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ABSTRACT 

 

 

 

 

The capability to communicate and perform target localization efficiently in 

underwater environment is important in many applications.  Sound waves are more 

suitable for underwater communication and target localization because attenuation in 

water is high for electromagnetic waves.  Sound waves are subjected to underwater 

acoustic noise (UWAN), which is either man-made or natural.  Optimum signal 

detection in UWAN can be achieved with the knowledge of noise statistics.  The 

assumption of Additive White Gaussian noise (AWGN) allows the use of linear 

correlation (LC) detector.  However, the non-Gaussian nature of UWAN results in 

the poor performance of such detector.  This research presents an empirical model of 

the characteristics of UWAN in shallow waters.  Data was measured in Tanjung 

Balau, Johor, Malaysia on 5 November 2013 and the analysis results showed that the 

UWAN has a non-Gaussian distribution with characteristics similar to 1/f noise.  A 

complete detection system based on the noise models consisting of a broadband 

hydrophone, time-frequency distribution, de-noising method, and detection is 

proposed.  In this research, S-transform and wavelet transform were used to generate 

the time-frequency representation before soft thresholding with modified universal 

threshold estimation was applied.  A Gaussian noise injection detector (GNID) was 

used to overcome the problem of non-Gaussianity of the UWAN, and its 

performance was compared with other nonlinear detectors, such as locally optimal 

(LO) detector, sign correlation (SC) detector, and more conventionally matched filter 

(MF) detector.  This system was evaluated on two types of signals, namely fixed-

frequency and linear frequency modulated signals.  For de-noising purposes, the S-

transform outperformed the wavelet transform in terms of signal-to-noise ratio and 

root-mean-square error at 4 dB and 3 dB, respectively.  The performance of the 

detectors was evaluated based on the energy-to-noise ratio (ENR) to achieve 

detection probability of 90% and a false alarm probability of 0.01.  Thus, the ENR of 

the GNID using S-transform denoising, LO detector, SC detector, and MF detector 

were 8.89 dB, 10.66 dB, 12.7dB, and 12.5 dB, respectively, for the time-varying 

signal.  Among the four detectors, the proposed GNID achieved the best 

performance, whereas the LC detector showed the weakest performance in the 

presence of UWAN.   
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ABSTRAK 

 

 

 

 

Keupayaan untuk berkomunikasi dan melaksanakan sasaran penyetempatan 

yang cekap bawah air adalah penting dalam banyak aplikasi.  Gelombang bunyi 

adalah lebih sesuai untuk komunikasi dan sasaran penyempatan dalam air kerana 

pengecilan dalam air adalah tinggi untuk gelombang elektromagnet.  Gelombang 

bunyi adalah tertakluk kepada bunyi akustik bawah air (UWAN), sama ada buatan 

manusia atau semula jadi.  Pengesanan isyarat optimum dalam UWAN boleh dicapai 

dengan mengetahui tentang statistik hingar.  Andaian hingar Gaussian putih 

tambahan (AWGN) membolehkan penggunaan pengesan korelasi linear (LC).  

Walau bagaimanapun, sifat bukan-Gaussian untuk UWAN menyebabkan prestasi 

yang tidak baik terhadap pengesan tersebut.  Kajian ini menjelaskan tentang model 

empirikal bagi ciri-ciri UWAN di perairan cetek.  Data diukur di Tanjung Balau, 

Johor, Malaysia pada 5 November 2013 dan keputusan analisis menunjukkan bahawa 

UWAN mempunyai pembahagian bukan-Gaussian dengan ciri-ciri yang serupa 

dengan hingar 1/f.  Satu sistem pengesanan lengkap berdasarkan model hingar yang 

terdiri daripada hidrofon jalur lebar, taburan masa-frekuensi, kaedah nyah-hingar dan 

pengesanan adalah dicadangkan.  Dalam kajian ini pengubahan-S dan pengubahan 

gelombang digunakan untuk menghasilkan perwakilan masa-frekuensi sebelum 

pengambangan lembut dengan penganggaran ambang universal terubah digunakan.  

