IMPLEMENTATION OF HARRIS CORNER DETECTOR ON FPGA

MOHAMMED OMAR AWADH AL-SHATARI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electronics & Telecommunication)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2016

An appreciation to all who made this possible especially my parents, wife, supervisor and friends.

ACKNOWLEDGEMENT

First, I wish to thank Allah for the strength He has given me to complete this project. It was a valuable experience and great opportunity for me to work on such project. I would like to thank the people who offered me their help and advice during my project time. I would like to express my deepest gratitude to my supervisor, Dr. Nasir Shaikh Husin for giving me the opportunity to work with him and for his guidance, motivations and advice. Next, I wish to convey my sincere appreciation to my family for their love, blessing and support. Last but not least, I would like to thank all my friends who were involved directly or indirectly for their knowledge, support, kindness and the time we spent together.

ABSTRACT

Harris Corner Detector (HCD) algorithm is widely used in many applications of image processing. Its performance with noisy images exceeds many other methods, in terms of accuracy and stability. Various methods are used to compare images and detect moving objects such as block matching but these methods are slow and have less accuracy. Moreover, the implementation of HCD has been proven to be computationally intensive, therefore, real-time streaming is difficult to achieve with sequential software implementation. This report presents the hardware implementation of HCD using Field-Programmable Gate Array (FPGA). The targeted board for the design is DE2-115 FPGA development board with an Altera Cyclone IV device. The architecture was tested using a SystemVerilog test-bench, enveloped by a MATLAB test-bench. The accuracy of the results obtained was tested visually and compared with the results of the same algorithm implemented in MATLAB. A maximum operational frequency of 170 MHz was achieved. The system uses 40% of the board's logic elements. Resource utilization and timing performance are considerably balanced compared to recent works.

ABSTRAK

Algoritma Harris Corner Detector (HCD) digunakan secara meluas untuk aplikasi pemprosesan imej. Prestasinya untuk imej hingar melebihi kebanyakan kaedah yang lain, dari segi ketepatan dan kestabilan. Pelbagai kaedah digunakan untuk membandingkan imej dan mengesan pergerakan objek seperti pemadanan blok tetapi kaedah-kaedah tersebut adalah perlahan dan kurang tepat. Selain itu, pelaksanaan HCD terbukti memerlukan proses pengkomputeran yang intensif, maka strim dalam masa nyata adalah sukar untuk dicapai dengan pelaksanaan perisian secara berjujukan. Laporan ini membentangkan pelaksanaan perkakasan HCD menggunakan Field-Programmable Gate Array (FPGA). Papan litar yang disasarkan untuk reka bentuk HCD adalah papan pembangunan FPGA DE2-115 dengan peranti Cyclone IV Altera. Senibina ini telah diuji menggunakan penanda aras SystemVerilog, dengan dikelubungi oleh penanda aras MATLAB. Kejituan dalam keputusan yang diperolehi telah diuji secara visual dan dibandingkan dengan keputusan algoritma yang sama yang dilaksanakan dalam MATLAB. Frekuensi pengendalian maksimum 170 MHz telah dicapai. Sistem ini menggunakan 40% unsur logic papan . Penggunaan sumber dan prestasi pemasaan adalah lebih jauh seimbang berbanding pelaksanaan yang terkini.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF APPENDICES	XV
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Motivation	2
	1.3 Objectives	2
	1.4 Scopes	3
	1.5 Report Outline	3
2	LITERATURE REVIEW	4
	2.1 Introduction	4
	2.2 Corner Detection	4
	2.3 Qualitative Description of Corner Detection	4
	2.4 Mathematical Description of Corner Detection	5
	2.5 Harris Corner Detector	11
	2.6 Related Work	17

