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ABSTRACT 

 

 

Solar gain mitigation in buildings is essential to achieve thermal comfort and 

reduce cooling load in hot arid climate. Opaque shading is a useful strategy to block 

solar radiation in excessively hot locations like Baghdad. However, such shading 

comes at the expense of daylight illuminance and the openness of the window. A 

review of previous studies showed a gap in investigating the potentials of the clear 

glass in reducing solar gain. Solar transmittance through glass is angular dependent. 

The transmitted radiation decreases with bigger angles of incidence following 

increased reflection and reduced solar intensity. This research investigated the effects 

of using glass slats tilted away from the sun as an alternative to conventional horizontal 

shading on thermal and daylight performances of southwest rooms in commercial 

buildings in Baghdad. Integrated Environmental Solutions-Virtual Environment 

simulation tool was used to conduct the study. Six simulation cases were formulated; 

the base case used the common 75 centimetres overhang, the horizontal shading case 

had an additional three 75 centimetres horizontal shading devices, and four cases of 

50°, 60°, 70° and 80° tilted glass slats in addition to the overhang. The simulation was 

run for seven representative days during the predominantly cooling season from April 

to October. Reductions in the solar gain, air temperature and mean radiant temperature 

using the slats were significant, especially at lower solar angles. For example, on 

September 21st, the solar gain of the base case was reduced by 71%, 69%, 57% and 

46% with the glass slats tilted at 50°, 60°, 70° and 80° respectively compared to 61% 

reduction through horizontal shading. On the same day, the average air temperature 

was reduced between the range of 2.2–3.3°C with the slats compared to 2.7°C with the 

horizontal shading; the mean radiant temperature was reduced by 2.3–3.4°C with the 

slats compared to 2.8°C with the horizontal shading. The daylight average illuminance 

was decreased by around 58%, 32%, 24% and 23% by using glass slats tilted at 50°, 

60°, 70° and 80° respectively compared to around 78% decrease by using horizontal 

shading with an average illuminance of below 100 lux in most simulated hours. 

However, the glass slats failed to raise the low illuminance uniformity to the acceptable 

threshold due to higher illuminance levels near the window and lower illuminance 

levels at the rear part of the room, unlike the horizontal shading that reached the 

acceptable to the preferable uniformity levels in most simulated hours. This study 

showed that replacing the conventional opaque horizontal shading with tilted glass 

slats, especially at an angle of 60°, can have a better impact in improving the heat 

mitigation by solar radiation and increasing daylight availability in the study area. 

Furthermore, these improvements were obtained without compromising the openness 

of the window. 
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ABSTRAK 

 
Pengurangan penerimaan solar dalam bangunan adalah penting untuk 

mencapai keselesaan terma dan mengurangkan beban penyejukan dalam iklim panas 

yang kering.  Pelindung legap adalah strategi yang berkesan untuk menghalang radiasi 

solar di lokasi yang sangat panas seperti Baghdad. Walau bagaimanapun, pelindung 

ini memberi kesan terhadap kuantiti pencahayaan cahaya siang dan keterbukaan 

tingkap. Tinjauan terhadap kajian sebelum ini menunjukkan adanya jurang dalam 

mengkaji potensi kaca jernih untuk mengurangkan penerimaan solar. Kepancaran 

solar melalui kaca bergantung kepada sudut. Radiasi yang dipancarkan berkurangan 

dengan sudut tuju yang lebih besar berikutan peningkatan pantulan dan pengurangan 

intensiti solar. Kajian ini menyelidik kesan penggunaan bilah kaca condong yang 

dicondongkan dari matahari sebagai alternatif kepada pelindung mendatar 

konvensional terhadap haba dan cahaya siang di bilik barat daya dalam bangunan 

komersial di Baghdad. Program simulasi Integrated Environmental Solutions-Virtual 

