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ABSTRACT 

The High-Pressure High-Temperature (HPHT) sintering is an established 

process for reclaiming Waste Tire Rubber (WTR) into Magnetorheological 

Elastomers (MREs). Even though the WTR is generally recycled to other products, 

the usage of WTR as the main matrix of MRE is a new and novel concept. Therefore, 

this research focuses on studying the physicochemical and viscoelastic properties of 

the WTR based MRE produced through HPHT process. The WTR, carbonyl iron 

particles, and additives were mixed and compacted by applying simultaneous 

temperature and pressure at 200
o
C and 25 MPa, respectively. Swelling test, 

morphological examination, infrared spectroscopy, magnetization, and thermal 

analysis were among the physicochemical properties studied. Meanwhile, the 

magneto-induced viscoelastic properties were assessed through shear mode test in 

both steady and dynamic conditions. The highest degree of reclamation based on 

swelling test, achieved up to 54 % confirming that crosslinking occurred during 

reclamation process. The dispersion of the magnetic particles were examined through 

Scanning Electron Microscopy (SEM) and the morphology of the fractured matrix 

indicated that the WTR blended well without any grain boundaries of uncured WTR. 

The highest magnetization saturation was achieved at 76.079 emu/g. While, the 

infrared spectroscopy identified rubber substances including synthetic and natural 

rubbers based on the band characteristics. Additionally, the thermogram patterns and 

decomposition rates of the samples also approved the matrix composition. The glass 

transition temperatures were also measured at -60.6 ±0.5
o
C showing conformity with 

the reclaimed pure WTR. The WTR based MRE achieved maximum static stress 

ranging from 9 to 13 kPa (at 700 mT) with Linear Viscoelastic (LVE) region above 

3% strain amplitude. The MRE exhibited MR effect up to 24 % with the range of 

storage modulus between 0.6 to 0.74 MPa (at 700 mT). Based on the examination 

results, the WTR based MRE demonstrated acceptable physicochemical 

characteristics and presented outstanding viscoelastic properties for future potential 

applications of MREs.  
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ABSTRAK 

Proses pensinteran Tekanan-Tinggi Suhu-Tinggi (HPHT) merupakan proses 

terkenal untuk tebus guna Sisa Tayar Getah (WTR) menjadi Elastomer Reologi 

Magnet (MRE). Walaupun WTR secara umumnya dikitar semula kepada pelbagai 

produk lain, penggunaan WTR sebagai matriks utama di dalam MRE adalah satu 

idea baru dan novel. Oleh itu, penyelidikan ini memberi tumpuan kepada sifat-sifat 

kimiafizik dan likat anjal MRE berasaskan WTR yang dihasilkan melalui proses 

HPHT. Campuran WTR, serbuk besi karbonil, dan bahan tambah telah dicampur dan 

dipadatkan pada suhu dan tekanan serentak pada 200
o
C dan 25 MPa. Ujian 

pembengkakan, pemerhatian morfologi, spektroskopi inframerah, pemagnetan, dan 

analisis haba adalah antara sifat kimiafizik yang dikaji. Sifat likat anjal magnetik 

pula dinilai melalui ujian mod ricihan di dalam keadaan statik dan dinamik. Ujian 

pembengkakan menunjukkan tahap tertinggi tebus guna mencapai 54% yang 

mengesahkan pautan silang berlaku semasa proses tebus guna. Serakan partikel 

magnet diperiksa menggunakan Mikroskop Imbasan Elektron dan permukaan patah 

menunjukkan WTR bercampur baik tanpa wujudnya sempadan antara dua domain 

dari WTR yang belum ditebusguna. Ketepuan pemagnetan tertinggi telah dicapai 

pada 76.069 emu/g. Manakala, spektroskopi inframerah telah mengenal pasti getah 

sintetik dan asli berdasarkan penemuan ciri jalur. Disamping itu, pola termogram dan 

kadar penguraian sampel juga mengesahkan komposisi matriks. Suhu peralihan kaca 

juga telah diperolehi pada -60.6 ±0.5 
o
C yang mematuhi tebus guna WTR tulen. 

