
SYSTEM IDENTIFICATION AND SPEED CONTROL OF ELECTRO­

MECHANICAL DUAL ACTING PULLEY CONTINUOUSLY VARIABLE

TRANSMISSION

MOHD AZWARIE MAT DZAHIR

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering 

Universiti Teknologi Malaysia

SEPTEMBER 2017



iii

Specially dedicated to:

My beloved parents:

Mat Dzahir Ali 

Zaimah Mohamad

My brother and sisters:

Siti Nor Azlima, Mohd Azuwan, Nor Azmiera, 

Nor Anisa and Nor Atiqah



iv

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah S.W.T. His Blessings and guidance have 

given me inspiration and strength to prepare, to complete as well as to submit this 

thesis properly.

I owe my deepest appreciation to my parents for their nurturing and love. 

Their continued encouragement, supports, advice and whole-hearted prayers have 

guided me to successfully overcome my life’s difficulties and problems with 

confidence, faith and courage. I am genuinely indebted to my twin brother, Mohd 

Azuwan Mat Dzahir who constantly motivated me to strive earnestly in my study. I 

would also like to thanks to all my siblings and other family members for their 

supports throughout all along.

I also wish to convey my utmost appreciation and gratitude to my research 

advisors Assoc. Prof. Dr. Mohamed Hussein, Assoc. Prof. Dr. Kamarul Baharin 

Tawi, Assoc. Prof. Dr. Shafiek Yaacob and Dr. Bambang Supriyo. Their continuous 

advice, motivation and assistance throughout this research have significantly 

encouraged me in achieving academic goals. Without their sustained supports and 

interests, this thesis would not have been possible and appeared the same as it is 

being presented now.

I owe my sincere gratitude to all of them and may Allah S.W.T bless each 

and every one of us, Insya  Allah.



v

ABSTRACT

Researchers at Universiti Teknologi Malaysia (UTM) has designed, 
developed and patented an Electro-Mechanical Dual Acting Pulley Continuously 
Variable Transmission (EMDAP CVT). The newly developed EMDAP CVT is a 
complex nonlinear system. Since the system is difficult to be modeled, designing the 
suitable controller for the EMDAP CVT is a challenging task. However, it is 
possible to obtain model system and transfer function by employing System 
Identification (SI) technique. By having mathematical representation of the EMDAP 
CVT in form of transfer function, controller’s analysis and future works relating to 
the EMDAP CVT will be much easier. The main part of this research is to develop a 
model which is able to imitate the current EMDAP CVT system behaviours. 
Therefore, SI was performed to develop the model system and transfer function. 
Genetic Algorithm (GA) is used as an estimator with Nonlinear ARX (NARX) as a 
model structure. The mathematical modelling of the EMDAP CVT system is 
successfully presented and verified in form of 3rd order nonlinear transfer function. 
The focus of this research work is more on the implementation of speed control for 
the EMDAP CVT system based on model obtained from the SI. The EMDAP CVT 
speed controllers are designed for adjusting speed through providing appropriate 
CVT ratio to the system. The control objective is to achieve a desired output speed, 
which is used to specify and maintain the desired CVT ratio for the EMDAP CVT 
system. Proportional-Integral-Derivative (PID) controller is used as the basis and 
then fined tuned using conventional Ziegler-Nichols and Particle Swarm 
Optimization (PSO) method. Three controllers which are Proportional-plus-PSO (P- 
PSO), Proportional-Derivative-plus-PSO (PD-PSO) and Proportional-Integral- 
Derivative-plus-PSO (PID-PSO) were developed to test the reliability of the 
obtained model system and transfer function. The performance of the designed 
controllers was demonstrated and validated through simulations and experiments. 
The error performance of the developed controllers is evaluated in terms of Integral 
of Absolute Error (IAE), Integral Square of Errors (ISE), Integral of Time multiplied 
by Absolute Errors (ITAE), and Mean Square Error (MSE). Based on the results, the 
PIDPSO speed controller gives a sufficient performance, such as settling time, 
overshooting and error performance. The validation approach resulted in lower than 
5% percentage error thus verified the 95% confidence limit of the model system. 
Further controller’s analysis using Fuzzy Logic (FL) and Neural Network (NN) 
controllers were performed on the obtained model system and transfer function. The 
performance of the tested controllers were evaluated in terms of Steady State Error 
(SSE) and MSE values. All of the tested controllers produced good performance 
with steady state response within 5 seconds and SSE percentage lower than 5%. The 
end results show that, NARMA-L2 neural speed controller gives the best 
performance with SSE percentage of 0.91% and smallest MSE value of 3.28.
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ABSTRAK

