y. (2008). Optical properties of Cr³⁺ ion in lithium metasilicate Li₂O·SiO₂ transparent glass-ceramics. *Journal of Non-Crystalline Solids*. 354(28), 3343-3347.
- 104. Terczyńska-Madej, A., Cholewa-Kowalska, K., and Łączka, M. (2011). Coordination and valence state of transition metal ions in alkali-borate glasses. *Optical Materials*. 33(12), 1984-1988.
- 105. Ahmad, F. (2014). Study the effect of alkali/alkaline earth addition on the environment of borochromate glasses by means of spectroscopic analysis. *Journal of Alloys and Compounds*. 586, 605-610.
- Hassan, M. A., Farouk, M., Abdullah, A. H., Kashef, I., and ElOkr, M. M. (2012). ESR and ligand field theory studies of Nd₂O₃ doped borochoromate glasses. *Journal of Alloys and Compounds*. 539, 233-236.
- 107. Gao, F., and Zhang, S. (1997). Investigation of mechanism of nephelauxetic effect. *Journal of Physics and Chemistry of Solids*. 58(12), 1991-1994.
- 108. Pal, P., Penhouët, T., D'Anna, V., and Hagemann, H. (2013). Effect of pressure on the free ion and crystal field parameters of Sm²⁺ in BaFBr and SrFBr hosts. *Journal of Luminescence*. 134, 678-685.

- Macfarlane, P. I., Holliday, K., and Henderson, B. (1996). Nephelauxetic inhomogeneous broadening of optical transitions. *Chemical Physics Letters*. 252(5), 311-316.
- 110. Chen, B. J., Shen, L. F., Pun, E. Y. B., and Lin, H. (2012). Sm³⁺ doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery. *Optics express*. 20(2), 879-889.
- Turky, G., and Dawy, M. (2002). Spectral and electrical properties of ternary (TeO₂-V₂O₅-Sm₂O₃) glasses. *Materials Chemistry and Physics*. 77, 48-59.
- 112. Sasic, S., and Ozaki, Y. (2010). *Raman, infrared and near-infrared chemical imaging*. John Wiley & Sons.
- 113. Bamfield, P., and Hutchings, M. G. (2010). *Chromic phenomena: technological applications of colour chemistry*. Royal Society of Chemistry.
- Dong, H., Sun, L. D., and Yan, C. H. (2015). Energy transfer in lanthanide upconversion studies for extended optical applications. *Chem Soc Rev.* 44(6), 1608-34.
- Tilley, R. J. (2004). Understanding Solids: The Science of materials. John Wiley & Sons.
- Dexter, D. L. (1957). Possibility of Luminescent Quantum Yields Greater than Unity. *Physical Review*. 108(3), 630-633.
- 117. Chen, J., and Zhao, J. X. (2012). Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. *Sensors (Basel)*. 12(3), 2414-2435.
- 118. Rivero, P. J., Hernaez, M., Goicoechea, J., Matías, I. R., and Arregui, F. J. (2015). A comparative study in the sensitivity of optical fiber refractometers based on the incorporation of gold nanoparticles into a layer-by-layer films. *International Journal on Smart Sensing and Intelligent Systems*. 8(2).
- Zhang, J. Z. (2009). Optical Properties And Spectroscopy of nanomaterials. Singapore: World Scientific
- 120. Atkins, P., Overton, T., Rourke, J., Weller, M., Armstrong, F., and Hagerman, M. (2010). *Shriver and Atkins' inorganic chemistry*. 5th ed., Great Britain: Oxford University Press.
- 121. Hayashi, S., and Okamoto, T. (2012). Plasmonics: visit the past to know the future. *Journal of Physics D: Applied Physics*. 45(43), 433001.