MRE berasaskan WTR mencapai tegasan statik maksimum pada julat dari 9 kepada 

13 kPa (pada 700 mT) dengan kawasan Likat Anjal Lelurus (LVE) melebihi 

ketegangan amplitud 3%. MRE ini mempamerkan kesan MR setinggi 24% dengan 

julat modulus simpanan di antara 0.6 kepada 0.74 MPa (pada 700 mT). Berdasarkan 

keputusan kajian, MRE berasaskan WTR menghasilkan ciri-ciri kimiafizik dan likat 

anjal yang amat baik untuk aplikasi MRE yang berpotensi pada masa hadapan. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Magnetorheological (MR) materials have been attracting the attention of 

researchers for many years. The penetration of this smart material into some 

applications makes the functionality of the devices becomes more adaptable for user 

needs [1]. Adaptability to the desired parameter is mainly due to their capability to 

change properties upon the penetration of magnetic fields inside the materials. MR 

materials are constructed of at least two different states of components, typically 

magnetizable filler and non-magnetic carrier. Additional materials are usually 

incorporated for specific purposes. The state of MR materials depends on the matrix 

forms such as fluids, viscoplastic, or viscoelastic. Therefore, the name for each MR 

material is also matched with the matrix state such as MR fluids (MRFs) for fluid 

based, MR gels/grease/plastomers for viscoplastic, as well as MR elastomers for 

viscoelastic matrices.  

Viscoelastic matrix based MR materials have been studied intensively in last 

twenty years. Researchers have developed specific terminologies for various 

features. The term magnetoactive elastomers have been used by several research 

groups [2–6]. Other researchers have coined the terms ferrogels [7–9], magneto-

active polymers (MAPs) [10], elastomer-ferromagnetic composites [11], 

magnetorheological visco-elastomers (MRVEs) [12], soft magnetic elastomers 

(SMEs) [13–15], ferromagnetic elastomer composites [11], and magnet filler-
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polymer composites or Magpols [16]. Most researchers use the term 

magnetorheological elastomer (MRE) referred to their functional behavior that is 

rheological properties. Therefore, the term “MRE” will be used as a reference name 

in this thesis. 

MRE is a type of magnetically-actuated smart material in which their 

rheological properties such as storage and loss moduli, loss tangent (loss 

factor/damping factor) as well as physical properties such as thermal conductivity, 

electrical capacitance, sound absorption properties, magnetostriction, and resistivity, 

can be altered in a fraction of milliseconds by applying magnetic fields [17]. Both 

rheological and physical responses of the MRE are referred to in the foundation of 

devices design and development. For instance, the tunable rheological properties are 

relevant for vibration absorber since the field dependent modulus affects both 

stiffness and damping characteristics. Meanwhile, the physical properties are 

applicable for sensory development according to the change of resistance, 

capacitance and thermal reluctance. Implementations of MRE in vibration isolation, 

sensors, as well as actuators have been patented and disseminated in several papers. 

Typical applications in vibration absorber include variable stiffness bushing [18,19]; 

propeller shaft [20]; variable spring rate [21] and prosthetic leg [22]. MRE 

applications for sensory use are tire pressure control [23] and MEMS [24]. 

Meanwhile, solicitation in the active actuator was releasable attachment [25] and 

active morphing composites [16,26]. 

A growing amount of research on MREs has addressed the enhancement of 

rheological properties such as the magneto-induced stiffness and damping. The MRE 

property enhancements could be manifested in the following ways: a) controlling the 

particle types, size, morphology, and composition; b) modifying crosslink density 

through additives and processing conditions, and c) manipulating the matrix either by 

using a single type of matrix or a hybrid matrix. The mentioned strategies have been 

highlighted from the previous studies based on the fact that the MRE properties are 

mainly influenced by the matrices, magnetizable particles, and some other 

parameters. 
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Magnetizable particles as fillers play an important role, since this part directly 

interacts with external magnetic fields. Therefore, the magnetizable particles 

employed in MRE should follow some criteria such as high magnetization saturation 

and low remnant magnetization. The structure of magnetizable particles inside the 

MRE influences performance. According to the type of particle dispersion, MREs 

can be grouped into isotropic type and anisotropic type. The isotropic MREs have 

random distribution inside the matrix, and it can be provided by mixing the matrix 

and magnetizable particles and then curing the blended materials without 

magnetization treatment. Meanwhile, the anisotropic MREs require treatment during 

crosslinking of the materials so that the particles cluster can be formed and locked at 

the fixed position. 