Penyelidik di Universiti Teknologi Malaysia (UTM) telah mereka bentuk, 
membangun dan mempatenkan sebuah penggerak-dua-takal-elektro-mekanikal 
penghantar kuasa pembolehubah berterusan (EMDAP CVT). Oleh kerana sistem ini 
sukar dimodelkan, mereka bentuk pengawal yang sesuai untuk EMDAP CVT adalah 
tugas yang mencabar. Walaubagaimanapun, adalah mungkin untuk mendapatkan 
sistem model dan fungsi pindah dengan menggunakan teknik Pengenalan Sistem 
(SI). Dengan mempunyai perwakilan matematik untuk EMDAP CVT dalam bentuk 
fungsi pindah, analisis pengawal dan kerja-kerja masa depan yang berkaitan dengan 
EMDAP CVT akan menjadi lebih mudah. Bahagian utama penyelidikan ini adalah 
untuk membangunkan model yang dapat meniru tingkah laku sistem EMDAP CVT. 
Oleh itu, SI telah dilakukan untuk membangunkan sistem model dan fungsi pindah. 
Algoritma Genetik (GA) digunakan sebagai penganggar dengan Nonlinear ARX 
(NARX) sebagai struktur model. Permodelan matematik untuk sistem EMDAP CVT 
berjaya dibentangkan dalam bentuk fungsi pindah tak linear ketiga. Tumpuan kerja 
penyelidikan ini lebih kepada pelaksanaan kawalan laju untuk sistem EMDAP CVT 
dengan berdasarkan model yang diperolehi daripada SI. Pengawal kelajuan EMDAP 
CVT direka untuk menyesuaikan kelajuan dengan memberikan nisbah CVT yang 
sesuai kepada sistem. Objektif kawalan adalah untuk mencapai kelajuan output yang 
dikehendaki, yang digunakan untuk menentukan dan mengekalkan nisbah CVT yang 
dikehendaki sistem EMDAP CVT. Pengawal Proportional-Intergal-Derivative (PID) 
telah digunakan sebagai pengawal asas dan kemudian ditala menggunakan kaedah 
konvensional Ziegler-Nichols dan kaedah Particle Swarm Optimization (PSO). Tiga 
pengawal seperti Proportional-plus-PSO (P-PSO), Proportional-Derivative-plus-PSO 
(PD-PSO) dan juga Proportional-Integral-Derivative-plus-PSO (PID-PSO) 
dibangunkan untuk menguji sistem model EMDAP CVT dan fungsi pindah yang 
diperolehi. Prestasi pengawal yang direka telah ditunjukkan dan disahkan melalui 
simulasi dan eksperimen. Prestasi kesilapan pengawal yang dibangunkan dinilai dari 
segi Integral of Absolute Error (IAE), Integral Square of Errors (ISE), Integral of 
Time multiplied by Absolute Errors (ITAE), dan juga Mean Square Error (MSE). 
Berdasarkan keputusan, pengawal kelajuan PID-PSO memberikan prestasi yang 
mencukupi, seperti masa penetapan, keterlaluan dan kesilapan prestasi. Pendekatan 
pengesahan menunjukkan ralat peratusan dibawah 5% mengesahkan had keyakinan 
95% sistem model. Analisis pengawal lanjutan menggunakan pengawal Fuzzy Logic 
(FL) dan Neural Network (NN) dilakukan pada sistem model dan fungsi pindah yang 
diperolehi. Prestasi pengawal yang diuji telah dinilai dari segi Steady State Error 
(SSE) dan nilai MSE. Kesemua pengawal yang diuji menghasilkan prestasi yang 
bagus dengan respon keadaan mantap sekitar 5 saat dan peratusan SSE dibawah 5%. 
Keputusan akhir menunjukkan pengawal kelajuan NARMA-L2 neural memberikan 
prestasi terbaik dengan peratusan SSE 0.91% dan nilai MSE terkecil 3.28.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A continuously variable transmission (CVT) is used to exchange energy 

between the flywheel and the wheels. Most of the belt type CVT used in cars are 

hydraulically actuated. This kind of CVT has efficiency of approximately 85% 

(Kluger and Long, 1999) which is lesser than manual transmission which has 96% 

efficiency. The drawback of it is mostly related to high pump and high oil pressure 

of the hydraulic system. There is also drawback which is caused by the belt loss 

(Micklem et al., 1996; Ide, 2000; Matthes, 2005). The continuous power 

consumption of the hydraulic actuator, especially when driving using a constant 

transmission ratio, causes a power loss which contributes to a big part of the overall 

CVT loss.