Environment digunakan untuk menjalankan kajian ini. Enam kes simulasi telah 

dirumus; kes asas mempunyai unjuran yang biasa digunakan sebanyak 75 sentimeter; 

kes pelindung mendatar mempunyai tambahan tiga 75 sentimeter alat pelindung 

mendatar, dan empat kes bilah kaca dicondongkan sebanyak 50°, 60°, 70° dan 80° 

selain unjuran. Simulasi dijalankan selama tujuh hari yang mewakili musim sejuk yang 

dominan dari April hingga Oktober. Pengurangan penerimaan solar serta suhu udara 

dan min pancaran oleh bilah tersebut adalah ketara, terutamanya pada sudut matahari 

yang lebih rendah. Sebagai contoh, pada 21 September, penerimaan solar bagi kes asas 

berkurangan sebanyak 71%, 69%, 57% dan 46% oleh bilah kaca yang dicondongkan 

pada 50°, 60°, 70° dan 80° berbanding pengurangan 61% oleh pelindung mendatar. 

Pada hari yang sama, purata suhu udara berkurang antara 2.2–3.3°C bagi penggunaan 

bilah kaca berbanding 2.7°C oleh pelindung mendatar; suhu min pancaran berkurang 

antara 2.3–3.4°C bagi penggunaan bilah kaca berbanding 2.8°C oleh pelindung 

mendatar. Purata cahaya siang menurun sebanyak 58%, 32%, 24% dan 23% oleh bilah 

kaca yang dicondongkan pada 50°, 60°, 70° dan 80° berbanding dengan pengurangan 

78% oleh alat pelindung mendatar dengan purata pencahayaan di bawah 100 lux dalam 

kebanyakan masa simulasi. Walau bagaimanapun, bilah kaca gagal untuk 

meningkatkan keseragaman pencahayaan yang rendah sehingga ke tahap yang dapat 

diterima disebabkan tahap pencahayaan yang lebih tinggi berhampiran dengan tingkap 

dan tahap pencahayaan yang lebih rendah di bahagian belakang bilik, berbeza dengan 

pelindung mendatar yang mencapai tahap keseragaman diterima hingga lebih baik 

dalam kebanyakan masa simulasi. Kajian ini menunjukkan bahawa dengan 

menggantikan pelindung mendatar legap konvensional dengan bilah kaca condong, 

terutamanya pada sudut 60°, boleh memberi impak yang lebih baik dalam 

memperbaiki pengawalan haba oleh sinaran solar dan meningkatkan cahaya siang di 

kawasan kajian. Tambahan itu, penambahbaikan ini diperolehi tanpa menjejaskan 

keterbukaan tingkap ke arah luar.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 

Buildings consume substantial amounts of energy. The rise in world population 

associated with improvement in living standards leads to more energy demand. Energy 

savings in the building sector have high potentials in lowering carbon emissions and 

hence reducing the effects of global warming. By adapting technology along with 

energy efficiency policies in buildings, a global energy saving equivalent to the 2012 

energy consumption of China, United States, Russia, Germany, France and the United 

Kingdom can be achieved by 2050 (IEA, 2015).  

 

Iraq has significant growth in the gross domestic product (GDP) in recent years 

(World Bank, 2017). This growth, along with rising population, leads to more energy 

consumption as shown in Figure 1.1. Electrical appliances especially air conditioners 

are increasingly used with little attention to passive cooling design. Building sector is 

the largest consumer of the produced electric power in Iraq (Hashem, 2017).  

Increasing CO2 emissions is expected because most of the electricity supplies in Iraq 

come from non-sustainable sources as shown in Figure 1.2 (Saeed et al., 2016). 

 

In most regions of Iraq, the cooling season extends from April until October. 

Summer harsh weather is featured with temperatures soaring to high levels that even 

exceed 50°C on some days which add huge demand for electricity (Kharrufa, 2008).  
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Adapting sustainability in buildings is crucial in lowering energy demand. The 

main goal in this aspect is heat mitigation to reduce the cooling load. This reduction 

could be achieved through preventing heat from solar radiation, as much as possible, 

from entering the buildings.  

