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ABSTRACT 

 
 
 
 

Statistical modeling of rainfall in space-time scales is essential in providing 
information on the behavior of the rainfall process at a particular region. One of the 
conventional ways of rainfall modeling is done through studies of the probabilistic 
structure of the rainfall. In the last decade, many statistical rainfall models were done 
regardless of the atmospheric information. A model which succeeded in 
incorporating atmospheric information will be useful in studies of climate variability 
or climate change. Therefore, this study applied the hidden Markov model (HMM) 
and non-homogeneous hidden Markov model (NHMM) to model daily rainfall of 40 
stations in Peninsular Malaysia over a period of 34 years during the Northeast 
monsoon and Southwest monsoon. Four different models for rainfall amounts 
namely single exponential distribution, mixture of two exponential distributions, 
single gamma distribution and mixture of two gamma distributions were examined 
for the non-zero rainfall amount. The relationship between the local rainfall process 
and the large scale atmospheric process were investigated through the behavior of the 
composite wind anomalies at 850hPa with omega vertical velocity at 500hPa on each 
hidden state from HMM.  The HMM was then extended to NHMM by including the 
time-varying covariates (atmospheric variables) into the model. So far, the most 
popular algorithm used for the parameter estimation of HMM was Baum-Welch 
algorithm, but it was only guaranteed to find a local maximum with a high 
dependency on initial parameters chosen. Hence, this study also proposed a 
parameter estimation, segmental K-means algorithm that sacrifices some of Baum-
Welch's generality for computational efficiency. The findings here showed that the 
segmental K-means algorithm is able to improve the conventional model with a 
reduced computational time. The performances of the HMM and NHMM are 
assessed through the comparison between the observed rainfall data with the 
simulated rainfall data. For the rainfall occurrences, the HMM is considered as a very 
well fit for the tropical regions because it can capture fairly well the rainfall data in 
Peninsular Malaysia. It is found that the rainfall process in Peninsular Malaysia is 
associated to the atmospheric composites: low rainfall probabilities are characterized 
by a high pressure system and high rainfall probabilities are accompanied by a low 
pressure system. The HMM is able to reproduce the wet/dry spells for most of the 
stations but overestimated on the short duration of the wet/dry spell (one or two days 
wet/dry spell). For the rainfall amount, the NHMM has exploited all the mechanisms 
related to the atmospheric information and rainfall data, and able to reproduce and 
predict the interannual variability during the Northeast monsoon. 
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ABSTRAK 

 
 
 
 

