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Arsenic is a metalloid of global concern that primarily exists in two inorganic 

forms of severe toxicity, As (III) and As (V). The reduction of As (V) to As (III) 

increases toxicity, mobility and bioavailability of arsenic. Understanding how 

microorganisms reduce As (V) is important to elucidate As (V) reduction mechanism 

and inevitably, discover approaches to minimise its toxic impact on the environment. 

This study was aimed at investigating the capability of arsenic tolerant 

Microbacterium foliorum strain SZ1 isolated from gold ores to undergo As (V) 

reduction to As (III). This strain demonstrated complete reduction of 1 mM As (V) 

achieved within 120 hours under aerobic condition indicating a possible mechanism 

of detoxification through regulation of ars operon. Further optimization of factors 

enhancing As (V) reduction capacity of strain SZ1 resulted in complete reduction of 

1 mM As (V) achieved within 36 hours in Tris minimal medium supplemented with 

10 mM sucrose and 0.1 % (w/v) tryptone at pH 7.  The effect of cell adaptation or 

acclimation towards As (V) reduction was investigated. Well-adapted strain SZ1 

recorded complete reduction of 0.5 mM As (V) to 3 mM As (V) within 18 hours to 

42 hours incubation. Exopolysaccharides (EPS) was observed to be secreted during 

reduction of As (V) and subjected to further characterization through chemical 

analysis of neutral carbohydrate and protein contents and Fourier transform infra-red 

(FT-IR) analysis. As As (V) concentration increased, so did the protein and 

carbohydrates concentration of EPS, indicating that EPS played an important role in 

enabling strain SZ1 to resist and reduce arsenic. Haldane inhibition model was used 

to fit the reduction rate at different initial As (V) concentrations and the parameters 

µmax, Ks and Ki were determined to be 0.14 h
-1

, 0.39 mM and 35.3 mM, respectively. 

In addition, presence of As (III) as the final product was further confirmed by 

detection through high performance liquid chromatography (HPLC) analysis. Field 

emission scanning electron microscopy analysis (FESEM) showed that cells grown 

in the presence of As (V) exhibited distinct changes in cell morphology and presence 

of EPS. Exploration of the draft genome of M. foliorum SZ1 identified the presence 

of ars operon (arsC-arsC-ACR3-arsT-arsC-arsR-arsC) and another two stand-alone 

genes, arsC and arsB which further confirmed SZ1’s tolerance towards high 

concentration of arsenic. From the screening of plant growth promoting (PGP) traits, 

strain SZ1 was able to produce siderophores and indole acetic acid which highlighted 

its potential use in microbe-assisted arsenic phytoremediation. This is the first study 

that elucidates the characterization of As (V) reduction by M. foliorum SZ1. 
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Arsenik adalah metaloid perhatian dunia yang wujud terutamanya dalam dua 

bentuk bukan organik bertoksik tinggi, iaitu As (III) dan As (V). Penurunan As (V) 

kepada As (III) meningkatkan ketoksikan, pergerakan dan bioketersediaan arsenik. 

Memahami bagaimana mikroorganisma menurunkan As (V) adalah penting untuk 

menerangkan mekanisme penurunan As (V) dan seterusnya, mencari pendekatan 

untuk meminimumkan kesan toksiknya terhadap alam sekitar. Kajian ini bertujuan 

untuk menyiasat keupayaan Microbacterium foliorum strain SZ1, bakteria 

berketahanan tinggi terhadap arsenik yang dipencilkan daripada bijih emas untuk 

menjalani penurunan As (V) kepada As (III). Strain ini menunjukkan penurunan 

lengkap 1 mM As (V) yang dicapai dalam masa 120 jam di bawah keadaan aerobik 

berkemungkinan mekanisme detoksifikasi adalah melalui aturan operon ars. Faktor-

faktor peningkatan kapasiti strain SZ1 yang dioptimumkan menghasilkan penurunan 

lengkap 1 mM As (V) dicapai dalam masa 36 jam dalam medium Tris minimal 

dilengkapi dengan 10 mM sukrosa dan 0.1 % (w/v) tryptone pada pH 7. Kesan 

adaptasi atau penyesuaian sel terhadap penurunan As (V) telah disiasat. Strain SZ1 

