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ABSTRACT

The fifth-generation (5G) communication systems have many anticipated
functionalities and requirements such as high data rate, massive connectivity, wide
coverage area, low latency and enhanced secrecy performance. In order to meet these
criteria, communication schemes that combine 5G key enabling technologies need to be
investigated. In this thesis, a novel communication system that merges non-orthogonal
multiple access (NOMA), energy harvesting, beamforming, and full-duplex (FD)
techniques in order to enhance both capacity and secrecy of 5G system is introduced.
In the capacity improving scheme, NOMA is first combined with beamforming to
serve more than one user in each beamforming vector. Next, simultaneous wireless
information and power transfer (SWIPT) technique is exploited to encourage the strong
user (user with better channel condition) to relay the information messages of the
weak user (user with poor channel condition) in FD manner. The total sum rate
maximisation problem is formulated and solved bymeans of convex-concave procedure.
The system performance is also analysed by deriving the outage probability of both
users. Additionally, the model is extended to a more general case wherein the users
are moving, and the outage probability of this dynamic topology is provided by means
of the stochastic geometry framework. Novel secure schemes are also introduced to
safeguard legitimate users’ information from internal and external eavesdroppers. In
the internal eavesdropper’s case, artificial signal concept is adopted to protect NOMA’s
weak user’s information from being intercepted by the strong user. The secrecy outage
probability of theweak user is derived and validated. In addition, game theory discipline
is exploited to provide an efficient eavesdropping avoidance algorithm. Null-steering
beamforming is adopted in the external eavesdropper’s case in two different schemes
namely self and nonself-cooperative jamming. In self-cooperative strategy, the base
station applies the null-steering jamming to impair the eavesdropper channel, while
sending the information-bearing signals to the intended legitimate users. Whereas in
the nonself-cooperative jamming scheme, the base station provides the helpers with
the required information and power by means of SWIPT technique in the first phase.
The helpers deploy null-steering beamforming to jam the eavesdropper during the
information exchange between the base station and the intended users in the second
phase. The secrecy outage probability of the legitimate users is derived in both jamming
schemes. Game theory is also introduced to the nonself-cooperative jamming scheme
for further improvements on the secrecy outage behaviour and the economic revenue
of the system. The proposed capacity enhancing scheme demonstrates about 200%
higher sum rate when compared with the non-cooperative and half-duplex cooperative
NOMA systems. In addition, the novel secure scheme in the internal eavesdropper case
is proven to enhance the information security of the weak user without compromising
the functionalities of the strong user or NOMA superiority over orthogonal multiple
access systems. Null-steering based jamming system also illustrates improved secrecy
performance in the external eavesdropper case when compared to the conventional
jamming schemes. Numerical simulations are carried out in order to validate the derived
closed-form expressions and to illustrate the performance enhancement achieved by
the proposed schemes where the rate is increased by 200% and the secrecy outage
probability is decreased by 33% when compared to the baseline systems.
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ABSTRAK