However, in 2010, Universiti Teknologi Malaysia Drive-train Research 

Group (UTM-DRG) developed the Electro-Mechanical Dual Acting Pulley 

Continuously Variable Transmission (EMDAP CVT). The EMDAP CVT system 

which adopts power-screw mechanism, to overcome hydraulic power loss when 

maintaining constant transmission ratio, and two movable pulley sheaves on each of 

its pulley shaft, to eliminate belt misalignment. Axial movements of both primary 

(input) and secondary (output) movable pulley sheaves are electro-mechanically 

controlled by direct current (DC) motors that turn the power screw mechanism and 

shift the movable V-pulley sheaves axially. The axial movements of pulley sheaves 

change the effective pulley-belt contact radii and then consequently change the
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transmission ratio. In order to provide sufficient clamping force on the V-belt to 

avoid slipping or overstress, the secondary DC electric motor adjust the length of the 

disk spring on secondary pulley accordingly. Therefore, the indirect control 

objective of the research is to specify the ratio of primary to secondary pulley speed 

by means of primary axial movements. Importantly, the primary control objective 

will be to achieve a desired output speed, which is considered a known function of 

throttle angle and vehicle speed. This desired output speed will be used to specify the 

desired CVT ratio (RCVTdesired), and then used it to specify the control input.

Previous work involving the EMDAP CVT mostly emphasizes on the 

developing the system itself. The first work was carried out by Ariyono (2009) 

focussed more on controlling the DC motor rotation accordingly to achieve the 

desired CVT ratio based on intelligent control system using adaptive artificial neural 

network (AANN). Ariyono’s method provides an appropriate CVT ratio based on a 

vehicle maximum power strategy. He also used the EMDAP CVT as a means of 

matching the power transfer function between the engine and the transmission 

system. Additionally, the Proportional-Derivative (PD) ratio controller was applied 

to provides a suitable CVT ratio to the system such that the engine speed can be kept 

within its effective range. Ariyono stated that, the end results show the controller 

developed using standard vehicle performance equations and simplified powertrain 

model was able to varying the EMDAP CVT ratio from underdrive to overdrive in 

less than 15sec.

The work was then continued by Supriyo (2010) which emphasizes on the 

inner loop controller part of the work previously done by Ariyono, in order to 

improve the EMDAP CVT ratio controller. Supriyo’s work focussed more on 

controlling the movement of the pulley sheaves to provide a suitable CVT ratio to 

the EMDAP CVT system based on several control algorithms such as PID based 

controllers consisting of PD and Proportional-Derivative-plus-Conditional-Integrator 

(PDPCI) and Fuzzy-PID (FPID) controllers. Supriyo’s study shows that, the steady 

state error cannot be eliminated permanently by PD controller. On the other hand, 

PD-PCI and Fuzzy-PID controllers was able to reduce it significantly. Supriyo’s 

experimental results confirm that when Fuzzy-PID control algorithms applied in 

EMDAP CVT ratio controller, it provides better performance compared to PD or
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PDPCI control algorithms. Both of Ariyono and Supriyo research work around CVT 

ratio to improve the EMDAP CVT performance. Even though, it able to provide a 

good CVT ratio into the EMDAP CVT system, the EMDAP CVT output speed 

performance is still far from exceptional. By directly control the output speed of the 

EMDAP CVT while providing a good CVT ratio into the EMDAP CVT system, the 

performance of the EMDAP CVT system can be improve further. It is also hard to 

develop a controller using the existing system. However, by having mathematical 

representation of the EMDAP CVT system, controller’s development and 

implementation will become much easier.

The current research involves the identification of the EMDAP CVT system 

speed change dynamics for improving the ratio change model. The main part of this 

research, work intensively on developing a system model and transfer function 

which able to exactly imitate the current EMDAP CVT system behaviours. System 

Identification (SI) is the field of mathematical modelling of systems using an 

experimental data. During an identification experiment, signals that excite all 

relevant system dynamics, are applied to the system inputs, while the system outputs 

are recorded. By means of a computational method, a mathematical description of 

the relation between the inputs and outputs is determined. This input-output 

description is called a mathematical model. However, there exist nonlinearities in the 

current EMDAP CVT system such as geometrical composition, friction, backlash 

and dead zone. To overcome this, a nonlinear autoregressive with exogenous input 

(NARX) is used as a model structure since it does not require detailed knowledge on 

the complex physical phenomena of the EMDAP CVT system. In following Chapter

4, the EMDAP CVT system dynamics were identified using this procedure.