Among the various type of ferrous particles, the carbonyl iron (CI) particles 

are the most interesting of the soft magnetic materials, compared to iron sand [27,28] 

and magnetite [29]. A higher level of CI contents, for instance, 90 wt% [30], was 

proposed to increase the MR effect; however, this effort was limited to the problem 

that the higher particle content makes the more brittle MRE. Another approach to 

achieve the better MRE properties is modifying the particle surfaces such as particles 

surface grafting or coating [27,31,32]. Insertion of hard magnetic materials 

(BaFe12O19, SrFe2O19, Nd2Fe14B) [33,34] and bimodal particles [35,36] are also 

considered as alternative ways for better MRE response to external magnetic fields. 

Moreover, to attain a reasonable MR effect with a lower content of magnetizable 

particle, 20 wt% ferromagnetic FeCo3 nanoparticles [37] was introduced. Locking 

magnetic particles within the MRE matrix is also believed to boost the MR effect up 

to about 700% relative MR effect [38]. Playing with particle contents and clustering 

particles are the most influence factor for particles optimization in MREs. However, 

the optimum particle content inside the MREs has been reported about 30 vol% [39]. 

Besides, the clustering particles would be effective only for a liquid-based matrix 

(such as silicone rubber). 

The other key role in enhancing the MRE performances is improving 

crosslink quality through additive manipulation. The additives can enhance magneto-

induced not only mechanical but also electrical properties. For instance, introducing 
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graphite [40,41] and other conductive metals such as nickel [42] improves electrical 

properties. Addition of silicon carbide [43] and carbon black [44,45] have proven the 

chemical property augmentation of the matrix, thus improving the mechanical 

performances of the MRE. Modifying sulfur content as a curing agent [46] and 

plasticizer [47] could improve the crosslink density. Hence, the MR effect was 

getting better at a particular content. The obtained improvements, especially MR 

effect and thermal stability, were reasonable but less significant. In industrial 

applications, such efforts have not made substantive progress until now as a result of 

comprehensive bad performance [48].  

Apart from the magnetic particles and additives, the researchers have also 

widely investigated different non-magnetic matrices for MREs such as silicone, 

rubber (natural and synthetic), and other synthetic elastomers. Based on the material 

mapping of MREs, silicone room temperature vulcanization (RTV)-based MREs 

have accounted for more than 50% of the studies and development due to the 

flexibility and ease of both isotropic and anisotropic fabrication. Likewise, the use of 

thermoplastic and thermoset elastomers has also been great interest due to easier 

early stage process. The required modulus of the MRE at off-state condition may be 

realized by changing the raw material ingredients. However, the fabrication cost of 

thermoplastic/thermoset based MREs is relatively higher than other matrix types 

[49]. Meanwhile, unsaturated elastomer (natural and synthetic rubbers) based MREs 

have generated less interest because of the harder mixing of the raw materials and the 

pre-structuring (magnetization) process compared to the mentioned matrix 

previously. Several researchers have proposed single type unsaturated elastomers for 

MREs, such as natural rubber [45,50–53], synthetic rubber [54–56], as well as hybrid 

rubbers [57–59] according to the desired properties such as good mechanical and 

aging properties and sources availability. Various types of the elastomeric matrix can 

be selected for MRE fabrication compared to the magnetizable particles. Therefore, 

the opportunity to develop a new class MRE from the matrix point of view is always 

widely opened. 
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1.2 Motivation of Study 

In last two decades, researchers have developed the MRE in a wide variety of 

matrices due to the influence of matrix types on the viscoelastic properties. Note that 

the expansion of MRE fabrication based on the type of matrix remains a great 

opportunity due to the tremendous types of elastomeric matrix such as silicone 

rubber, natural rubber, synthetic rubber, as well as other thermoplastic polymers. 

Nevertheless, the development of MRE materials is currently less considering 

environmental aspect. This smart rubber development would be another potential 

contributor for increasing number of waste rubber. Since, the establishment of rubber 

based devices always concerns on the environmental issues [60], the research in 

MREs should consider another point of view to meet the green technology 

development issues. Along with the advanced technology on waste rubber 

reclamation, the use of waste rubber in MREs is a respectful reason for future 

investigation. It is due to the fact that the number of waste rubber has been growing 

in a big number nowadays [60]. 