Sistem komunikasi generasi kelima (5G) mempunyai banyak jangkaan fungsi
dan keperluan seperti kadar data yang tinggi, sambungan besar-besaran, kawasan
liputan yang luas, kependaman rendah dan prestasi kerahsiaan yang dipertingkatkan.
Untuk mencapai kriteria ini, skim-skim komunikasi yang menggabungkan teknologi
pemboleh utama 5G perlu dikaji. Dalam tesis ini, satu sistem komunikasi novel yang
menyatukan capaian berbilang tak ortogonal (NOMA), penuaian tenaga, pembentuk
alur, dan dupleks penuh (FD) untuk meningkatkan kedua-dua kapasiti dan kerahsiaan
sistem 5G diperkenalkan. Dalam skim peningkatan kapasiti, NOMA digabungkan
terlebih dahulu dengan pembentuk alur untuk melayan lebih daripada satu pengguna
dalam setiap vektor pembentuk alur. Kemudian, teknik maklumat wayarles dan
pemindahan kuasa secara serentak (SWIPT) telah dieksploitasi untuk menggalakkan
pengguna kuat (pengguna dengan keadaan saluran lebih baik) untuk menyampaikan
mesej maklumat pengguna lemah (pengguna dengan keadaan saluran yang lebih
lemah) secara FD. Masalah pemaksimuman kadar jumlah keseluruhan dirumus dan
diselesaikan melalui prosedur cembung-cekung. Prestasi sistem juga dianalisis
dengan menerbitkan kebarangkalian gangguan kedua-dua pengguna. Selain itu,
model ini dilanjutkan kepada kes yang lebih umum di mana pengguna-pengguna
sedang bergerak, dan kebarangkalian gangguan topologi dinamik ini telah disediakan
melalui kerangka geometri stokastik. Di samping itu, skim-skim keselamatan novel
diperkenalkan untuk melindungi maklumat pengguna yang sah dari pemasang telinga
dalaman dan luaran. Dalam kes pemasang telinga dalaman, konsep isyarat buatan
diamalkan untukmelindungimaklumat penggunaNOMAyang lemah dari dipintas oleh
pengguna kuat. Kebarangkalian gangguan kerahsiaan pengguna lemah diterbitkan dan
disahkan. Di samping itu, disiplin teori permainan dieksploitasi untuk menyediakan
algoritma mengelak pemasangan telinga yang berkesan. Pembentuk alur stereng-
nol digunakan dalam kes pemasang telinga luaran dalam dua skim berbeza yang
dinamakan penyesakan koperatif kendiri dan tak kendiri. Dalam strategi koperatif
kendiri, stesen pangkalan menggunakan penyesakan stereng-nol untuk menjejaskan
saluran pemasang telinga, sambil menghantar isyarat mengandungi maklumat kepada
pengguna sah yang dimaksudkan. Manakala dalam skim penyesakan koperatif tak
kendiri, stesen pangkalan menyediakan pembantu dengan maklumat dan kuasa yang
diperlukan melalui teknik SWIPT dalam fasa pertama. Pembantu ini menggunakan
pembentuk alur stereng-nol untuk menyesak pemasang telinga semasa pertukaran
maklumat di antara stesen pangkalan dan pengguna yang dimaksudkan dalam fasa
kedua. Kebarangkalian gangguan kerahsiaan pengguna yang sah diterbitkan dalam
kedua-dua skim penyesakan. Teori permainan juga diperkenalkan kepada skim
penyesakan koperatif tak kendiri untuk penambahbaikan lanjut prestasi dalam tingkah
laku gangguan kerahsiaan dan pendapatan ekonomi sistem. Skim peningkatan kapasiti
yang dicadangkan menunjukkan kadar jumlah sekitar 200% lebih tinggi berbanding
dengan sistem NOMA tak koperatif dan separuh dupleks. Di samping itu, skim
keselamatan novel dalam kes pemasangan telinga dalaman terbukti meningkatkan
keselamatan maklumat pengguna yang lemah tanpa menjejaskan fungsi pengguna yang
kuat atau keunggulan NOMA daripada sistem capaian berbilang ortogonal. Sistem
penyesakan berasaskan stereng-nol juga menunjukkan prestasi kerahsiaan yang lebih
baik dalam kes pemasang telinga luaran jika dibandingkan dengan skim penyesakan
konvensional. Simulasi berangka dilakukan untuk mengesahkan ungkapan tertutup
yang diterbitkan dan untuk menunjukkan peningkatan prestasi yang dicapai oleh skim
yang dicadangkan di mana kadarnya meningkat sebanyak 200% dan kebarangkalian
gangguan kerahsiaan menurun sebanyak 33% daripada sistem dasar.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The fifth-generation (5G) communication systems will not be an incremental

version of the previous generations, as in addition to the ultra-high data rate (1Gbps (100

times the user-experienced data rate in 4G)), ultra-large number of connected devices,

ultra-low latency and ultra-wide radio coverage, 5G has many anticipated new services

and functionalities such as internet-of-things (IoT) and cloud-based applications [1].

These envisioned services pose challenging requirements like massive connectivity,

spectral and power efficiency (the Joules per bit will need to fall by at least 100 times)

and low latency (1 millisecond end-to-end round-trip delay). In order to meet up

with these requirements, a variety of novel technologies are involved such as new

multiple access techniques, novel network architectures, new spectrum and power

utilization methods, multi-antenna techniques and full-duplexing. Moreover, the future

communication systems should combine these different techniques to introduce further

enhancement and to boost the system performance [2].

In order to meet the increased number of connected devices, high data rate and

low-latency requirements, novel multiple access schemes are needed to be adopted.