This research also works on designing and developing a robust EMDAP 

CVT speed controller on several control algorithms such as PID speed controllers 

consisting of Proportional-plus-Particle-Swarm-Optimization (P-PSO), Proportional- 

Derivative-plus-Particle-Swarm-Optimization (PD-PSO), Proportional-Integral- 

Derivative-plus-Particle-Swarm-Optimization (PID-PSO), Fuzzy Logic (FL) and 

also Neural Network (NN) speed controller based on model obtained from system 

identification. The genuity of the proposed speed controllers is validated through 

simulation and experimental results.



4

1.2 Problem Statement

The newly developed EMDAP CVT is a complex and non-linear system. 

Therefore, the challenge of this research is to obtain a model which able to describe 

the exact behaviour of the EMDAP CVT system. However, it is possible to obtain 

the system model and transfer function by employing system identification 

techniques. Secondly, to develop a robust speed controller with a good performance 

for the EMDAP CVT system. Results from simulation with real system verification 

and validation will justify the findings.

1.3 Research Objectives

The general research objective is to study the speed change behaviours of the 

EMDAP CVT system by designing, developing and implementing a speed controller 

into the system. Several specific objectives are determined as follows:

(i) to study System Identification (SI) techniques and optimization 

methods suitable for dynamic modelling of the EMDAP CVT system.

(ii) to verify and validate the obtained system model and transfer function 

using simulated system and real plant data.

(iii) to develop and implement robust speed controllers that able to 

provide the required transmission speed for the current EMDAP CVT 

system.

1.4 Scopes and Limitations

The scopes and limitations of this research are:

(i) The modelling and experimental works are based on the present 

EMDAP CVT system.
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(ii) Input-output data from experimental is assumed representing the 

actual EMDAP CVT in vehicle operation.

(iii) System response delay could occur due to the belt slip, mechanism 

friction and sensors delay with minimum effect.

(iv) The nonlinearities are limited to geometrical composition, backlash, 

friction and dead zone might exist within the system.

(v) EMDAP CVT ratio shifting only occurs every 0.2 CVT ratio change.

(vi) Simulation and implementation of the algorithm are conducted using 

MATLAB/Simulink environment.

1.5 Research Methodology

The methodology of this research, as presented in Figure 1.1 and Figure 1.2, 

can be described as follows:

(i) The first phase involves the literature reviews on the EMDAP CVT 

system, SI, and speed ratio controllers. The literature review provides 

a deep understanding on EMDAP CVT system and its functions, 

which is necessary before performing any other activities. The SI 

method was applied to get the mathematical representation of the 

EMDAP CVT system. The particular SI procedure used in this 

research is shown in Figure 1.1.

Figure 1.1 The System Identification (SI) procedure.
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(ii) The second phase of the research is the experimental test-rig set up. 

The experimental test-rig was set up to conduct all experiments 

including prior experimental test for data collection and also to test 

the performance of the developed EMDAP CVT speed controller at 

later stage of the research. To manage all task including the data 

collection, calibration test as well as the speed controller 

implementation, a control program was develop using 

MATLAB/Simulink application.

(iii) The third phase of the research is system identification experiment. 

To perform the system identification, a set of time response sample 

data is needed. A prior experiment was conducted to gather the 

required data (input and output) from the current EMDAP CVT 

system for system identification purposes. The system was injected 

with various input signal such as step, sinusoidal, and also Pseudo­

Random Multi-level Signal (PRMS) where these signal represents 

speed shift patterns. During the data processing, the unwanted noise 

and delay were removed to obtained the usable data for SI. The data 

obtained from the experiment the divided into two parts; one for the 

use of estimation process and the other part for validation purposes. 

The system parameters needed to construct the model structure of the 

system were first defined using the estimation data. To construct the 

model structure, an algorithm was developed using 

MATLAB/Simulink environment. The model of the system was 

obtained using this procedure. The model was then validated with the 

validation data. If the model is acceptable, a simulation process can 

be conducted and the control algorithm can be implemented; if  not, 

the model needs to be identified again.

(iv) The fourth phase of the research is evaluation of the proposed 

controllers for the EMDAP CVT system. Proportional-Integral- 

Derivative (PID) controller is used as the base controller. After 

performing calibration, initial PID parameters were estimated. Some 

of the existing experimental PID tuning techniques from literatures 

were reviewed. The selected tuning method to acquire initial PID 

parameters was based on Ziegler-Nichols formula utilizing relay
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feedback experiment of the EMDAP CVT system to determine the 

critical gain (Kc) and critical period (TC). The initial PID parameter 

were then, fined tuned using an algorithm based on Particle Swamp 

Optimization (PSO) method. Several literatures on PSO were 

reviewed to assists the construction of the tuning algorithm. The 

controller is tuned and acceptable results were achieved.