Pengesan hingar Gaussian (GNID) telah digunakan untuk mengatasi masalah non-

Gaussianity daripada UWAN, dan prestasinya telah dibandingkan dengan pengesan 

linear lain, seperti pengesan optimum setempat (LO), pengesan tanda korelasi (SC) 

dan beberapa lagi pengesan penapis sepadan konvensional (MF).  Sistem ini telah 

dinilai berdasarkan dua jenis isyarat iaitu isyarat termodulasi frekuensi-tetap dan 

frekuensi linear modular.  Untuk tujuan nyah-hingar, pengubahan-S mengatasi 

pengubahan wavelet dari segi nisbah isyarat-kepada-hingar dan ralat punca min 

kuasa dua masing-masing pada 4 dB dan 3 dB.  Prestasi pengesan dinilai berdasarkan 

nisbah tenaga-kepada-hingar (ENR) bagi pengesanan kebarangkalian sebanyak 90% 

dan kebarangkalian penggeraan palsu sebanyak 0.01.  Oleh itu, ENR daripada GNID 

menggunakan nyah-hingar pengubahan-S, pengesan LO, pengesan SC, dan pengesan 

MF adalah masing-masing 8.89 dB, 10.66 dB, 12.7 dB dan 12.5 dB, untuk isyarat 

yang berubah dengan masa.  Antara empat pengesan, GNID yang dicadangkan 

mencapai prestasi terbaik manakala pengesan LC menunjukkan prestasi yang paling 

lemah dengan kehadiran UWAN. 
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INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Increased interest in defense applications, off-shore oil industry, and other 

commercial operations provides a motivation for research in signal processing for the 

underwater environment.  In the underwater environment, acoustics waves are more 

practical for applications such as navigation, communication, and other wireless 

applications due to the high attenuation rate of electromagnetic waves.  Acoustic 

propagation is characterized by three major factors: attenuation that increases with 

signal frequency, time-varying multipath propagation, and low speed of sound (1500 

m/s) (Stojanovic and Preisig, 2009).  No two deployment regions within the ocean 

with have the same depths ranging from tens of meters to a few kilometers with node 

placement that varies from one network to another (King et al., 2008).  As the 

attenuation of sound in the ocean is a frequency-dependent process, underwater 

systems operate at low frequencies, for example, on the order of tens of kHz 

(Stojanovic and Preisig, 2009).  Underwater data communication links generally 

support low data rates mainly due to the constraints of the communication channel 

(Burrowes and Khan, 2011; Stojanovic and Preisig, 2009).  The main constraints are 

the high propagation delay, lower effective signal-to-noise ratio (SNR) and lower 

bandwidth.  Sources of underwater acoustic noise (UWAN) are manmade (shipping, 
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aircraft over the sea and machinery sounds on the ship) and natural (rain, wind, 

marine lifeforms and seismic) (Melodia et al., 2013). 

 

 

As the attenuation of sound in the ocean is frequency dependent, the ocean 

acts as a low-pass filter for ambient noise.  Results ambient noise power spectral 

density (PSD) is thus described as colored that is the noise has more power at the 

lower frequencies and less power at the higher frequencies (Chitre et al., 2004).  The 

ambient noise comes from sources such as turbulence, breaking waves, rain, and 

distant shipping. While ambient noise is often approximated as Gaussian, in practice 

it is colored exhibiting a decaying power spectral density (PSD).  The rate of decay is 

at approximately 18 dB/decade (Burrowes and Khan, 2011). The underwater 

environment consists also site-specific noise (Burrowes and Khan, 2011).  Site-

specific noise, for example, exists for ice cracking in the polar region and acoustic 

noise due snapping shrimp in warmer waters.  Unlike ambient noise, site-specific 

noise often contains significant non- Gaussian components. 

 

 

In many signal processing applications, it is assumed that the noise samples 

are uncorrelated and typically described as independently identically distributed 

(i.i.d).  Therefore, it is often necessary to transform a vector of observations with 

correlated noise samples to one in which they are uncorrelated (Therrien, 1992).  

This thesis is concerned with the de-noising and detection of signals that are 

generally transmitted by vessels sailing on the surface of the sea that could be due to 

the acoustic emission of the ship’s engine or machinery and echo locating devices.  

The goal is to investigate on the techniques for optimal detection of acoustic signals 

in UWAN.  To better understand the underwater operating environment, a 

comprehensive study was conducted with measurements of UWAN at Tanjung 

Balau, Johor, Malaysia. 