The amount of waste rubber growth cannot be exactly determined. However, 

it can be approached from the number of tire rubber production, since the major 

contributor of waste rubber sources from the waste tire rubber [61–63]. The demand 

for tires increases approximately 4.2% annually through 2015 [64]. For instance, in 

Indonesia, the amount of waste tire rubber (WTR) is seriously increasing due to the 

fast growing vehicle sales year by year as can be seen in Figure 1.1. The abraded 

rubber from the tire is less than approximately 1% [61], therefore, the number of 

discarded tire is nearly equal to the produced tires. So far, WTR has been recycled 

for tire retreading, recovering functional elements such as zinc, activated carbon, 

carbon nanotubes, and heavy metals [65], functional composites (particle board, 

asphalt and concrete mixtures), as well as energy recovery through clinker burning 

[66] or pyrolysis for liquefied fuel [67]. However, these strategies have other 

negative effects, such as a higher rate of road accidents caused by retreaded tires [68] 

or community health and environmental degradation (air pollution) triggered by the 

release of toxic gasses such as CO, SO2, and NO2 as well as mono- and polyaromatic 
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hydrocarbons (PAH) [69,70]. Besides, waste rubber is usually utilized as a secondary 

material that does not enhance the functional value of the recycled articles. 

 

Figure 1.1 Annual vehicle sales in Indonesia (2000-2013). 

The idea of using WTR as MRE matrix would be a strategic way to enhance 

the functional value of the recycled product. Due to the different state of polymer, 

the common manufacturing method of MREs cannot handle the curing of WTR. 

According to the literature in [17], fabrication for virgin rubber based MREs is 

normally conducted in the room to moderate curing temperature. For saturated 

elastomer such as silicones and polyurethanes in which the uncured state is in 

viscous form, the curing process takes the temperature process below 100
o
C and 

without applying a particular pressure. Meanwhile, the unsaturated elastomers such 

as natural and synthetic rubbers, the vulcanization mechanism took place under 

applying curing temperature and pressure, whereas, the curing temperature and time 

depends on the type of rubber and amount of additives.  

The latest finding related to the vulcanizing issue was about self-crosslinking 

between two different compounds. Wang et al. [48] fabricated a new class of MREs 

by blending polychloroprene rubber with epoxidised natural rubber without curing 

agents, so-called self-crosslinking MRE. This work indeed provided a breakthrough 
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in the preparation of MRE since there was no additive involved in the vulcanization 

process. The curing process of the MRE also conducted under the equal routine. 

ENR bears epoxy groups, which have high reactivity, while polychloroprene rubber 

(CR) also has reactive chlorine groups. They can crosslink together at high 

temperature by themselves without a crosslinking agent. Additionally, CR/ENR self-

crosslinking blends are made of two constituents, which are beneficial to the 

molecular design of new materials. Therefore, the vulcanization mechanism of virgin 

rubber based MREs is not a serious issue as long as the curing process follows the 

common procedures.  

Differing from virgin rubber-based MREs, the incorporation of WTR as the 

main MRE matrix requires specific curing treatment according to the built three-

dimension chemical network beforehand. Reclamation of WTR is usually performed 

by blending WTR with virgin rubber or by revulcanizing the dead rubber by treating 

it in physical and chemical ways [71]. For the case of rubber reclamation without 

incorporation of virgin rubber, the most appropriate methods were developed by 

Morin et al. [72] and Tripathy et al. [73]. This group proposed reclamation method to 

reclaim tire rubber based on supporting research by Tobolsky et al. [74–77]. 

Departing from fundamental theory of rubber scission and reformation, Morin et al. 

[72] discovered that HPHT sintering successfully reclaims WTR without the 

incorporation of virgin rubber. In this process, the reclaimed rubber yields about 35 

to 40% recovery of the original rubber. The mechanical properties of that process 

were improved by Tripathy et al. [73] by incorporating phthalimide, raising the 

recovery yield to about 75% of the original rubber. Based on the successful of High-

Pressure High-Temperature (HPHT) sintering, the idea of utilizing WTR as a 

primary matrix of MRE seems promising for further development.  