METHODOLOGY	19
3.1 Introduction	
3.2 Harris Corner Detector	20
3.2.1 Spatial Derivatives	21
3.2.1.1 Algorithm of Spatial Derivatives	22
3.2.1.2 Dataflow Graph of Spatial Derivatives	23
3.2.1.3 Functional Block Diagram of Spatial	24
Derivatives	
3.2.2 Gaussian Filtering	25
3.2.2.1 Algorithm of Gaussian Filter	26
3.2.2.2 Dataflow Graph of Gaussian Kernel	27
3.2.2.3 Functional Block Diagram of Gaussian Filter	28
3.2.2.4 Pixel Buffer	30
3.2.2.5 Block RAM (BRAM) of Gaussian Filter	30
3.2.3 Harris Response	31
3.2.3.1 Algorithm of Harris Response	31
3.2.3.2 Dataflow Graph of Harris Response	32
3.2.3.3 Functional Block Diagram of Harris Response	33
3.2.4 Non-Maximum Suppression	33
3.2.4.1 Dataflow Graph of Module <i>Max7</i>	34
3.2.4.2 Dataflow Graph of Module <i>Max6</i>	35
3.2.4.3 Non-Maximum Suppression Top-level Module	36
3.2.4.4 Block RAM (BRAM) of Non-Maximum	37
Suppression	

4	RESULT & DISCUSSION	38
	4.1 Introduction	38
	4.2 Spatial Derivatives	38
	4.3 Gaussian Filtering	42
	4.4 Harris Response	44
	4.5 Non-Maximum Suppression	45
	4.6 Performance Analysis	50

5	CONCLUSION AND RECOMMENDATION	52
	5.1 Conclusion	52
	5.2 Recommendations and Future Improvements	53
REFERE	NCES	54
Appendice	es A-B	56-95

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Previous work related to Harris corner detector on FPGA	18
4.1	Performance analysis	51

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Direction of intensity change	5	
2.2	Sum of squared difference when region shifted	6	
	horizontally		
2.3	Sum of squared difference when region shifted vertically	6	
2.4	Sum of squared difference when region shifted in all 7		
	directions		
2.5	Sum of squared difference when region shifted in all	8	
	directions and corner exists		
2.6	Harris corner classification	10	
2.7	Example of corner response	11	
2.8	Kernel proposed in [6] for the estimation of image	12	
	derivatives		
2.9	3x3 Prewitt gradient filter mask (a) X-direction (b) Y-	13	
	direction		
2.10	1-D Gaussian distribution with μ =0 and σ =1	14	
2.11	2-D Gaussian distribution with μ =(0,0) and σ =1	14	
2.12	Discrete Approximation of Gaussian kernel	15	
2.13	1-D Gaussian kernel	15	
2.14	Corner response (a) Unsuppressed (b) Suppressed	16	
2.15	Center pixel example (a) Discarded (b) Unchanged	17	
3.1	Working flow of the system	20	
3.2	Functional block diagram of Harris system	21	
3.3	Derivative kernel (Prewitt operator) (a) X-direction (b)	22	
	Y-direction		

3.4	Derivative Kernel (a) X-direction (b) Y-direction	23
3.5	Dataflow graph of the spatial derivatives	23
3.6	Derivatives top-level module	24
3.7	Functional block diagram of the derivatives module	25
3.8	2-D 5x5 Separable Gaussian filter	26
3.9	1-D Gaussian kernel (a) 1x5 (b) 5x1	27
3.10	Dataflow graph of Gaussian kernel	27
3.11	Top-level module of Gaussian filter	28
3.12	Vertical Gaussian module	29
3.13	Horizontal Gaussian module	29
3.14	Functional block diagram of the Pixel Buffer module	30
3.15	Functional block diagram of BRAM module	31
3.16	Dataflow graph of the Harris response	32
3.17	Functional block diagram of Harris Response module	33
3.18	Dataflow graph of Max7 module in NMS	34
3.19	Dataflow graph of Max6 module in NMS	35
3.20	Top-level module of Non-Maximum Suppression	36
3.21	Functional block diagram of NMS BRAM module	37
4.1	Hardware result of first derivatives (a) Ix (b) Iy	39
4.2	MATLAB result of first derivatives (a) Ix (b) Iy	39
4.3	Hardware result of spatial derivatives (a) <i>Ix2</i> (b) <i>Iy2</i> (c)	40
	IxIy	
4.4	MATLAB result of spatial derivatives (a) <i>Ix2</i> (b) <i>Iy2</i> (c)	41
	IxIy	
4.5	Hardware result of Gaussian smoothing	42
4.6	MATLAB result of Gaussian smoothing	43
4.7	Hardware result of Harris response	44
4.8	MATLAB result of Harris response	45
4.9	Hardware result of non-maximum suppression	46
4.10	MATLAB result of non-maximum suppression	46
4.11	Hardware result of Harris corner detector	47
4.12	MATLAB result of Harris corner detector	47
4.13	Corners of "Lena" image resulted from Hardware	48

