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ABSTRACT 

The study of cold-adapted bacteria for biohydrogen production has attracted 

much interest in the last few decades due to the lower energy input required during the 

fermentation process. However, an extended lag phase of growth and slow metabolic 

rate of the bacteria remain the obstacles for the process to be feasible, particularly for 

obligate psychrophilic and psychrotolerant bacteria. Bacteria with the oxygen-tolerant 

ability are also favourable for large-scale fermentation. Thus, there is a need to find 

oxygen-tolerant bacteria capable of producing biohydrogen at mesophilic temperature. 

In this study, Antarctic soil and seawater samples were used for bacterial isolation, 

before being screened for biohydrogen production ability. Twelve bacteria were 

successfully isolated and six were found capable of producing biohydrogen. The 

bacterium with the highest biohydrogen production was characterised. The optimum 

physicochemical parameters, such as temperature, pH and carbohydrate concentration 

were determined using one-factor-at-a-time (OFAT) approach. Appropriate nitrogen 

source, temperature tolerance and the effects of dissolved oxygen on the growth and 

biohydrogen productivity were also investigated. Precise optimal factors for 

biohydrogen productivity were then examined using the three-level factorial design of 

Response Surface Methodology (RSM). Identification of bacterium with the highest 

biohydrogen production showed that it was closely related to Klebsiella pneumoniae 

with 99% similarity based on the 16S rRNA analysis. The bacterium was therefore 

designated as Klebsiella sp. ABZ11. It was a Gram-negative bacillus, with no capsule 

detected and grew at a temperature range of 20-40°C, and exhibited 95% uptake of 

dissolved oxygen in two hours. Screening using OFAT suggested that the optimum 

conditions for biohydrogen production were 30°C, an initial pH of 6.5, and with 

glucose supplemented with concentration of 10 g/L. The bacterium utilised various 

types of carbon and nitrogen sources for biohydrogen production but preferred glucose 

as the carbon source and beef extract as the nitrogen source. Further optimisation using 

RSM revealed that the highest biohydrogen productivity (110.15 mol/L) was obtained 

at 33.5°C, with an initial pH of 6.75 and glucose concentration of 9.15 g/L. For each 

gram of glucose supplied, the yield for biohydrogen and cell-biomass was 122 mol/L/g 

and 0.87 g, respectively. Kinetics showed that the bacterium used more of the glucose 

for biohydrogen production than for biomass formation in the fermentation process. A 

scale-up culture using the optimised conditions recorded a biohydrogen production of 

137.56 mol/L in 36 h with a cumulative yield of 533.51 mol/L. In conclusion, batch 

fermentation using Klebsiella sp. ABZ11 under mesophilic temperature was found to 

have decreased lag phase of growth and increased metabolic rate, thereby influencing 

faster and higher biohydrogen production. 
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ABSTRAK 

Kajian bakteria adaptasi sejuk untuk pengeluaran biohidrogen telah menarik 

minat banyak pihak sejak beberapa dekad yang lalu berikutan input tenaga yang rendah 

diperlukan semasa proses fermentasi. Walaubagaimanapun, fasa lamban pertumbuhan 

bakteria yang panjang dan kadar metabolisma yang perlahan menjadi halangan utama 

bagi proses ini dilaksanakan, terutamanya bagi bakteria psikrofilik obligat dan 

psikrotoleran. Bakteria dengan keupayaan toleransi oksigen juga lebih sesuai untuk 

fermentasi berskala besar. Oleh itu, terdapat keperluan untuk mencari bakteria 

toleransi oksigen yang mampu menghasilkan biohidrogen pada suhu mesofilik. Dalam 

kajian ini, sampel tanah dan air laut Antartika digunakan untuk pengasingan bakteria, 

sebelum disaring berdasarkan keupayaan penghasilan biohidrogen. Dua belas bakteria 

telah berjaya diasingkan dan enam didapati mampu menghasilkan biohidrogen. 

Bakteria yang menghasilkan biohidrogen tertinggi dicirikan dan parameter fizikokimia 

optimum, seperti suhu, pH dan kepekatan karbohidrat ditentukan menggunakan 

kaedah satu-faktor-pada-satu-masa (OFAT). Sumber nitrogen yang sesuai, toleransi 

suhu dan kesan oksigen terlarut terhadap pertumbuhan dan produktiviti biohidrogen 

juga dikaji. Faktor optimum yang tepat untuk produktiviti biohidrogen turut diperiksa 

dengan menggunakan reka bentuk faktorial tiga-tahap Kaedah Gerakbalas Permukaan 

(RSM). Bakteria yang menghasilkan biohidrogen tertinggi didapati berkait rapat 

dengan Klebsiella pneumoniae sebanyak 99% persamaan berdasarkan analisis 16S 

rRNA. Bakteria itu kemudiannya dinamakan sebagai Klebsiella sp. ABZ11. Bakteria 

ini adalah basilus Gram-negatif, tanpa kapsul dan hidup dalam julat suhu 20-40°C, 

dengan kadar pengambilan oksigen terlarut sebanyak 95% dalam masa dua jam. 