Permodelan statistik hujan dalam skala reruang dan masa adalah penting dalam 
menyediakan maklumat tentang tingkah laku proses hujan di kawasan tertentu. Salah 
satu cara konvensional pemodelan hujan adalah dilakukan melalui kajian struktur 
kebarangkalian hujan. Dalam dekad yang lalu, kebanyakan model hujan statistik 
telah dibina tanpa mengambil kira maklumat atmosfera. Model yang berjaya 
menggabungkan maklumat atmosfera adalah berguna dalam kajian kebolehubahan 
iklim atau perubahan iklim. Oleh itu, kajian ini menggunakan Model Markov 
Terpendam (HMM) dan Model Markov Terpendam Tak Homogen (NHMM) untuk 
memodelkan hujan harian bagi 40 stesen di Semenanjung Malaysia dalam tempoh 34 
tahun semasa Monsun Timur Laut dan Monsun Barat Daya. Empat model yang 
berlainan untuk amaun hujan iaitu taburan eksponen tunggal, taburan campuran dua 
eksponen, taburan gamma tunggal dan taburan campuran dua gamma telah dikaji 
untuk amaun hujan tak sifar. Hubungan antara proses penurunan hujan tempatan dan 
proses atmosfera berskala luas disiasat melalui kelakuan anomali angin komposit 
850hPa dengan halaju menegak omega 500hPa di setiap keadaan terpendam dari 
HMM. HMM kemudiannya diperluas kepada NHMM dengan memasukkan kovariat 
masa berubah-ubah (pembolehubah atmosfera) dalam model tersebut. Setakat ini, 
algoritma yang paling popular digunakan untuk anggaran parameter HMM adalah 
algoritma Baum-Welch, tetapi ia dijamin hanya untuk mencari maksimum tempatan 
dengan pergantungan yang tinggi kepada parameter awal yang dipilih. Oleh itu, 
kajian ini juga mencadangkan suatu anggaran parameter, algoritma bersegmen K-
means yang menghapuskan beberapa tatacara biasa Baum-Welch untuk kecekapan 
pengiraan. Dapatan kajian menunjukkan bahawa algoritma bersegmen K-means 
dapat meningkatkan kecekapan model konvensional dengan pengurangan masa 
pengiraan. Prestasi daripada HMM dan NHMM dinilai melalui perbandingan di 
antara data hujan cerapan dengan data hujan simulasi. Untuk kejadian hujan, model 
HMM dianggap sesuai untuk rantau tropika kerana ia dapat merakam data curah 
hujan dengan baik di Semenanjung Malaysia. Didapati proses penurunan hujan di 
Semenanjung Malaysia boleh dikaitkan dengan komposit atmosfera: kebarangkalian 
hujan yang rendah dicirikan oleh sistem tekanan tinggi dan kebarangkalian hujan 
yang tinggi disertai dengan sistem tekanan yang rendah. HMM dapat menghasilkan 
semula rentetan basah/kering untuk kebanyakan stesen tetapi terlebih anggaran pada 
rentetan basah/kering (satu atau dua hari rentetan basah/kering) yang singkat 
tempohnya. Bagi amaun hujan, NHMM telah menerokai semua mekanisme yang 
berkaitan dengan maklumat atmosfera dan data hujan, serta dapat menghasilkan 
semula dan meramal kebolehubahan antara tahunan semasa monsun timur laut. 
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The NHMM for: (i) seasonally-averaged rainfall 
amount; (ii) occurrence frequency; and (iii) rainfall 
intensity (averaged rainfall amount on wet days). The 
line depicts the observation data averaged over all 40 
stations. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1      Introduction 

 

 

The weather is the state of the atmosphere such as the wind speed and 

direction, air temperature and pressure, relative and specific humidity, rainfall 

occurrence, and rainfall amounts in a particular region over a short-term period. In 

view of this, climate describes the weather pattern of a particular region over a long-

term period and is also defined as the average weather pattern of a region. Malaysia 

is located in the equatorial zone, situated in the approximate northern latitude 

between 1°N and 6°45’N and the approximate eastern longitude of 99°36’E to 

104°24’E. The atmospheric temperature in Malaysia is uniformly high throughout 

the year. The climate of Malaysia has a seasonal rhythm because Malaysia 

experiences the Northeast monsoon from November until February and the 

Southwest monsoon from May until August. The Northeast monsoon brings about 

heavier rainfall, especially in the eastern region, whereas the Southwest monsoon 

contributes towards the dry period in Peninsular Malaysia.  

 

 

Rainfall has an important impact on human and physical environments 

because all living things cannot live without water. With the rapid growth of 

population and industrialization, the management of water resources has become an 

increasing concern in Malaysia. The analysis of rainfall behavior, particularly 

regarding rainfall amount and rainfall occurrence, is useful for managing water 

consumption. This thesis therefore investigates the characteristics of monsoon 
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rainfall associated with the atmospheric circulation in Peninsular Malaysia on the 

spatial and temporal scale.  

 

 

 

 

1.2 Background of the Study 

 

 

A stochastic rainfall model is always preferred compared to a deterministic 

model due to the complexity, randomness, and dynamic behavior of rainfall. 

Stochastic rainfall modeling on a space and time scale is essential in providing 

information on the probabilistic structure of the rainfall process in certain regions. It 

is crucial to predict the trend in rainfall for managing water resources and natural 

disaster planning preventions such as flood or drought. Furthermore, simulations 

from the stochastic rainfall model can be used as input to stream flow, crop growth, 

runoff, soil loss, and flooding models. Therefore, knowledge based on analysis of 

rainfall characteristics is essential in order to understand rainfall patterns for 

designing, planning, and managing various water resource systems. 

 

 

Stochastic models on rainfall are mostly developed in isolation, i.e. without 

reference to atmospheric information. Atmospheric information may be included as 

part of the rainfall model to produce simulations, which are consistent with the given 

atmospheric information. In addition, a model, which incorporates atmospheric 

information, would be useful in studies investigating the impact of climate change. 