4.14	Corners of "Lena" image resulted from MATLAB	48
4.15	Corners of "House" image resulted from Hardware	49
4.16	Corners of "House" image resulted from MATLAB	49
4.17	Simulation report of Harris corner detector system	50

LIST OF ABBREVIATIONS

-	Harris Corner Detector
-	Non-Maximum Suppression
-	Region of Interest
-	Dataflow Graph
-	Hardware Description Language
-	Register Transfer Level
-	Random Access Memory
-	Field Programmable Gate Array
-	Adaptive Non-Maximum Suppression

LIST OF APPENDICES

APPENDIX	TITLE		PAGE
A	SystemVerilog Code		56
В	MATLAB Code		91

CHAPTER 1

INTRODUCTION

1.1 Background

The main overall goal of computer vision is to model and imitate the visual system of the human through computer software and hardware at different levels. The replication of human visual system on computational platform has proven to be problematic and challenging. Computer vision is the field of reconstructing the 3D world from 2D images and computer graphics is pursuing the opposite direction by designing 2D images to simulate the 3D world. However, 3D details are lost during image transformation from 3D world to 2D images which lead to difficulties in analysis of image processing. Image processing is in the middle connecting the computer vision and computer graphics [1].

High-level computer vision tasks and systems like motion estimation rely on the extraction of low-level processes such as image features, interest point and corner detection which represent a small portion of image pixels [2, 3]. Interest points retain similar characteristics even after image transformation, which has to be robustly detected [4]. Image features are used in many applications such as object recognition. The performance of such applications relies on robustness and efficiency on the lowlevel processes. Corners are intuitively distinguishable features; they represent sudden change of intensity levels in more than one direction on the image [5]. A corner detector should satisfy the performance requirements of real-time video streaming applications. Harris corner detector algorithm in [6] is widely used in many applications of image processing. Its performance with noisy images exceeds many other methods, in terms of accuracy and stability, such as SUSAN and Minimum Intensity Change (MIC) [5]. Despite their inherent differences, the computation is similar for most interest point detectors where window-based image processing operators are applied locally on every image position. This makes the extraction process computationally intensive. High-speed corner detection is in high demand for computer vision systems in applications such as motion detection and object recognition [7]. This report presents the hardware implementation of Harris corner detector algorithm on Field Programmable Gate Array (FPGA).

1.2 Motivation

There are some methods used for corner detection to find corners in images. However, the performance of these methods is low especially when implementing noisy images. The implementation of Harris corner detector has been proven to be computationally intensive. Therefore, real-time streaming is difficult to achieve with sequential software implementation. This work proposes a Harris corner detector hardware implementation with high throughput and accuracy to find the corners in an input image using FPGA.

1.3 Objectives

The aim of this work is to present the design and implementation of Harris corner detector on FPGA. To achieve this aim, some objectives must be accomplished:

- 1. To design hardware blocks of the system.
- 2. To apply pipelining to increase throughput.
- 3. To optimize for resource utilization, throughput and latency.
- 4. To verify and visually compare the result with MATLAB.

1.4 Scopes

The scope of this research is limited to the design and implementation of Harris corner detector on FPGA. The targeted FPGA board is Terasic DE2-115 Development Kit and the input image is limited to 256x256 gray scale image. Software used in this project are MATLAB, Quartus II and ModelSim.

1.5 Report Outline

Chapter 1 introduces the background of Harris corner detector. Chapter 2 explains the literature review and the related work of Harris corner detector which has been done prior to this work. Chapter 3 describes the methodology and design of the proposed hardware architecture of Harris corner detector. Each stage of the hardware implementation is explained. Chapter 4 discusses the result of the hardware implementation compared to MATLAB and the analysis of the result. Chapter 5 summarizes the project report and proposes recommendations for future work.