Penyaringan OFAT mencadangkan bahawa keadaan optimum untuk penghasilan 

biohidrogen ialah 30°C, pada pH awal 6.5 dan kepekatan glukosa 10 g/L. Bakteria ini 

menggunakan pelbagai jenis sumber karbon dan nitrogen untuk penghasilan 

biohidrogen, tetapi lebih memilih glukosa sebagai sumber karbon dan ekstrak daging 

sebagai sumber nitrogen. Pengoptimuman lanjut menggunakan RSM menunjukkan 

bahawa penghasilan biohidrogen tertinggi (110.15 mol/L) diperoleh pada 33.5°C, 

dengan pH awal 6.75 dan kepekatan glukosa 9.15 g/L. Kajian kinetik menunjukkan 

bahawa bakteria ini lebih banyak menggunakan glukosa untuk menghasilkan 

biohidrogen berbanding untuk pembentukkan biojisim dalam proses fermentasi. 

Sebanyak 122 mol/L/g biohidrogen dan 0.87 g biojisim dihasilkan bagi setiap gram 

glukosa. Pada kesimpulannya penyelidikan skala besar pada keadaan yang optimum 

menunjukkan penghasilan biohidrogen sebanyak 137.56 mol/L dalam 36 jam dengan 

hasil kumulatif sebanyak 533.51 mol/L. Fermentasi kelompok menggunakan 

Klebsiella sp. ABZ11 di bawah suhu mesofilik membuktikan dapat memendekkan fasa 

lamban pertumbuhan dan meningkatkan kadar metabolisma, sehingga mempengaruhi 

pengeluaran biohidrogen yang lebih cepat dan tinggi.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Energy is very important owing to its role as critical input in the creation of 

goods and services and in other human activities. Before the emergence of 

industrialised societies, the balance energy going into and out of the atmosphere was 

at equilibrium, as it was mainly recirculated between the naturally occurring plants and 

animals. This balance, however, was altered as a result of man’s reliance on fossil fuels 

(coal, petroleum, and natural gas) as the major sources of energy for domestic and 

industrial uses (see figure 1).  This energy imbalance is brought about due to the 

increasing emission of toxic gases such as CO2, NOX, CO and sulphur into the 

atmosphere (Bächtold, 2018). This indicates that global energy sources are largely 

dependent on coal, petroleum and natural gas. 

Excessive reliance on these sources exposed the environment to dangers such 

as ozone depletion and drought. It also emphasizes the need to explore biological 

sources of renewable energy that are cost-effective and pose a minimum possible 

danger to the environment.  Figure 1.1 presents the various energy sources and their 

percentage contribution to the global energy supply: Biohydrogen production and 

associated sources of energy supply constitute an insignificant 1% of the global energy 

supply. This status quo is not due to lack of potentials in the use of hydrogen as a fuel 

source, but due to the emergent state of research and development in the field. There 

is, therefore, the need for upscaling research and development activities in this field of 

enquiry. 
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Figure 1.1 Energy sources and their contribution to global supply 

 

At present, the world satisfies 80% of its energy needs from fossil sources that 

are associated with problems of greenhouse gas emission, climate change and 

environmental pollution (Xu et al, 2018). Gasification of coal and natural gas, as well 

as the burning of petroleum oil, release large quantities of greenhouse gases (e.g., black 

carbon and ozone) into the atmosphere. These gases are toxic and heat up the 

atmosphere. Also, the greenhouse gases return as sulphur back to the ecosystem in the 

form of acid rain, damaging building-roofs and other iron-containing material by 

making them rust.  

Moreover, the gases have long-term adverse effects on human health, including 

respiratory, cardiovascular and cerebrovascular infections such as asthma, lung, colon 

and breast cancer, and heart diseases (Patz et al, 2005; Haines et al, 2009). In addition, 

toxic gases from fossil fuel exacerbate climate change problems directly linked to 

drought and famine. Currently, 800 million people have been estimated to be 

malnourished as a result of climate change-induced problems (McMichael, 2017). To 

mitigate the foregoing environmental, economic, and social problems, scientists are on 

the relentless search for better and safer sources of energy. One source that has so far 

shown promising potentials but has not been fully investigated is hydrogen. 