     

 

Figure 1.1 Annual electricity consumption and GDP per capita in Iraq. Data source: 

World Bank (2017)  

    

 

Figure 1.2 Electricity production sources in Iraq. Source: Saeed et al. (2016) 
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1.2 Problem Background 

 

Our thermal environment is determined mainly by the sun (Harkness and 

Mehta, 1978). According to Lechner (2014), the top climatic design priorities for 

desert climate is to keep heat out and achieve protection from the sun in summer. 

Figure 1.3 presents the three tiers approach for building design in hot and dry climates. 

The best way to avoid heat gain is not by eliminating undesirable heat but by excluding 

it in the first place (Olgyay, 1957).   

 

 

Figure 1.3 Three-tier approach for sustainable building cooling. Source: Lechner 

(2014) 

 

The long summer in Baghdad means that the building facades are exposed to 

lower sun angles in the periods far from the maximum solar altitude of the summer 

solstice. Further, the prevailing direction for main streets in Baghdad is northwest-

southeast which makes the buildings located on their sides face southwest or northeast. 

The southwest buildings, in particular, are more exposed to lower sun angles that 

require deep shading to cover.   

   

The shading depth is calculated for southwestern facades according to Olgyay 

(1957), Givoni (1998), Szokolay (2004) and Lechner (2014) from the sun path diagram 

(Figure 1.4). The last day of the cooling season was defined as October 31st when the 

sun faces the window directly at an altitude angle of 30° around 14:30. As shown in 

Figure 1.5, the intersection of the sun position at this altitude with window sill requires 
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an overhang depth of around 3 m. Shading for lower sun angles requires even deeper 

shading.   

 

 

Figure 1.4 Shading angle determination for southwest windows in Baghdad (Latitude 

33°N) on the stereographic sun path diagram. Diagram source: adapted from 

University of British Columbia (2011)  

 

 

Figure 1.5 Section through a typical room in commercial buildings in Baghdad 

Setback of floors above-

ground (excluding 

balcony) 

Shading angle based on the 

last day of cooling period 

Overhang/ balcony with 

drop beam commonly 

used in Baghdad 

Building lot boundary 

Last day of cooling 

period (31st October)- 

solar altitude 30° 

Multiple shorter 

devices as alternative 

to deep overhang 

Latitude:33°N 
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Obviously, the deep overhang is not practical due to its size that extends 

outside the building lot boundary as shown in Figure 1.5. On the other hand, this 

overhang does not match with the local regulations of Baghdad city for commercial 

buildings. The building regulations issued by Design Department in Baghdad 

Mayoralty allow only for 75 cm protrusion as open balconies on the floors above the 

ground floor (Baghdad Mayoralty, 2007).  

 

The overhang/balcony (75 cm) can provide relatively adequate shading for a 

maximum solar altitude angle of 62º (Figure 1.5) which is efficient shading according 

to the stated method for the period from late April until the beginning of August when 

the sun faces the window directly. However, this shading is not sufficient when the 

sun moves to lower position towards the west during this period or the rest of the 

cooling season when the low sun faces the window particularly in September and 

October (Figure 1.4). 

 

To overcome the architectural problem created by the deep overhang, 

alternatives of shorter shading devices can have the equivalent solar protection effect 

of larger devices (Lechner, 2014; Olgyay, 1957). This could be achieved for the case 

of southwestern facades in this study context by dividing the deep overhang to three 

horizontal devices of 75 cm that make, along with the commonly used overhang, a 

shading effect of one deep overhang. Although the horizontal shading device has the 

least obstruction to outside visibility due to its minimal impact on the horizontal view 

(Lechner, 2014), the deep shading still has a negative effect on the daylight availability 

whether it is a single large piece or smaller pieces with the same performance.   

 

Apart from the horizontal shading, other adaptations are used in Baghdad to 

reduce the solar radiation and its excessive heat effect, for example, using small and 

recessed windows, vertical shading elements and solid shading screens. Other 

adaptations include hanging pieces of canvas/cloth, fixing the commercial signboards 

in front of the window, applying frosted films to the glass or adding a layer of reflective 

glass to the balcony. Appendix A presents photos of some of these adaptations.  
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One of the main functions of windows is the visual connection between outside 

and inside. This function is highly emphasised in modern architecture by having bigger 

areas of glazed facade to provide outside visibility and natural light (Kirimtat et al., 

2016). Menzies and Wherrett (2005) explained that besides the interaction with outside 

environment and allowing more daylight, bigger windows could have better 

psychological effect that leads to improved productivity in work spaces. 