yang telah beradaptasi dengan baik merekodkan penurunan lengkap 0.5 mM As (V) 

hingga 3 mM As (V) dalam masa 18 jam hingga 42 jam eraman. Eksopolisakarida 

(EPS) diperhatikan telah dirembes sewaktu penurunan As (V) dan tertakluk kepada 

pencirian lanjut melalui analisis kimia karbohidrat neutral dan kandungan protein 

serta analisis spektroskopi inframerah (FT-IR). Semakin kepekatan As (V) 

meningkat, semakin tinggi kepekatan protein dan karbohidrat EPS menunjukkan EPS 

memainkan peranan penting dalam memastikan strain SZ1 merintang dan 

menurunkan arsenik. Model perencatan Haldane telah digunakan untuk 

menyesuaikan kadar penurunan pada kepekatan As (V) yang berbeza dan parameter 

µmax, Ks dan Ki telah ditentukan pada 0.14 h
-1

, 0.39 mM and 35.3 mM, masing-

masing. Di samping itu, kehadiran As (III) sebagai produk terakhir telah dipastikan 

lebih lanjut melalui pengesanan analisis kromatografi cecair prestasi tinggi (HPLC). 

Mikroskop imbasan elektron emisi medan (FESEM) menunjukkan sel yang 

bertumbuh dalam kehadiran As (V) memaparkan perubahan morfologi dan kehadiran 

EPS. Penerokaan draf genom M. foliorum SZ1 mengenalpasti kehadiran operon ars 

(arsC-arsC-ACR3-arsT-arsC-arsR-arsC) dan dua lagi gen yang berdiri sendiri, arsC 

dan arsB mengesahkan ketahanan tinggi strain SZ1 terhadap arsenik. Daripada 

penyaringan kriteria menggalakkan pertumbuhan tumbuhan, strain SZ1 didapati 

menghasilkan siderophores dan asid indola asetik yang berpotensi untuk 

diaplikasikan dalam fitopemulihan arsenik dibantu mikrob. Ini adalah kajian pertama 

yang menjelaskan perincian penurunan As (V) oleh M. foliorum SZ1. 
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INTRODUCTION 

1.1 Background of the Study 

Contamination of the environment with arsenic as a result of natural and 

anthropogenic sources has occurred in many parts of the world and is acclaimed as a 

global problem. Amongst major industrial processes that contribute to elevated 

arsenic concentration in air, water and soil is mining industry with mine tailings and 

effluents usually containing high arsenic concentration (Wang and Mulligan, 2006). 

In Malaysia, the famous Tasik Biru, formed from an open cast gold mining pit is 

declared unsafe by Natural Resources and Environmental Board of Sarawak due to 

high arsenic content exceeding class IIA/IIB limit of 0.05 mg/L set by National 

Quality Water Standards for Malaysia. A news report in the New Straits Times in 

August 2015 revealed very high arsenic content in fishes caught in Sungai Pengorak, 

a consequence of unregulated bauxite mining in Pahang that led to an alarmingly 

high and widespread pollution (Aliza Shah, 2015). The adverse effects resulting from 

arsenic contamination are severe to the environment and ultimately to the organisms 

living within it. Arsenic poisoning has been reported in many areas of the world 

spanning more than 21 countries with Bangladesh recording the worst hit case of 

mass arsenic poisoning in the world (Ghosh et al., 2008). It is an established fact that 

exposure even to low doses of arsenic lead to carcinogenesis not only in human, but 

in most other forms of life (Mandal and Suzuki, 2002). In view of the global problem 
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associated with arsenic and its impact on society, removal of arsenic from soil and 

water is indeed a major environmental need and concern. 