Hydrogen is a timely option for fossil fuel owing to its high energy yield per 

unit mass. It yields 122kJ per gram, which is 2.75 times higher than the conventional 

fossil fuels (Singh and Wahid, 2015). Moreover, fermentative hydrogen production as 
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energy source generates water (H2O) and a small amount of NOx as by-products. The 

more fossil fuels are replaced with hydrogen, the greater will be the reduction of 

greenhouse gas emission (Huang and Tan, 2014). In fact, science has moved from a 

justification of hydrogen as an energy source to looking into ways hydrogen could be 

produced in commercial quantities and used on a sustainable basis. It is to contribute 

to this global scientific drive that this study was carried out. We investigated and 

reported on hydrogen production through microbial fermentation using bacteria 

isolated from a naturally low temperature (±5°C) environment. 

Hydrogen as biofuel can be produced through microbial fermentation of 

naturally available waste materials. These materials are diverse, cheaper and eco-

friendlier compared to the energy from fossil fuel sources. Thus, biological methods 

of generating hydrogen as biofuel offer a better solution to a wide range of 

environmental problems associated with the conventional methods that rely on fossil 

sources. Biohydrogen production is not only a credible alternative to energy-need 

satisfaction but also a potent environmental conservation strategy for the reduction of 

wastes, a safer way for the degradation of many toxic organic substrates, and the 

promotion of a healthier atmosphere. 

The success of biohydrogen generation through biological process is much 

dependent on the efficient microorganism in the system. Different types of bacteria 

from various environments have been evaluated for biohydrogen production. 

However, the efficiency of these bacteria in hydrogen production remains a challenge. 

This is due to their slow metabolic rate which negatively affects their capability to 

breakdown substrates for hydrogen production. This is evident in a prolonged 

carbohydrate uptake and hydrogen production under fermentative process 

demonstrated by this strain of bacteria (Gupta et al, 2016). Thus, studies are still 

focusing on the search for highly efficient bacteria from different environments for 

biofuel production.   

The polar environment is inhabited by many organisms including bacteria, 

yeasts, fungi and algae. These microorganisms have undergone physiological 

adaptation and acquired specific enzymes needed to survive in the harsh Antarctic 
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environment. This adaptability greatly boosts their biochemical efficiency and activity 

similar to mesophilic microorganisms (De Maayer et al, 2014). They are often 

explored for commercial production of drugs, detergents and fertilizer due to 

possession of enzymes such as proteases, lipases, α-amylases, cellulases and β-

galactosidase (Saxena, 2015). However, less attention has been given to the use of 

cold-adaptive bacteria in the generation of energy as an alternative replacement for 

fossil fuels. The increasing dangers of climate change and its potentially disturbing 

values warrants concerted effort at exploiting every available and environmentally 

friendly alternative energy source. Polar bacteria offer such an alternative 

The potential of polar bacteria in hydrogen production is strategic in renewable 

energy production. Thus, they are viewed as a good biological source of renewable 

energy. Most importantly, the energy-saving potential and activity under low 

temperature associated with polar bacteria are characteristics that could enhance 

renewable energy production and its sustainability.  Only a few psychrophilic bacteria 

from the polar environment have been investigated for biohydrogen production. 

However, the slow metabolic rate and carbohydrate uptake by psychrophilic bacteria 

reported remains problematic in fermentative hydrogen production. Specifically, 

psychrophilic bacteria are known for prolonged production start-up and carbohydrate 

take-up (Alvarez-Guzmán et al, 2016). Hence, the need for a cold-active bacterium 

with hydrogen production potential under moderate temperature for improved 

metabolic activity. 

Generally, microorganisms grow very slowly at low temperatures. Low 

temperatures affect the metabolic rate and substrate degradation capabilities of 

microorganisms, resulting in low biogas yield in a typical fermentation process. 

Studies have shown that temperature does not only affect bacterial growth but will also 

affect the timeframe for growth. For instance, Dobrić and Bååth, (2018) investigated 

the effect of temperature on lag period and exponential growth of bacteria. They found 

that the lag phase was around 12 hours at 25°C and 30°C. However, the lag phase 

increased to almost 200 hours at 0°C. Since growth involved substrate intake to build 

cell components, this implies that temperature also impacts the rate of substrate 

breakdown and metabolic rate of enzymes involved in the process. 



 

5 

Similarly, Alvarez-Guzman et al, (2016) observed lag-phase of 20 h, 50 h and 

20 h for Antarctic psychrophilic G088 strain with hydrogen production starting after 

43 h, 21 h and 34 h for glucose, fructose and sucrose respectively. This prolonged 

growth lag-phase and hydrogen production start-up are linked to the fermentation at 

20°C that affected the metabolic rate and breakdown of the substrates. Moderate 

temperature would have more influence on biogas productivity than low temperature 

since every 10°C increase in temperature has been shown to double the microbial 

growth and their metabolic rate (Robador et al, 2016). In support of this, Deepanraj, et 

al, (2015) reported high biogas production of 7556 ml with better biodegradation 

efficiency and reduced lag phase at 50°C compared to 30°C and 40°C in their 

investigation.  