Therefore, the stochastic rainfall model, also known as the "weather state model" or 

"downscaling model", has been developed for this purpose (Hay et al., 1991; 

Bardossy and Plate, 1991; Hughes et al., 1993). The weather state model can be used 

to generate realistic rainfall simulations using historical rainfall data and atmospheric 

data. Furthermore, the weather state model may also be used to study the impact of 

climate change and variability of rainfall using atmospheric simulations from a 

General Circulation Model (GCM). 

 

 

A weather state model, namely the Hidden Markov model (HMM), has been 

developed to condition the daily rainfall in regard to the available atmospheric 



3 

 

information at multiple sites. The Hidden Markov model is a doubly stochastic 

process in which the rainfall observation distribution depends on several unobserved 

discrete states (Rabiner and Juang, 1986). The Hidden Markov models have become 

popular tools for modeling dependent random variables in such diverse areas such as 

DNA recognition, speech processing, and rainfall modeling. For rainfall modeling, 

the hidden (unobserved) states of HMM can be used to interpret the various patterns 

of circulation anomalies (Robertson et al., 2004; Robertson et al., 2005; Greene et al., 

2008). The HMM can be extended to model non-stationary processes by 

incorporating time-varying atmospheric variables, which is known as the non-

Homogeneous Hidden Markov model (NHMM). This model exhibits unobserved 

weather states and serves as a link between the local rainfall process and large-scale 

atmospheric information. 

 

 

This thesis presents the modeling of daily rainfall during 2 monsoon seasons 

using the Hidden Markov model. The distinct hidden states of HMM are interpreted 

by relating the local rainfall process with atmospheric circulation. Therefore, the 

HMM can be extended to NHMM by including the atmospheric variable into the 

model for which the patterns of the atmospheric variable correspond to the hidden 

states. The variability of the Northeast and Southwest monsoon over Peninsular 

Malaysia is analyzed and this variability will then be related to atmospheric 

information using time scales from daily to multi-decadal. 

 

 

 

 

1.3 Statement of the Problem 

 

 

Malaysia receives a large amount of rain every year. Therefore, floods are the 

most significant natural hazard in Malaysia in terms of population affected, 

frequency, flood duration, area extent, and social-economic damage (Youssed et al., 

2011). According to Feng and Lu (2010), about 40% of total economic loss caused 

by natural disasters is due to flooding. Spatial and temporal rainfall modeling have 

important impacts on physical environments. The trend in future rainfall may be 

easier to predict when the rainfall characteristics are known.  However, a more recent 
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issue that has been of concern is the climate change and global warming impact on 

rainfall. Nevertheless, most studies so far have only concentrated on stochastic 

rainfall models, which fail to incorporate atmospheric information. The stochastic 

rainfall model that does not include atmospheric information will not be so useful in 

studies investigating the effect of climate change or global warming. Therefore, 

prediction of the variability of rainfall for future periods under different climate 

change scenarios is essential in order to provide necessary information for high-

quality climate-related studies. 

 

 

In order to assess the effect of climate change on the rainfall trend in 

Malaysia, it is necessary to use a stochastic rainfall model that can incorporate 

atmospheric information. This study will focus on rainfall modeling using a Hidden 

Markov model by associating synoptic atmospheric patterns to the local rainfall in 

Peninsular Malaysia. The incorporation of the time-varying atmospheric variable into 

the NHMM can be used to generate realistic rainfall simulations, for example: an 

extreme rainfall event. 

 

 

 

 

1.4 Objectives of the Study 

 

 

The objectives of the research are: 

 

 

1 To model rainfall occurrences and rainfall amounts on multi-site rainfall 

stations using a Hidden Markov Model (HMM). 

2 To compare the parameter estimation of HMM using K-means and EM 

algorithm for rainfall occurrences. 

3 To assess the performance of HMM on the atmospheric composite with 

rainfall probabilities in Peninsular Malaysia. 

4 To model rainfall amounts using a non-homogenous Hidden Markov model 

(NHMM). 