Based on the aforementioned facts, fabrication of MRE based on WTR would 

be interesting from many aspects. Firstly, waste rubber is usually difficult to be 

vulcanized without presentation of virgin rubber. By taking advantage of current 

rubber reclaiming technology, waste rubber could be converted into MRE. Secondly, 

it is convinced that the utilization of WTR in MRE is a useful idea for waste tire 

management as well as another way to discover environmental friendly smart 
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materials. Furthermore, it is predicted that this breakthrough will enhance the 

economic value of the recycled product. Since nowadays, eco-friendly rubber 

products are encouraged to minimize the waste rubber problem as well as 

economically reduce the production cost [60,78]. Therefore, comprehensive 

assessment on the MRE based on WTR as the main matrix would be an interesting 

step in realizing this pioneer notion. 

1.3 Research Objectives 

The aim of this study is to discover a new class MRE by introducing WTR as 

the main matrix. This research embarks on the following intentions, accordingly: 

(a) To fabricate the MRE based on WTR as the main matrix through rubber 

reclamation process namely High-Pressure High-Temperature (HPHT) 

sintering using readily conventional equipment. 

(b) To characterize the physicochemical properties of the MRE, including 

vulcanization achievement, morphological, magnetic, spectroscopy, and 

thermal properties.  

(c) To evaluate the stress – strain responses of the MRE to the magnetic fields 

under steady state loadings. 

(d) To analyze the rheological properties of MRE under dynamic shear loading in 

absence and presence of magnetic fields, various strain amplitudes, and 

excitation frequencies. 

1.4 Research Scope 

The scope of research is specified on the experimental investigation of WTR 

based MRE fabrication as well as a fundamental characterization to confirm the 

feasibility of using WTR as the main matrix without virgin elastomers. The scope 

includes: 
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(a) The ingredients of the WTR based MRE especially the amount of additives 

were determined based on the common process of waste rubber reclamation 

[61]. Therefore, the optimum composition of raw materials is not the main 

focus of this study. 

(b) The parameters of fabrication those are temperature and compression force 

followed the optimum decision from previous literature [72,73]. 

(c) The physicochemical properties of the MRE including swelling test through 

immersion technique, morphological observation within the specimen, 

infrared spectroscopy, and thermal analysis were conducted in the absence of 

magnetic fields. 

(d) The viscoelastic properties of the MRE are analyzed only in shear mode and 

under ambient temperature. 

(e) The rheological experiment in shear mode is studied under steady state and 

oscillatory or harmonic loadings. The stress-strain relationship obtained from 

the steady state test is considered as static properties of the MRE. Meanwhile, 

the storage modulus, loss modulus, and loss factor have been studied under 

several conditions: ramp magnetic fields, ramp frequency, and ramp strain. 

The dynamic/oscillatory test excluded the reverse treatment usually 

conducted for hysteresis properties of MREs [79]. 

1.5 Dissertation Outlines 

This thesis consists of six chapters. Each chapter provides the highlights of 

related information and ends with a summary of achievement and findings. The 

outline of the chapters is accordingly: 

Chapter two : Chapter two is a literature review related to previous research 

in last two decades on to the development of MREs. The 

literature searches cover MRE materials, preparations, 

characteristics, and applications. The materials used to date are 

mapped and marked based on the level of interest. Several 

fabrication methods are highlighted. Potential applications that 
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have been patented or published scientifically are summarized 

into three classifications: vibration absorber or tunable 

vibration absorber, sensory system, and actuator system. 

Chapter three : Chapter three contains the experimental section. In this 

chapter, a research scenario is presented to give a brief 

explanation about step by step activities during project 

completion to achieve the objectives. This chapter also 

describes the materials and detail fabrication through HPHT 

sintering. The experimental setup involved in the MRE 

characterization including physicochemical and rheological 

examinations are also clearly explained, including details of 

the facilities. 

Chapter four : Chapter four describes the physicochemical characterization 

and discussion. It covers swelling analysis, morphological 

observation, infrared spectroscopy, magnetic properties, and 

thermal analysis covering thermogravimetric analysis, 

differential scanning calorimetry, and thermomechanical 

analysis. Discussion encompasses the compatibility of 

reclamation between WTR and magnetizable particle based on 

the physical and chemical characteristics. 

Chapter five : Chapter five discusses the rheological examination results 

including discussion on the viscoelastic properties of the WTR 

based MRE in shear working mode. The discussion features 

both the quasi-steady and quasi-dynamic loadings. The stress-

strain relationship of the MRE under static loading is 

explained. The viscoelastic properties of the MRE under off 

and on states from the shear dynamic test are discussed 

specifically. 
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