 

 

In this thesis, a complete detection system based on the noise models is 

developed that consists of the broadband hydrophone, pre-whitening filter, time-

frequency distribution, de-noising method, inverse whitening filter, and detection.  It 
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is proposed to improve the probability of detection (𝑃𝐷) and increased the energy to 

noise ratio (ENR) using S-transform based time–frequency de-noising algorithm.  

The S-transform is used in the de-noising process to improve performance over de-

noising using wavelet transform (Al-Aboosi et al., 2016).  The performance results 

using simulated and measured UWAN of the proposed detector Gaussian noise 

injection detector (GNID) are compared with other nonlinear detectors, namely, a 

locally optimal (LO) detector, a sign correlation (SC) detector, and a conventional 

LC detector.  

 

 

 

 

1.2 Problem Statement  

 

 

UWAN affects signal detection and parameters estimation. This is true in the 

reliability of signal detection where the noise is non-white and non-Gaussian. The 

sound attenuation in the sea is frequency dependent and this causes the sea acts as a 

low-pass filter for UWAN.  The resulting PSD of UWAN is best described as 

colored where the noise has more power at the lower frequencies compared to the 

higher frequencies. Therefore, the noise samples are uncorrelated and the assumption 

of i.i.d is no longer valid resulting in poor detection performance. 

 

 

 The UWAN is often approximated as colored where the observed signal 

samples follows Gaussian probability density function (pdf). In practice, the signal 

observed on certain sites has significant non-Gaussian components.  For example, ice 

cracking in the polar region and snapping shrimp in warmer waters. As a result, the 

detection methods that assume Gaussian pdf do not achieve optimum performance in 

UWAN. The effect of non-Gaussian pdf and colored noise further degrades the 

performance of the detection system such as underwater data communication and 

target locating.  Further detector improvement performance can be achieved by 

combining non-linear detectors and de-noising process with pre-whitening 

techniques. 
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Signal de-noising is important if it is of interest to recover information in a 

signal that is corrupted by noise. For noise that is modeled as additive white 

Gaussian noise (AWGN), the frequency components of noise are evenly distributed 

over all frequency range while the signal of interest lies within a specific range in 

frequency. De-noising using time-frequency based method can be used to recover the 

signal from noise. Universal threshold estimation method is used widely to calculate 

the threshold value. Most critical is to find the suitable threshold value to ensure that 

the signal is recovered from noise. If the threshold value is too high, part of the 

original signal could be removed while a value too low could result in the insertion 

of noise in the signal. 

 

 

 

 

1.3  Objectives 

 

 

1. To characterize UWAN for shallow water in Malaysian seas based on 

statistical properties such as power spectral estimation (PSE), autocorrelation 

function and probability density function (PDF).  

 

2. To de-noise the acoustic signal in UWAN using the time-frequency 

representation generated by the S-transform with soft thresholding using the 

modified universal threshold estimation.  The comparison is made with the 

conventionally used wavelet transform de-noising method. 

 

3. To adopt methodologies used to de-noise a known signal in presence of 

colored noise that include pre-whitening filter, signal transformation and 

single-level and level-dependent thresholding method.  

 

4. To design detection methods using linear and non-linear detectors for optimal 

or near-optimal performance in UWAN. 
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1.4  Scope of Work  

 

 

This research focuses mainly on the de-noising and detection of acoustic 

signals using time-frequency representation.  The scopes of this project are as 

follows: 

 

1. The measurements were done in shallow water at Tanjung Balau, Johor, 

Malaysia with a maximum sea depth of 10 meters.  The first set of 

measurements was done at different depths while another set was done to 

observe the diurnal difference in UWAN characteristics.   

 

2. Samples of UWAN collected using a broadband hydrophone (7 Hz ~ 22 

kHz) DolphinEAR 100 Series model with a maximum cable length 10 

meters. 

 

3. The Nyquist rate is used to convert the measured signal in continuous 

time to discrete time.  Since the underwater acoustic signals is in the 0-

2500 Hz frequency band, the sampling frequency is fs=2W which the 

minimum requirement for digital sonar system.  By making the sampling 

frequency greater than 2W, the sampling frequency selected is 8000 Hz. 

 

4. Different modulation signals are generated in MATLAB can be 

transmitted underwater using BII-8030 underwater acoustic transmitter 

for frequency range (20Hz to 100 kHz). 