5 To assess the performance of NHMM on the interannual and interdecadal 

variability in Peninsular Malaysia. 
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1.5 Scope of the Study 

 

 

The scopes of this research consists of the following: 

 

 

1. Forty rainfall stations from Peninsular Malaysia are selected. The rainfall data 

is obtained from the Malaysian Meteorology Department (MMD). The 

rainfall record over 34 years (1975-2008) is thus compiled; 

 

 

2. Thirty-five atmospheric variables with different pressure levels are 

considered as potential candidates for the NHMM input. Thirty-five grid 

nodes that cover Peninsular Malaysia and the sea surrounding are reduced via 

singular value decomposition (SVD). The atmospheric data were obtained 

from the National Centers for Environment Prediction (NCEP) reanalysis 

data. 

 

 

3. Two seasonal monsoons, which are the Northeast monsoon from November 

until February and the Southwest monsoon from May to August, are 

considered in this study. 

 

 

4. The optimum number of hidden states for HMM and the number of 

atmospheric variables included in NHMM are determined via the Bayesian 

Information Criterion (BIC).  

 

 

5. The binomial distribution is used to model the rainfall occurrence at each 

station in HMM. Four probability distribution functions for non-zero rainfall 

amount in each station, namely: single exponential distribution, single gamma 

distribution, the mixture of two exponential distribution, and the mixture of 

two gamma distribution, were examined and selected based on the BIC. 
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1.6 Significance of the Study 

 

 

 Climate change is undoubtedly one of the most important global 

environmental issues today. The impact of climate change affects the rainfall pattern, 

for example, increases the severity of floods and causes longer drought, and heavier 

thunderstorms. However, little work has been done on rainfall that is associated with 

the large atmospheric circulations in Malaysia. Therefore, a model called the Hidden 

Markov model was proposed in this study.  

 

 

This thesis first fits the rainfall occurrence and rainfall amounts via HMM in 

Peninsular Malaysia and then identifies the physical definition of each state in the 

HMM with large-scale atmospheric behaviors and rainfall pattern. The state 

sequence of the HMM that categorizes each day into a state provides an exhaustive 

description of the rainfall process and is able to accurately estimate the future rainfall 

process. This model can provide a useful descriptive analysis of the rainfall in 

Malaysia.  

 

 

In general, the EM algorithm is used to estimate the parameters of HMM. 

Another parameter estimation algorithm called segmental K-means for the HMM is 

also used in this study. The segmental K-means may provide more flexibility for the 

algorithm in the rainfall-modeling framework. 

 

 

The HMM can be extended to NHMM by including atmospheric variables 

into the model. The goals of this work are to analyze the subseasonal to multidecadal 

variability of monsoon rainfall and produce simulations or predictions, which are 

consistent with the included atmospheric information. The state sequence of the 

NHMM can be used to classify the ENSO into a few states and the relationship 

between ENSO and monsoon rainfall can be investigated. The findings from NHMM 

are useful for the assessment of the impact of climate change and tend to result in a 

good model for descriptive and predictive modeling of the rainfall in Malaysia. 
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1.7 Structure of the Thesis 

 

 

This thesis is organized into six chapters. The first chapter begins with the 

introduction to the research. This chapter also presents the background, the problem 

statement, the objectives, and the scope of research. 

 

 

Chapter 2 provides an overview of the literature on rainfall modeling based 

on rainfall occurrence and rainfall amounts.  

 

 

Chapter 3 outlines the description of rainfall data. Parameter estimation via 

EM algorithm and K-means algorithm; algorithm for find the optimum states paths; 

steps to generate the simulations and predictions; and methods for model assessments, 

are also discussed in detail. 

 

 

Chapter 4 presents the HMM results in regard to rainfall occurrence. The 

results estimated from the K-means and EM algorithm are then compared. The 

relationship between the rainfall process and atmospheric circulations are interpreted 

in detail. 

 

 

Chapter 5 shows the results of the HMM and NHMM in regard to rainfall 

amounts. The atmospheric variables are described and the atmospheric variable to be 

included into NHMM are selected. The comparison between the simulations and 

predictions from the HMM and NHMM is also discussed. 

 

 

Finally, Chapter 6 concludes the study. This chapter summarizes the study 

and conclusion based on the analysis and results of this study. This chapter also 

suggests some recommendations for future study. 
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