Being an answer to the future 5G communication system’s essentials, non-orthogonal

multiple access (NOMA) has been recognised as the potential multiple-access scheme

for the future communication systems, for its appealing features of spectral efficiency,

low latency and user fairness [3]. Unlike previous multiple access schemes, NOMA

differentiates users according to their channel condition to transmit the information

message at the same time, frequency and code but with different levels of power. User

with better channel condition (strong user) is allocated with less power than that of

the user with poor channel gain (weak user). Downlink NOMA system deployment

involves two main techniques. Firstly, superposition coding (SC) at the base station

1



side to build the information message of the paired NOMA users. Secondly, successive

interference cancellation (SIC) at the strong users’ terminals. Where based on side-

information provided by the base station, NOMA strong user decodes the information

message of the week user, subtracts it from the superimposed message and decodes his

own [2]. NOMA weak user decodes his information message directly by considering

the strong user signal as interference since he is allocated with higher power level

[4]. The knowledge of weaker users’ information messages feature can be exploited by

encouraging strong users to relay weaker users’ messages to enhance the reliability of

the system, in what is referred to as cooperative NOMA scheme [5]. On the other hand,

from an information security perspective, this feature highly threatens the system data

secrecy if the strong user is a malicious node.

To meet the ultra-wide radio coverage requirement, future 5G communication

systems consider deploying relays as an efficient technique for capacity enhancement,

improved reliability and coverage extension [6]. To avoid interference, the conventional

half-duplex (HD) relays operate either in different time slots or separate frequency

bands. As a result, HD scheme suffers from 50 percent loss in resource efficiency

[7]. Full-duplex (FD) relaying scheme has been proposed to overcome the spectral

inefficiency of HD system. In favour of the ability of transmitting and receiving

signals simultaneously at the same frequency/time, FD can double the date rate of the

system for a given bandwidth/time slot. However, the real implementation of FD has

been considered as impractical due to the self-interference (SI) signal resulting from

the signal leakage from the terminal’s output to the input, which can be billions of

times greater than the desired receive signal [8]. Recent advances in signal processing

allow SI suppressing to within tolerable limits through a combination of passive and

active cancellation in both analogue, and digital domains [9]. Passive cancellation

involves antenna-based isolation techniques that depend on the separation distance

between antennas, orientation and polarisation [10]. Active cancellation approaches

are carried out via digital processing techniques at the baseband with the aid of accurate

knowledge of the channel’s status after passive cancellation processes [11]. Recently,

a new superimposed signalling-based scheme is proposed to overcome the SI burden

where no channel condition estimation is required [12].

2



Inter-user cooperation and information relaying is bounded by the energy

limitation and finite battery-powered devices, as users are selfish and prefer to maintain

their power for the own functionalities. Energy harvesting (EH) technique has gained

lately a lot of attention in both academia and industry, as it provides a promising solution

for prolonging the lifetime of the future communication networks [13, 14]. Many types

of EH schemes according to the energy source have been considered, such as solar,

piezoelectric, wind, hydroelectric, and radio frequency (RF) signals [15]. The stability

and the availability of wireless signals (TV broadcasting, mobile base stations), and

the dependence of natural energy on location, climate and time, nominate RF-EH (the

ability of transforming the wireless RF signals into DC voltage to charge the device

battery) as the optimal EH scheme. Yet, this emerging technology requires a shift

in the system architecture and its power-information resource allocation strategies to

meet its new demands [16]. Unlike information decoding circuits, the sensitivity of

the EH process is quite low (−10dBm − 30dBm) [17]. The need for higher signal

energy levels makes the EH process highly sensitive to signal decay due to propagation

distance, reflection, scattering, and fading (which is high in the case in omnidirectional

transmission by single antenna) motivates the use of multi-antenna techniques like

beamforming in EH enabled communication networks, for its appealing feature of

increasing the wireless power and information transfer efficiency [18].

On the other hand, wireless communications are vulnerable to security breaches

which is more common in the future 5G systems due to the ultra-number of connected

devices and wider radio coverage area [19]. This pivotal issue necessitates taking

measurements to guarantee data confidentiality, such as orthogonal code division

technique, frequency hopping, and data encryption. Yet, fully secure communications

can be only achieved by exploiting physical layer (PHY) security [20, 21]. Beamforming

and EH techniques can be exploited in PHY security by transmitting the energy signals

waveform as aGaussian pseudo-random sequence, that is known a priori to all legitimate

receivers. This technique can provide secure communication, as this sequence can

serve as interference to illegitimate eavesdroppers, while can be cancelled easily at

legitimate users terminals by means of beamforming technology [22]. In addition,

secure communication can be guaranteed by letting nearby nodes transmit jamming

signals to impair the potential eavesdroppers’ channels. The processes of generating

and broadcasting these signals drain the terminal battery, that can be compensated

3



by wireless charging provided by the EH approach. Furthermore, in order to locate

and deliver a sufficient energy amount to helper nodes, multi-antenna techniques like

beamforming are important [23]. Secrecy threats can be divided according to the

source of the threat into internal and external threats. In the internal case, the threat is

provoked by a legitimate user of the wireless network who is trying to intercept other

legitimate users’ information. While in the external scenario, the communications are

carried out under malicious attempts of non-legitimate (external) user to intercept the

legitimate users’ data.