- 122. Kalele, S. A., Tiwari, N. R., Gosavi, S. W., and Kulkarni, S. K. (2007).
 Plasmon-assisted photonics at the nanoscale. *Journal of Nanophotonics*. 1(1), 012501.
- 123. Awang, A. (2014). Effect of nanoparticles on the structure and optical properties of erbium-doped zinc sodium tellurite glass. PhD Thesis, Universiti Teknologi Malaysia, Skudai.
- 124. Sekiyama, A., Yamaguchi, J., Higashiya, A., Obara, M., Sugiyama, H., Kimura, M. Y., Suga, S., Imada, S., Nekrasov, I. A., Yabashi, M., Tamasaku, K., and Ishikawa, T. (2010). The prominent 5d-orbital contribution to the conduction electrons in gold. *New Journal of Physics*. 12(4), 043045.
- 125. Huang, X., Jain, P. K., El-Sayed, I. H., and El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. *Nanomedicine*. 2(5), 681-693.
- 126. Geddes, C. D., and Lakowicz, J. R. (2002). Editorial: Metal-Enhanced Fluorescence. *Journal of Fluorescence*. 12(2), 121-129.
- 127. Maier, S. A., and Atwater, H. A. (2005). Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. *Journal of Applied Physics*. 98(1), 011101.
- 128. Pan, Z., Ueda, A., Aga, R., Burger, A., Mu, R., and Morgan, S. H. (2010). Spectroscopic studies of Er³⁺ doped Ge-Ga-S glass containing silver nanoparticles. *Journal of Non-Crystalline Solids*. 356(23-24), 1097-1101.
- 129. Lide, D. R. (2005). *Handbook of chemistry and physics*. Vol. 87. Boca Raton: CRC PRESS.
- Dousti, M. R., Sahar, M. R., Amjad, R. J., Ghoshal, S. K., and Awang, A. (2013). Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass. *Journal of Luminescence*. 143, 368-373.
- Tirtha, S., and Basudeb, K. (2009). Nano Au enhanced upconversion in dichroic Nd³⁺ :Au–antimony glass nanocomposites. *Solid State Sciences*. 11(5), 1044-1051.
- Hajer, S. S., Halimah, M. K., Azmi, Z., and Azlan, M. N. (2014). Optical properties of zinc-borotellurite doped samarium. *Chalcogenide letters*. 11(11), 553-566.

- Khattak, G. D., and Salim, M. A. (2002). X-ray photoelectron spectroscopic studies of zinc-tellurite glasses. *Journal of Electron Spectroscopy and Related Phenomena*. 123 47–55.
- Rajendran, V., Palanivelu, N., Chaudhuri, B. K., and Goswami, K. (2003). Characterisation of semiconducting V₂O₅–Bi₂O₃–TeO₂ glasses through ultrasonic measurements. *Journal of Non-Crystalline Solids*. 320(1-3), 195-209.
- Wagh, A., Ajithkumar, M. P., and Kamath, S. D. (2013). Composition dependent structural and thermal properties of Sm₂O₃ doped zinc fluoroborate glasses. *Energy Research Journal*. 4(2), 52-58.
- Çelikbilek, M., Ersundu, A. E., and Aydin, S. (2013). Preparation and characterization of TeO₂–WO₃–Li₂O glasses. *Journal of Non-Crystalline Solids*. 378, 247-253.
- 137. Makishima, A., and Mackenzie, J. D. (1973). Direct calculation of Young's modulus of glass. *Journal of Non-Crystalline Solids*. 12(1), 35-45.
- Makishima, A., and Mackenzie, J. D. (1975). Calculation of bulk modulus, shear modulus and poisson's ratio of glass. *Journal of Non-Crystalline Solids*. 17(2), 147-157.
- Makishima, A., and Mackenzie, J. D. (1976). Calculation of thermal expansion coefficient of glasses. *Journal of Non-Crystalline Solids*. 22(2), 305-313.
- 140. Shannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in halides and chalcogenides. *Acta Crystallographica Section A*. 32(5), 751-767.
- Cullity, B. D. (1978). *Elements of X-Ray Diffraction*. 2nd ed., Massachusetts: Addison-Wesley Publishing Company.
- Baravkar, A. A., Kale, R. N., and Sawant, S. D. (2011). FT-IR spectroscopy: Principle, technique and mathematics. *International Journal of Pharma and Bio Sciences*. 2(2), 513-519.
- Al-Saeed, T. A., and Khalil, D. A. (2010). Diffraction effects in optical microelectromechanical system Michelson interferometers. *Applied optics*. 49(20), 3960-3966
- 144. Raman, C. V., and Krishnan, K. S. (1928). A new type of secondary radiation. *Nature*. 121(3048), 501-502.