 

5. The UWAN can be assumed stationary because the variability of the 

predominant sources (wind speed and shipping density) and propagation 

variation (such as temperature and density) changes more slowly 

compare to the signal duration of interest. 
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6. Comparing the distributions obtained from the collected data with 

Gaussian distribution done by using distribution fitting tool in MATLAB 

to knowledge the pdf of the UWAN. 

 

7. The signals used are divided into two types, namely, single-frequency 

sinusoidal signal and linear frequency modulated (LFM) signal, which 

respectively represent fixed-frequency signals and time-varying signals 

normally encountered in practical situations. 

 

 

 

 

1.5 Research Procedure 

 

 

The research procedure is as follows: 

 

1. Literature review: Reviews on underwater communications, underwater 

acoustic noise models, time-frequency representation, signal de-noising, and 

signal detection.  

 

2. Data Collection: Collect samples of noise from different depth in Malaysian 

seas using Hydrophone Dolphin EAR 100 Series (two field trials). 

 

3. Data Analysis: Analyze noise samples and characterized them using Welch 

power spectrum estimation technique, the autocorrelation function of noise 

and probability density function (PDF).  Also, to investigate the diurnal 

variability of UWAN characteristics. 

 

4.  Pre-whitening filter: Since the UWAN is colored noise, pre-whitening of 

the signal performs before the de-noising operation is implemented using the 

same methods use for white noise. 
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5. De-noising technique: The S-transform and the wavelet transform are used 

to generate the time-frequency representation before soft thresholding with 

universal threshold estimation is applied to de-noise the acoustic signals. 

 

6. Detection Theory: Detection of the acoustic signal in the presence of 

UWAN, Gaussian noise injection detector (GNID) is proposed to overcome 

the problem of non-Gaussianity of the UWAN, and its performance compared 

with matched filter (MF) detector and other non-linear detectors. The 

performance of the detectors is evaluated based on the energy-to-noise ratio 

(ENR) and receiver operating characteristic (ROC) curves.  

 

 

7. Simulation validation: To validate the performance of the complete 

detection system proposed. The complete detection system based on the noise 

models consist of the broadband hydrophone, pre-whitening filter, time-

frequency distribution, de-noising method, inverse whitening filter, and 

detection. 

 

8. Discussion and result. 

 

 

 

 

1.6 Contributions of Work 

 

 

1. In this work, a signal de-noising and detection system for acoustic signals 

corrupted by underwater acoustic noise (UWAN) is proposed.  The 

proposed system overcomes the limitation caused by the characteristics 

of UWAN in shallow waters, which is identified as a key performance 

hurdle for communication systems. 

 

2. The proposed Gaussian noise injection detector (GNID) detector based 

on noise-enhanced signal detection using an S-transform de-noising 
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method aims to ensure that the noise follows a Gaussian distribution, 

improve the detection probability (PD), and increase the energy-to-noise 

ratio (ENR) in comparison with other nonlinear detectors exclusively 

used for non-Gaussian detection.  Thus far, this method has not been 

presented in previous research for sonar and underwater communication 

applications. 

 

 

3. The S-transform de-noising method based on time–frequency analysis is 

proposed as an alternative to the wavelet transform.  From the time–

frequency representation generated by the S-transform, de-noising is 

performed using soft thresholding with modified universal threshold 

estimation.  The threshold value for a single level estimation method is 

determined in the case of using a pre-whitening filter or the multilevel 

estimation method.  Afterward, soft thresholding is applied to suppress 

the noisy coefficients and reconstruct the signal using the inverse S-

transform.  Thus far, no work based on S-transform de-noising used this 

methodology, and most of the previous works assumed that the noise is 

white and applied a mask window to the time–frequency domain 

representation of noisy signal to remove noises. 

 

 

 

 

1.7 Thesis Organization 

 

 

 This thesis is organized as follows:  Chapter 2 discusses a brief review of 

related topics, such as the sound speed profile, underwater propagation effects, 

underwater transmission loss, underwater channel model, non-Gaussian signal 

detection methods, UWAN characteristics and model, signal whitening and de-

noising, and signal detection.  Chapter 3 provides the details of the proposed signal 

de-noising technique using S-transform and the proposed detection systems in 
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presence of UWAN.  Chapter 4 presents the experimental and simulation results. 

Chapter 5 presents the conclusion and recommendations for future research. 
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