REFERENCES

- 1. Pinoli, J.-C. and J.-C. Pinoli, *Gray-Tone Images*, in *Mathematical Foundations* of *Image Processing and Analysis 1*. 2014, John Wiley & Sons, Inc. p. 1-11.
- 2. Schmid, C., R. Mohr, and C. Bauckhage, *Evaluation of interest point detectors*. International Journal of computer vision, 2000. **37**(2): p. 151-172.
- 3. Szeliski, R., *Computer vision: algorithms and applications*. 2010: Springer Science & Business Media.
- 4. Hernandez-Lopez, A., C. Torres-Huitzil, and J.J. Garcia-Hernandez, *FPGA-based flexible hardware architecture for image interest point detection*. International Journal of Advanced Robotic Systems, 2015. **12**.
- 5. Trajković, M. and M. Hedley, *Fast corner detection*. Image and vision computing, 1998. **16**(2): p. 75-87.
- 6. Harris, C. and M. Stephens. *A combined corner and edge detector*. in *Alvey vision conference*. 1988. Citeseer.
- 7. Mainali, P., et al. Lococo: Low complexity corner detector. in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on. 2010. IEEE.
- 8. Loundagin, J., *Optimizing Harris Corner Detection on GPGPUs Using CUDA*. 2015.
- 9. Gonzalez, R. and R. Woods, *Digital image processing: Pearson prentice hall*. Upper Saddle River, NJ, 2008.
- 10. Tomasi, C. and T. Kanade, *Detection and tracking of point features*. 1991: School of Computer Science, Carnegie Mellon Univ. Pittsburgh.
- 11. Ruzon, M.A. and C. Tomasi, *Edge, junction, and corner detection using color distributions*. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2001. **23**(11): p. 1281-1295.
- 12. Shi, J. and C. Tomasi. *Good features to track.* in *Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on.* 1994. IEEE.
- 13. Derpanis, K.G., *The harris corner detector*. York University, 2004.
- 14. Dey, N., et al., A Comparative Study between Moravec and Harris Corner Detection of Noisy Images Using Adaptive Wavelet Thresholding Technique. arXiv preprint arXiv:1209.1558, 2012.
- 15. Ryu, J.-B., H.-H. Park, and J. Park, *Corner classification using Harris algorithm*. Electronics letters, 2011. **47**(9): p. 536-538.
- 16. Moravec, H.P., *Obstacle avoidance and navigation in the real world by a seeing robot rover*. 1980, DTIC Document.
- 17. Chao, T.L. and K.H. Wong. An efficient FPGA implementation of the Harris corner feature detector. in Machine Vision Applications (MVA), 2015 14th IAPR International Conference on. 2015. IEEE.

- 18. Possa, P.R., et al., *A multi-resolution fpga-based architecture for real-time edge and corner detection*. Computers, IEEE Transactions on, 2014. **63**(10): p. 2376-2388.
- 19. Amaricai, A., C.-E. Gavriliu, and O. Boncalo. An FPGA sliding window-based architecture harris corner detector. in Field Programmable Logic and Applications (FPL), 2014 24th International Conference on. 2014. IEEE.
- Hsiao, P.-Y., C.-L. Lu, and L.-C. Fu, *Multilayered image processing for multiscale Harris corner detection in digital realization*. Industrial Electronics, IEEE Transactions on, 2010. 57(5): p. 1799-1805.
- 21. Orabi, H., N. Shaikh-Husin, and U.U. Sheikh. Low cost pipelined FPGA architecture of Harris Corner Detector for real-time applications. in Digital Information Management (ICDIM), 2015 Tenth International Conference on. 2015.
- 22. Yates, R., *Fixed-point arithmetic: An introduction*. Digital Signal Labs, 2009. **81**(83): p. 198.
- 23. Bailey, D.G., *Design for embedded image processing on FPGAs*. 2011: John Wiley & Sons.