Arsenic naturally exists in four oxidation states, 0 (elemental), -3 (arsine), +3 

(arsenite) and +5 (arsenate), with the most common forms occurring as arsenate (As 

(V)) and arsenite (As (III)). Both inorganic forms are toxic to the majority of living 

organisms with As (III) considered to be ten times more toxic than As (V) (Squibb 

and Fowler, 1983). As (III) exists as a neutral species at most pH range in natural 

water causing it to be more mobile than As (V) and subsequently one of the most 

problematic metalloids in the environment. Therefore, in arsenic contaminated 

environment, a major concern is the potential for the reduction of As (V) to As (III) 

which may initiate the mobilization of arsenic in aqueous environment. Arsenic 

resistant bacteria that reduce As (V) to As (III) via detoxification mechanism have 

been implicated as possible catalyst of arsenic mobilization in oxic conditions 

especially in mine tailings (Drewniak et al.,  2008; Guo et al., 2015; Inskeep et al., 

2002; Macur et al., 2001). These types of bacteria are numerous in the environment, 

however its role in mobilizing arsenic is largely ignored to date (Drewniak et al., 

2008). 

Reduction of As (V) and subsequent methylation of As (III) are thought to be 

two key steps in detoxifying inorganic arsenic compounds (Dhanker et al., 2006; Qin 

et al., 2009).  A number of arsenic resistant bacteria capable of reducing As (V) to 

As (III) have been successfully isolated and identified from arsenic contaminated 

sites (Anderson and Cook, 2004; Patel et al., 2007; Bachate et al., 2008; Archour-

Rokbani et al., 2010; Giudice et al., 2013). Arsenic transformation, arsenic 

accumulation, arsenic resistance genes, arsenate reductase enzyme activity and its 

role in arsenic detoxification were investigated as it can build a practical guidance on 

ways of avoiding and reducing arsenic contamination. Hence, it is very important to 

screen the diverse microbial populations in the environment for more arsenic 

resistance microorganisms. Isolation and characterization of arsenic resistant bacteria 

capable of reducing As (V) from the environment would provide the fundamental 
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studies for improving the biological treatment of arsenic generated from mining 

effluent or polluted soil. 

1.2 Problem Statement  

Generally, arsenic bioremediation focuses on the application of As (III) 

oxidizing bacteria as it transforms the more toxic and mobile form of As (III) to less 

toxic, less mobile As (V) which is an ideal transformation.  However, this approach 

is suitable where As (III) is the main pollutant and limited for water system. In the 

case of remediation of arsenic contaminated soil, As (V) reduction mechanism is 

proven to be a better approach (Drewniak and Sklodowska, 2013; Wang and  Zhao, 

2009). This is due to the fact that As (V) is the major species detected in soil and 

usually found adsorbed onto soil mineral (Drewniak and Sklodowska, 2013). 

Therefore, As (V) reducing bacteria could transform As (V) into the mobile and less 

sorptive form of As (III), promoting arsenic removal from the soil. Following that, 

As (III) can be completely removed from solution by its precipitation or 

complexation with sulfide or sulfide containing minerals (Newman et al., 1997; 

Rochette et al., 2000) as well as adsorption to Fe (II) based solid (Nishimura and 

Umetsu, 2000; Roberts et al., 2004).  

However, much of the research up to now have only focused on the role of 

dissimilatory As (V) reducing bacteria as the potential agent for bioremediation of 

arsenic contaminated soil rather than As (V) reducing bacteria (Drewniak et al., 

2014; Kudo et al., 2013; Sierra-Alvarez et al., 2005; Soda et al., 2009; Yamamura et 

al., 2003; Yamamura et al, 2005). A key issue is the irrelevant role of As (V) 

reducing bacteria in mobilizing arsenic (Zobrist et al., 2000). Nevertheless, there 

have been well documented reports suggesting As (V) reducing bacteria plays an 

important role in mobilization of arsenic in oxic soil and surface water (Cullen and 