- 145. Smith, E., and Dent, G. (2005). Modern Raman spectroscopy a practical approach. England: John Wiley & Sons.
- 146. Moura, C. C., Tare, R. S., Oreffo, R. O., and Mahajan, S. (2016). Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. *Journal of the Royal Society Interface*. 13(118), 1-12.
- 147. Cao, G. (2004). Nanostructures and Nanomaterials: Synthesis, Properties and Applications. London: Imperial College Press.
- 148. Goldstein, J., Newbury, D. E., Echlin, P., Joy, D. C., Romig Jr, A. D., Lyman, C. E., Fiori, C., and Lifshin, E. (2012). Scanning Electron Microscopy and Xray Microanalysis. New York: Plenum Publishers.
- 149. Wendlandt, W. W. (1986). *Thermal Analysis*. 3rd ed., New York: Wiley-Interscience.
- 150. Solé, J. G., Bausa, L. E., and Jaque, D. (2005). *An introduction to the optical spectroscopy of inorganic solids*. England: John Wiley & Sons.
- Wiedemann, E. (1888). Ueber Fluorescenz und Phosphorescenz I. Abhandlung. Annalen der Physik. 270(7), 446-463.
- 152. Jacobs, R. R., and Weber, M. J. (1976). Dependence of the ${}^{4}F_{3/2}{}^{-4}I_{11/2}$ induced- emmision cross section for Nd³⁺ on glass composition. *IEEE Journal of Quantum Electronics*. 12(2), 102-111.
- Pavani, P. G., Sadhana, K., and Mouli, V. C. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. *Physica B: Condensed Matter*. 406(6), 1242-1247.
- 154. Azmi, S. A. M., Sahar, M. R., Ghoshal, S. K., and Arifin, R. (2015). Modification of structural and physical properties of samarium doped zinc phosphate glasses due to the inclusion of nickel oxide nanoparticles. *Journal* of Non-Crystalline Solids. 411, 53-58.
- 155. Arunkumar, S., and Marimuthu, K. (2013). Concentration effect of Sm³⁺ ions in B₂O₃-PbO-PbF₂-Bi₂O₃-ZnO glasses – Structural and luminescence investigations. *Journal of Alloys and Compounds*. 565, 104-114.
- Pye, L. D., Stevens, H. J., and LaCourse, W. C. (1972). Introduction to Glass Science: The Vitreous State New York: Plenum Press.

- El-Mallawany, R. (1999). Tellurite glasses Part 2. Anelastic, phase separation Debye temperature and thermal properties. *Materials chemistry and physics*. 60(2), 103-131.
- 158. Saddeek, Y. B., Shaaban, E. R., Aly, K. A., and Sayed, I. M. (2009). Characterization of some lead vanadate glasses. *Journal of Alloys and Compounds*. 478(1-2), 447-452.
- Maheshvaran, K., Veeran, P. K., and Marimuthu, K. (2013). Structural and optical studies on Eu³⁺ doped boro-tellurite glasses. *Solid State Sciences*. 17, 54-62.
- Som, T., and Karmakar, B. (2009). Plasmon tuning of nano-Au in dichroic devitrified antimony glass nanocomposites by refractive index control. *Chemical Physics Letters*. 479(1-3), 100-104.
- Murugan, G. S., and Ohishi, Y. (2004). Raman spectroscopic studies of TeO₂-BaO-SrO-Nb₂O₅ glasses: Structure-property correlations. *Journal of Applied Physics*. 96(5), 2437-2442.
- 162. Upender, G., Ramesh, S., Prasad, M., Sathe, V. G., and Mouli, V. C. (2010). Optical band gap, glass transition temperature and structural studies of (100-2x)TeO₂-xAg₂O-xWO₃ glass system. *Journal of Alloys and Compounds*. 504(2), 468-474.
- Sahar, M. R., Sulhadi, K., and Rohani, M. S. (2007). Spectroscopic studies of TeO₂–ZnO–Er₂O₃ glass system. *Journal of Materials Science*. 42(3), 824-827.
- 164. Sahar, M. R., Sulhadi, K., and Rohani, M. S. (2008). The preparation and structural studies in the (80-x)TeO₂-20ZnO-(x)Er₂O₃ glass system. *Journal of Non-Crystalline Solids*. 354(12), 1179-1181.
- 165. Kamalaker, V., Upender, G., Ramesh, C., and Mouli, V. C. (2012). Raman spectroscopy, thermal and optical properties of TeO₂-ZnO-Nb₂O₅-Nd₂O₃ glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 89, 149-154.
- 166. Chowdari, B. V. R., and Kumari, P. P. (1999). Raman spectroscopic study of ternary silver tellurite glasses. *Materials research bulletin*. 34(2), 327-342.
- 167. Sreenivasulu, V., Upender, G., Swapna, Priya, V. V., Mouli, V. C., and Prasad, M. (2014). Raman, DSC, ESR and optical properties of lithium cadmium zinc tellurite glasses. *Physica B: Condensed Matter*. 454, 60-66.