Game theory is a formal disciplinewith a set ofmathematical tools to analyse the

complex interactions among competing independent rational users or players. For more

than half a century, this framework has led revolutionary changes in the economical

field, in addition to politics, psychology, and transportation. During the last period,

there has been a surge in research activities that deploy game theory in modelling,

analysing and optimizing wireless communication systems. The need to apply game

theory in the modern 5G communication systems become more urgent as it involves

large scale, heterogeneous and distributed communication schemes, in addition to the

need for robust implementations against telecommunication systems uncertainties [24].

1.2 Problem Statement

In order to meet up with envisioned requirements of the 5G communication

systems and its anticipated services and functionalities, novel communication schemes

are needed to be adopted. The enormous number of connected users (individuals

and things), ultra-high data rate and low-latency requirements make adopting new

multiple access scheme as one of the revolutionary aspects of the upcoming wireless

communications. Due to its performance superiority over the conventional orthogonal

multiple access (OMA), NOMA has been nominated as the potential multiple access

scheme for 5G communication systems. In addition, future communication scheme

should adopt FD relaying to fulfil the ultra-wide coverage requirement and enhance the

spectral efficiency and communications reliability. However, relaying and inter-user

cooperation is highly threatened due to power-limitation in thewireless network, as each
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user prefers to utilize his power for the own functionalities. Hence, novel systems should

consider wireless EH techniques to overcome the energy scariness issue in wireless

networks and further encourage the inter-user cooperation. Furthermore, multi-antenna

techniques need to be exploited in the proposed communication to enhance both

wireless information and power transfer efficiency and to increase the system’s degrees

of freedom. Introducing 5G potential technologies such as beamforming, energy

harvesting and FD communications to NOMA in order to improve the full system

performance has drawn considerable attention of late. In some literature, NOMA is

combined with multiple-antenna techniques like beamforming to exploit both power

and spatial domains to enhance the signal to noise plus interference ratio (SINR) [25],

or to increase the spatial multiplexing gain [26] by serving more than one user per each

beamforming vector but no inter-user cooperation is considered. On the other hand,

NOMA and energy harvesting techniques are merged in a few literature to enhance

both energy and spectral efficiency and overcome energy and spectrum scarcity in

the system. The authors in [27, 28] introduce simultaneous wireless information and

power transfer (SWIPT) to NOMA system to encourage strong users to relay weak

users’ information messages as this collaboration will not drain their batteries. Strong

users in [29], use the harvested energy in the first time slot, to relay weak users’

messages in the second time slot using beamforming in half-duplex (HD) manner. Of

course, cooperation in HD scheme is not optimal as the resources are divided between

receiving and transmitting processes. Therefore, novel FD cooperative EH-enabled

NOMA communication schemes are needed to be proposed, optimized and analysed.

The feature that NOMA strong user can decode weak user’s information

messages is exploited in cooperative NOMA schemes to increase the reliability of the

communication system. On the other hand, from an information security perspective,

this feature highly threatens data confidentiality in the system, if the strong user is

a potential eavesdropper. Exploiting PHY security in NOMA systems has gained a

lot of attention lately. Yet, NOMA internal or legitimate eavesdropper case has only

been investigated in [30], where the cell-edge (weak) user is considered as a potential

eavesdropper who is trying to decode the cell-centre (strong) user’s message in a

beamforming NOMA system. However, eavesdroppers are usually users with good

channel condition located near to the base station, as the attack will be more energy

efficient and more destructive to the network [31]. Therefore, secure communication
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schemes that protect weak user’s data against strong user malicious attempts without

compromising the system functionalities are needed to be investigated.