Reimer, 1989; Drewniak et al., 2008; Guo et al., 2015; Macur et al., 2004; Macur et 

al., 2001; Sohrin et al., 1997). Although As (V) reducing bacteria enhanced arsenic 
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mobilization, little attention has been given on its bioremediative potential. In recent 

years, there has been an increasing interest in the application of As (V) reducing 

bacteria in assisting arsenic hyperaccumulator plant for removal of arsenic from soil 

or water as As (III) is more desirable form of arsenic for plant’s uptake due to its 

mobility and inhibition of As (V) uptake by phosphate (Cavalca et al., 2010; Yang et 

al., 2012). Moreover, the abundance of As (V) reducing bacteria and the ease of 

handling indicate the feasibility of this type of bacteria in comparison to 

dissimilatory As (V) reducing bacteria, to which its applicability is limited under 

anoxic condition.  

Therefore, it is of paramount importance to understand the knowledge of the 

physiology and the underlying mechanism of As (V) reducing bacteria for providing 

insights into the potential of arsenic bioremediation.  

1.3 Objectives of the Study 

This study was carried out to investigate the capability of arsenic tolerant 

bacterium isolated from gold ores to undergo As (V) reduction to As (III). The 

specific objectives of the study were: 

 

i) To isolate, screen and characterize arsenic resistant bacteria from a gold 

mining environment 

 

ii) To characterize and optimize As (V) reducing properties of isolated As 

(V) reducing bacteria 
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iii) To elucidate As (V) reducing pathway via biochemical and whole 

genome analysis and evaluate the bioremediative potential of isolated As 

(V) reducing bacteria. 

1.4 Scope of the Study 

In this study, bacteria were isolated from arsenic contaminated sources 

originated from a gold mining environment with the aim of obtaining arsenic 

resistant bacteria. Following isolation and screening, identification of arsenic 

resistant bacteria was conducted using 16S rRNA analysis. Characterization of the 

isolates in terms of tolerance towards As (III) and As (V) and growth rates in the 

absence and presence of arsenic was conducted. After that, the isolates were screened 

for arsenic transformation capabilities with only one isolate demonstrating As (V) 

reducing trait, hence, selected for further studies. Parameters (effect of carbon 

sources and its concentration, effect of nitrogen sources and its concentration, 

influence of pH, effect of cell adaptation or acclimation, effect of initial As (V) 

concentrations) influencing As (V) reduction were optimized conventionally using 

one factor at a time (OFAT) method. Then, Haldane inhibition model was used to fit 

the reduction rate at different initial As (V) concentrations for determination of 

biokinetics parameters. The final reduction products and the possible presence of 

methylated arsenic were investigated using high performance liquid chromatography 

(HPLC). Characterization of cells morphology in the absence and presence of arsenic 

was evaluated using FESEM-EDX. In addition, whole genome sequence of isolate 

was analysed using Next Generation Sequencing (NGS) to explore the presence of 

arsenic resistance mechanism. At the end of the study, the potential of isolate for 

bioremediation of arsenic was elucidated.  
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1.5 Significance of Study 

The present study was focused on the characterization of As (V) reduction by 

locally isolated arsenic tolerant Microbacterium foliorum strain SZ1. Important 

environmental parameters enhancing As (V) reduction capacity of strain SZ1 were 

provided in this study. In addition, Haldane substrate inhibition model was employed 

for the estimation of biokinetic parameters for As (V) reduction. To the best of our 

knowledge, the application of Haldane substrate inhibition model to describe growth 

kinetics of As (V) reducing bacteria that reduced As (V) through detoxification 

mechanism has yet to be reported. Apart from that, the availability of genome 

sequences of strain SZ1 determined from Next Generation Sequencing method 

allowed the identification of its arsenic resistance mechanism. The presence of two 

important plant growth promoting traits accompanied with the capability to produce 

extracellular polysaccharides (EPS) and high arsenic resistance highlighted this strain 

potential use in microbe – assisted arsenic phytoremediation. The findings of this 

study allow better understanding of the role played by As (V) reducing bacteria in 

arsenic transformation. This is the first study ever reported on the characterization of 

As (V) reduction by Microbacterium foliorum strain SZ1. 

 

.   
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