- 168. Fortes, L., Santos, L. F., Clara Gonçalves, M., and Almeida, R. M. (2006). The effects of ZnCl₂ and ErCl₃ on the vibrational spectra and structure of tellurite glasses. *Journal of Non-Crystalline Solids*. 352(6-7), 690-694.
- 169. Sun, J., Zhang, J., Luo, Y., Lu, S., Ren, X., Chen, B., and Wang, X. (2006). Thermal stability and spectral properties of Er³⁺-doped gadolinium borosilicate glasses. *Optical Materials*. 28(4), 306-309.
- 170. Yang, Y., Yang, Z., Chen, B., Li, P., Li, X., and Guo, Q. (2009). Spectroscopic properties and thermal stability of Er³⁺-doped germanateborate glasses. *Journal of Alloys and Compounds*. 479(1), 883-887.
- 171. Luo, Y. R. (2012). Bond dissociation energies. Vol. 89. London: CRC Press.
- 172. Ahmadi, F., Hussin, R., and Ghoshal, S. K. (2016). Judd-Ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. *Journal of Non-Crystalline Solids*. 448, 43-51.
- Lim, K. S., Vijaya, N., Kesavulu, C. R., and Jayasankar, C. K. (2013). Structural and luminescence properties of Sm³⁺ ions in zinc fluorophosphate glasses. *Optical Materials*. 35(8), 1557-1563.
- 174. Boehm, L., Reisfeld, R., and Spector, N. (1979). Optical Transitions of Sm³⁺ in Oxide Glasses. *Journal of Solid State Chemistry*. 28(1), 75-78.
- 175. Jayasimhadri, M., Cho, E. J., Jang, K. W., Lee, H. S., and Kim, S. I. (2008). Spectroscopic properties and Judd-Ofelt analysis of Sm³⁺ doped leadgermanate-tellurite glasses. *Journal of Physics D: Applied Physics*. 41(17), 175101.
- Noguez, C. (2007). Surface plasmons on metal nanoparticles: the influence of shape and physical environment. *The Journal of Physical Chemistry C*. 111(10), 3806-3819.
- Sakida, S., Nanba, T., and Miura, Y. (2006). Refractive-index profiles and propagation losses of Er³⁺-doped tungsten tellurite glass waveguide by Ag+– Na+ ion-exchange. *Materials Letters*. 60(28), 3413-3415.
- Halimah, M. K., Daud, W. M., Sidek, H. A. A., Zaidan, A. W., and Zainal, A. S. (2010). Optical properties of ternary tellurite glasses. *Materials Science-Poland*. 28(1), 173-180.
- Kundu, R. S., Dhankhar, S., Punia, R., Sharma, S., and Kishore, N. (2013).
 ZnCl₂ modified physical and optical properties of barium tellurite glasses. *Transactions of the Indian Ceramic Society*. 72(3), 206-210.

- Mott, N. F., and Davis, E. A. (2012). *Electronic processes in Non-crystalline materials*. London: Oxford University Press.
- 181. El-Mallawany, R., Abdalla, M. D., and Ahmed, I. A. (2008). New tellurite glass: Optical properties. *Materials Chemistry and Physics*. 109(2), 291-296.
- 182. Tanko, Y. A., Ghoshal, S. K., and Sahar, M. R. (2016). Ligand field and Judd-Ofelt intensity parameters of samarium doped tellurite glass. *Journal of Molecular Structure*. 1117, 64-68.
- Giridhar, G., Sastry, S. S., and Rangacharyulu, M. (2011). Spectroscopic studies on Pb₃O₄-ZnO-P₂O₅ glasses doped with transition metal ions. *Physica B: Condensed Matter*. 406(21), 4027-4030.
- 184. Ravikumar, R. V. S. S. N., Komatsu, R., Ikeda, K., Chandrasekhar, A. V., Reddy, B. J., Reddy, Y. P., and Rao, P. S. (2003). EPR and optical studies on transition metal doped LiRbB₄O₇ glasses *Journal of Physics and Chemistry of Solids*. 64(2), 261-264.
- 185. Carmo, A. P., Bell, M. J. V., Anjos, V., de Almeida, R., da Silva, D. M., and Kassab, L. R. P. (2009). Thermo-optical properties of tellurite glasses doped with Eu³⁺ and Au nanoparticles. *Journal of Physics D: Applied Physics*. 42(15), 155404.
- 186. Pan, Z., Ueda, A., Mu, R., and Morgan, S. H. (2007). Upconversion luminescence in Er³⁺-doped germanate-oxyfluoride and tellurium-germanateoxyfluoride transparent glass-ceramics. *Journal of Luminescence*. 126(1), 251-256.