Moreover, information secrecy and data confidentiality are expected to be highly

compromised in the 5G systems due to the enormous number of connected users and

the ultra-wide radio coverage provided by future communication schemes. These

desired features in terms of system data rate performance increase the probability of

external malicious nodes existence. Some literature on enhancing the information

confidentiality by means of PHY security in NOMA systems has appeared lately. The

authors in [32] derive the secrecy outage probability in downlink NOMA system for

several antenna selection schemes. In [33], the secrecy sum rate is maximised in a

downlink NOMA system consisting of base station, multiple legitimate receivers and

an external eavesdropper. Both [34, 35] investigate enhancing the secrecy performance

of large-scale NOMA networks with external eavesdropper scenario. PHY security

is enhanced in the aforementioned system model in [34] by introducing the concept

of protected zone around the source node. While AN technique is exploited in [35]

to enhance the secrecy outage probability of multiple-antenna transmission scenario.

In secure AN-aided NOMA technique, the noise signal is broadcast in the orthogonal

directions of the intended NOMA user, resulting in not only the degradation of the base

station-eavesdropper link but also the link between the base station and the other NOMA

legitimate users. The AN signal of the NOMA weak user adds extra interference to

the strong user yielding incorrect SIC execution and imperfect decoding of the own

message. In addition, strong user AN signal degrades the SINR at the weak user

and his ability to decode his message. Hence, secrecy paradigms that exploit the

physical medium characteristics of the communications and reap the benefits provided

by the disruptive techniques to 5G are needed to be investigated. The proposed secure

schemes need to enhance information privacy under external threats without affecting

the legitimate users’ quality of service (QoS).

Resources and power allocation and optimization strategies play a crucial

role in wireless communications system performance and involve high computational

complexity tasks. Resource allocation, systemmodelling and optimization are expected

to be even more challenging in information secrecy of the 5G communication schemes,
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as these systems involve higher data rate, enormous number of served users andmultiple

interleaved techniques. One of the sophisticated mathematical tools that has been

adopted in resource allocation and modelling of the PHY security of the conventional

communication system is the game theory. Game theory has been exploited in the

literature for enhancing the information secrecy of different networks models such

as cognitive radio [36, 37], D2D communication [38] and the cooperative OMA

communication systems [39]. However, introducing this mathematical framework

to enhance the secrecy performance of NOMA communication scheme has not been

considered yet, and secure paradigms that exploit this discipline are needed to be studied

and introduced for enhanced secrecy performance.

1.3 Research Objectives

The problem statement leads us to the following research objectives:

1. To propose, optimize and analyse a communication scheme that combines

NOMA, EH, beamforming and FD techniques in order to enhance the rate of

future communication systems.

2. To design a secure paradigm to impair NOMA strong user’s capabilities of

intercepting weaker users’ information messages.

3. To exploit the 5G techniques to propose a secrecy scheme to protect legitimate

users’ information from being intercepted by an external eavesdropper.

1.4 Scope of Work

The study is aimed to design a communication scheme that combines NOMA,

EH, Beamforming, and FD techniques. The performance of the proposed scheme

is optimized by introducing power allocation strategies and NOMA user clustering

algorithms. The system performance is analysed by deriving the outage probability

of both weak and strong users. In addition, in order to capture the dynamic nature
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of wireless networks, the framework of stochastic geometry is adopted, and the

outage probability of the system is derived and provided in a closed-form formula.

Furthermore, two secrecy schemes are proposed to enhance the system security under

the malicious attacks of internal and external eavesdroppers. The secrecy outage

probability performance metric of both schemes is derived, analysed and compared

with the corresponding baseline schemes. The mathematical framework provided

by game theory is then exploited to introduce further enhancement over the secrecy

behaviour of the proposed schemes. Numerical simulations are carried out by using

Matlab software to validate the derived results bymeans ofMonte Carlo simulations and

to compare the performance of the proposed schemes with its corresponding baseline

systems.

The study is carried out under the availability of perfect channel state

information (CSI) at the base station assumption and limited to power-domain NOMA

only. Slow-fadingRayleigh channelmodel is the channelmodel adopted in this work. In

addition, the research investigates downlink NOMA communication systems, wherein

system performance optimization with respect to power allocation strategies and

clustering algorithms is examined. Furthermore, the PHY security will be investigated

in two different scenarios, internal and external eavesdropper. In internal eavesdropper

case, the strong user is considered as the potential malicious user who is trying to

intercept the weak user’s data. The study considers outage probability and secrecy

outage probability as performance metrics of capacity and PHY security enhancing

schemes respectively.

1.5 Limitation of the Work

The work does not analyse partial or imperfect CSI availability scenarios. In

addition, the research does not consider uplinkNOMAcommunication systems or code-

domain NOMA scheme. Furthermore, no hardware implementation is investigated

during the study.
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