 

All the above-mentioned adaptations lead to outside visibility obstruction. A 

smaller window results also in less daylight and less connectivity to outside. The 

canvasses, solid screens, signboards and frosted films have the most damaging effect 

on outside visibility. Even in the case of reflective glass, though transparent, it cuts a 

substantial amount of useful daylight (Lechner, 2014) and it can have harmful solar 

reflection effect on the street. Although air conditioner can bring the internal 

temperature down, the required cooling energy is very high that makes these 

adaptations necessary, particularly with frequent power failure during the hottest days.   

 

1.3 Problem Statement  

 

Deep shading of 3 m or its equivalent is required for southwest facades in 

Baghdad to reduce direct solar radiation. However, this kind of shading can obstruct 

visibility and eliminate useful daylight when the sun is not facing the window directly 

as noticed in current shading practice in commercial buildings. There is a need to find 

shading alternative that may overcome this problem.  

   

1.4 Hypothesis 

 

This study hypothesises that tilted glass slats, when fixed in front of a window, 

can be an alternative to conventional opaque shading by utilising the optical properties 

of glass in its interaction with solar radiation to increase reflection due to bigger angles 
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of incidence. Furthermore, the tilt effect decreases the solar exposure on the glass 

surface following the cosine law (Figure 1.6). The hypothesised effects of these glass 

slats are: 

 

i. Reducing solar gain. 

ii. Improving the daylight performance. 

 

 

Figure 1.6 Bigger angles of incidence maximise solar reflection and reduce solar 

intensity by distributing radiation over a wider area 

 

1.5 Research Aim 

 

This research aims to investigate the effects of using tilted glass slats as an 

alternative to conventional horizontal shading on thermal and daylight performances 

of southwest rooms in commercial buildings in Baghdad. 

 

Window normal 

 

Small angle of incidence 

 

Incident beam 

 

Small reflected beam 

 

Glass slats 

 

Low solar intensity 

 Big angle of incidence 

 

Big reflected beam 

 

High solar intensity 

 

Slats Normal 
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1.6 Research Objectives     

 

In order to achieve the research aim, the following research objectives were 

formulated:  

 

1. To analyse and compare the effects of enhancing the existing 75 cm overhang with 

multiple horizontal shading devices (equivalent to deep shading of 3 m) and tilted 

glass slats at 50°, 60°, 70° and 80° angles on the solar gain and indoor temperature. 

 

2. To examine the effects of the above-mentioned horizontal shading devices and 

tilted glass slats on the daylight illuminance level and uniformity. 

 

1.7 Research Questions 

 

1. What are the effects of the horizontal shading devices and the tilted glass slats 

when added to the existing overhang on the solar gain and indoor temperature? 

 

2. What are the effects of the horizontal shading devices and the tilted glass slats 

when added to the existing overhang on the daylight illuminance level and 

uniformity? 

 

1.8 Research Scope and Limitations 

 

This research was based on numerical simulation that was performed for the 

hot arid climate of the city of Baghdad, Iraq. A full-scale field experiment was not 

conducted due to resources and time limitations. However, validation experiment was 

conducted to check the reliability of the simulation tool in predicting the thermal 

performance while the prediction of daylight performance by the simulation tool was 



9 

  

  

reviewed in previous studies in similar contexts. The research focuses on summer 

season only that requires a substantial cooling load to make buildings and spaces 

thermally tolerable due to the very high outdoor temperature. 

  

The study scale is one generic room located in an above-ground floor in a 

commercial building. The selected orientation is the common southwest facade. Room 

and window dimensions, as well as the characteristics of construction materials were 

used as constant variables.  