Biogas yield under a temperature above 20°C would be more favourable for 

biogas production due to the increase in the doubling time. Thus, ambient temperature 

condition can stimulate rapid production of hydrolytic enzymes by psychrotolerant 

bacteria for fast substrate degradation in order to generate more energy in the 

fermentative process (Morgan-Kiss et al, 2018; Saratale et al, 2018). This means that 

moderate temperature can be used to increase the productive capabilities of cold-active 

bacteria. Microorganisms with such capabilities are the psychrotolerant strains that 

proliferate in the polar environment and in seawater where the influx and ingestion of 

organic matter are greater. However, psychrophiles may not have such ability due to a 

mean cell turnover of about 1 year and a restricted growth temperature (Wang et al, 

2018; Robador et al, 2016). 

Psychrotolerant bacteria can thrive at a mesophilic temperature because of their 

natural physiological characteristics that give them the capability to survive at various 

temperature conditions and oxygen concentration. Thus, the exploration of hydrogen 

productivity of psychrotolerant bacteria is important because of their bioactivity at 

moderate temperature, which has been shown to inactivate psychrophilic strain in 

fermentative process. It is obvious that they will improve biohydrogen production by 

greatly enhancing hydrogenase activity compared to psychrophiles due to the influence 

of the moderate fermentation temperature. Hence, contributing to improvement of low 
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biohydrogen yield that has been the main constrain for its industrialization process 

(Xiao et al, 2013).  

Psychrotolerant bacteria survive the harsh condition of polar environment and 

more abundant in that habitat. Oxygen tolerance (Sandle et al, 2013), ability to degrade 

vast nutrients and grow in vast pH condition, exchange of traits with mesophilic 

bacteria through plasmid (Dziewit and Bartosik, 2014). These potentials have not been 

intensively tapped in fermentative hydrogen production. This study is aimed at tapping 

these potentials of psychrotolerant bacteria to improve biohydrogen production 

through utilisation for biogas production at ambient condition. It is expected that these 

potentials will contribute significantly to production of hydrogen through utilisation 

of this strain of bacteria for production.  

1.2 Problem Statement 

Reliance on fossil fuels for energy supply has contributed immensely to global 

warming, environmental pollution and acid rain due to the enormous greenhouse gases 

often emitted into the atmosphere following the use of fossil fuel. Fermentative 

biohydrogen production through thermophilic bacteria is unsustainable renewable 

energy generation process owing to the high energy required.  

The activity of psychrophilic microorganisms at low temperature has positive 

influence on biofuel production owing to the energy-saving and the sustainability 

properties. However, frequently reported slow metabolism and growth within a narrow 

temperature range (0-20°C) delay their biosynthetic characteristics. 

In view of the foregoing, therefore, using psychrotolerant bacteria in hydrogen 

production offers better potentials as input in alternative energy production. This 

potential is feasible due to the improved substrate uptake of psychrotolerant bacteria 

and their adaptation to a wider temperature range (0-40°C). Since the temperature has 

been identified as a major factor that influences enzyme activity, this study relies on 

the temperature adaptability of the of psychrotolerant bacteria in tapping the maximum 
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biohydrogen producing potentials of these bacteria. Further, the bacteria rely on its 

adaptability characteristic to bring about improved substrate degradation through rapid 

metabolic activity, thereby improving their biohydrogen production. 

1.3 Research Objectives 

1 To isolate and characterise psychrotolerant bacteria isolated from Antarctica 

for biohydrogen production. 

2 To evaluate the physicochemical conditions for biohydrogen production and 

determine the oxygen uptake capability of bacterium. 

3 To optimise biohydrogen production using Central Composite Design of 

Response Surface Methodology (RSM). 

1.4 Scope of the Study 

The study covered the isolation of facultative psychrotolerant bacteria from 

Antarctic seawater. The bacteria obtained were screened for hydrogen production and 

the potential bacterium identified. Selected biochemical tests and screening were 

carried out to determine the virulent properties and oxygen take-up capability of the 

bacterium. Effects of different carbohydrate and nitrogen sources on the biohydrogen 

productivity of the bacterium were studied. Then optimization for biohydrogen 

production was finally examined by Central Composite Design (CCD) component of 

the Response Surface Methodology (RSM) design expert.  

1.5 Significance of the Study 

Cold-active bacteria have become attractive microorganisms for hydrogen 

production owing to their potential energy-saving activity at ambient-temperature 
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