(v) The fifth phase of the research is the validation results. In this phase, 

the developed controllers from the simulation were tested onto the 

experimental test-rig. Tests were conducted to observed the 

performance of the developed controllers. The output results were 

validated by comparing the results from the actual experimental tests 

with the results from the simulation. The research control diagram is 

shown in Figure 1.2 and the research flow chart is shown in Figure

1.3 respectively.

Figure 1.2 Research control diagram.

(vi) The final phase of the research is further controller’s analysis which 

involve further speed control evaluation of the EMDAP CVT system 

to test the reliability and robustness of the EMDAP CVT system 

model obtained and best controller for EMDAP CVT application.
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Figure 1.3 Research flow chart.
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1.6 Research Contributions

This research aims to provide further improvement to the EMDAP CVT 

system. In 2009, Ariyono designed the EMDAP CVT prototype based on the dual 

acting pulley electromechanical system. Ariyono developed a drivetrain model of a 

vehicle equipped with EMDAP CVT system. Most of his work was focused on 

control strategy to control EMDAP CVT ratio using adaptive neural network (ANN). 

The research was then further continued by Supriyo (2010). In his research, Supriyo 

designed, developed and implemented electronic hardware for EMDAP CVT 

experimental test-rig and MATLAB/Simulink control algorithm program for 

EMDAP CVT ratio controller. His work focussed more on designing and developing 

EMDAP CVT ratio controllers in time domain analysis based on several algorithms. 

Two most important objectives of Suptiyo work are to eliminate both steady state 

power loss and belt misalignment (Supriyo, 2010). By implementing power screw 

mechanism to maintain its constant transmission ratio, the first problem was solved 

without consuming any power. Then the second problem was overcome by adopting 

two movable pulley sheaves on each pulley shaft to keep the belt continuously 

aligned.

The newly developed EMDAP CVT is a complex and non-linear system as 

mentioned in Section 1.2. One of the contributions of this research is to develop a 

simple and reliable transfer function of the EMDAP CVT system which is able to 

precisely imitate the actual system process. With the acquired transfer function 

model, future works related to the system will be much easier. This can be achieved 

by performing a System Identification (SI) on the EMDAP CVT system. The SI 

process of the EMDAP CVT will be further discussed in Chapter 4.

Both of the previous researchers, Ariyono (2009) and Supriyo (2010), 

contribute to the ratio controller of EMDAP CVT system. However, they barely 

mention about the speed control. The second contribution of this research is 

designing, developing and implementing the speed controller for the EMDAP CVT 

system. Besides controlling the EMDAP CVT system speed, the developed 

controller should also able to provide an appropriate transmission ratio for the
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current system. The detailed explanation about the EMDAP CVT speed control is 

discussed in Chapter 5. In addition, for the third contribution of the research, a 

control algorithm program for EMDAP CVT speed controller using 

MATLAB/Simulink platform was also developed.

1.7 Structure of Thesis

This thesis contains seven chapters. Chapter 1 introduces and highlights the 

importance of the study. Chapter 2 presents the literature review. Several types of 

transmissions are briefly reviewed. Then, the review focuses on existing works 

related to CVT controls. The gaps are identified, and justifications of the research 

objectives and research methodology are presented.

Chapter 3 presents the EMDAP CVT system descriptions. This chapter 

presents the basic concept of CVT and elaborates more on EMDAP CVT especially 

in terms of hardware and software design, as well as procedure of performing speed 

control. This chapter describes the main mechanical and electronic parts of EMDAP 

CVT, and also the interfacing unit which makes possible for the EMDAP CVT to 

communicate with the computer via Data Acquisition (DAQ) system. The 

experimental test rig is set up and the CVT ratio is validated based on geometrical 

CVT ratio. The development of the manual control for EMDAP CVT system 

Simulink program was also presented in this chapter.

Chapter 4 presents the system identification process performed on the 

EMDAP CVT system. The input and output data were obtained from the prior 

experimental test conducted in Chapter 3. Nonlinear ARX (NARX) model was 

introduced as the model structure, and was constructed using genetic algorithm 

(GA). The obtained system model was also validated using several validation test 

methods such as Mean Square Error (MSE) and correlation tests.

Chapter 5 presents the control system part of the research. Using the obtained 

EMDAP CVT system model, control simulation testing was performed. At the start
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