 

The glass type used for the tilted slats and the window was uncoated layer of 3 

mm clear float glass fixed in front of the window at four angles with increments of 10° 

each. The size of the slats and the gaps between them were not calculated as ventilation 

is outside the scope of this research. The assumption of using smaller slats instead of 

one big piece of glass was to consider making the area between the glass and the 

window fully ventilated from the front in addition to the sides to avoid heat trap and 

neutralise the temperature in this area (Hashemi et al., 2010). In any case, the slats 

were assumed to be overlapped in a way that does not allow for solar radiation to 

penetrate in between the slats. The suggested slats are assumed to reflect part of the 

radiation towards the overhang of the lower floor; the heating impact of such reflection 

on the room thermal performance was not considered in this study. The comparable 

tested shading device was the opaque horizontal type. Both of the slats and horizontal 

shading were external; the internal shading was not covered in this study.  

 

The measured thermal performances were the solar gain, air temperature and 

mean radiant temperature in passive mode for 24 hours on one selected day of each 

month of the cooling season. Average illuminance and illuminance uniformity of 

daylight were measured in an area of interest in the middle of the room under clear sky 

condition. Daylight factor and glare analysis were not included in this research. The 

natural ventilation was not considered. Table 1.1 summarises the constant, dependent 

and independent variables of this research.  
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Table 1.1 Constant, dependent and independent variables of the research 

Type of 

variable  

Variable Details 

Constant 

variables 

Climate Hot dry climate of Baghdad  

Period Cooling period (April–October) 

Orientation Southwest  

Scale Generic room 

Window-to-wall ratio 36% 

Constructions Common local materials (see Table 3.2) 

Glass (window and 

tilted slats) 

3 mm clear uncoated glass  

Independent 

variables 

Shading device Overhang and horizontal shading 

devices 

Tilted glass slats angles 50°, 60°, 70° and 80° 

Dependent 

variables 

Thermal performance Solar gain, air temperature and mean 

radiant temperature 

Daylight performance Illuminance levels, average illuminance 

and illuminance uniformity 

 

1.9 Research Significance 

 

Heat gain avoidance is the primary challenge for the built environment in desert 

climates to achieve sustainability. A major approach in this aspect is done by 

controlling fenestration that can be achieved, for example, by reducing the window 

size or shading it densely. In both cases, this affects the building openness and the 

daylight potentials. In many other cases, bigger windows are associated with more 

solar gain and higher cooling loads. There are limited studies conducted on shading 

techniques specifically in Baghdad. This study is expected to give a better 

understanding of the effect of the commonly used overhang on building thermal and 

daylight performances.   
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This research attempts to test enhancing the overhang with tilted slats of clear 

glass as an alternative to opaque horizontal shading devices. In practice, the clear glass 

is the most affordable type of glazing that provides maximum visible transmittance. 

The suggested technique is passive and focuses more on fixing geometry rather than 

using complex systems or materials. These slats are retrofittable to the existing 

buildings in addition to their ability to be integrated in new buildings.  

    

1.10 Thesis Organization 

 

The thesis is arranged in five chapters as illustrated below. 

 

Chapter 1 presents the background of this research and the problem addressed 

in this study. The research objectives and the research questions are set in this chapter 

along with the research scope, limitations and research significance.   

 

Chapter 2 focuses on the literature review by presenting a theoretical 

background of solar radiation and geometry, and glass optical properties. Previous 

studies related to shading are also presented and discussed. 

 

Chapter 3 provides an overview of the study context and an explanation of the 

followed methodology in conducting this study and analysing the results. It also 

presents the field experiment that was performed to validate the thermal simulation 

software and experiments that were used by other researchers to validate the daylight 

simulation software. 

 

Chapter 4 presents the simulation results with analysis of the thermal and 

daylight performances of the different studied cases. Furthermore, it presents a 

discussion on the relation between the obtained findings and the solar behaviour of the 

study context.   
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Chapter 5 concludes the research by presenting a summary of the study 

findings along with recommendations and possible future studies in light of this study 

findings.        
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