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ABSTRACT 

 

 

 

 This thesis strives the interaction between the aqueous humour (AH) flows and 

the deformation of Descemet membrane detachment (DMD) in a 3D anterior chamber 

(AC). Descemet membrane detachment (DMD) is an uncomman condition with a wide 

range of possible cause of disease. The aqueous humour flow in the anterior chamber is 

described as flow driven by buoyancy effects due to the existing temperature difference. 

The mathematical model has been developed and numerical result for finite element 

method are carried out using COMSOL Multiphysics software by solving the governing 

equations for the AH flows and the deformation of DMD. The fluid flow behavior and the 

deformation of the detached Descemet membrane are analysed in order to comprehend 

the progression of the DMD in the AC due to the AH flows and vice versa. The direction 

of the gravitational force acting has a great influence to the fluid flow in the AC. Thus, 

the position of the patient with DMD need to be concerned in order to induce the 

phenomena of spontaneous reattachment. The spontaneous attachment or re-detachment 

of the DMD could then be induced in the simulation to better understand its occurrence 

for a viable treatment to be devised. 
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ABSTRAK 

 

 

  

               Tesis ini mensimulasikan interaksi antara aliran humor akues (AH) dan 

perubahan bentuk Pemisahan Detasmen Membran (DMD) dalam ruang anterior 3D (AC). 

Pemisahan Detasmen Membran (DMD) ialah satu keadaan luar biasa yang berpunca 

daripada pelbagai jenis penyakit. Aliran humor akues dalam ruang anterior digambarkan 

sebagai aliran yang didorong oleh kesan keapungan akibat perbezaan suhu yang ada. 

Model matematik telah dibangunkan dan hasil berangka untuk kaedah elemen terhingga  

dijalankan menggunakan perisian COMSOL Multiphysics dengan menyelesaikan 

persamaan menakluk untuk aliran AH dan perubahan bentuk DMD. Tingkah aliran 

bendalir dan perubahan bentuk Pemisahan Detasmen Membran dianalisis untuk 

memahami keadaan DMD dalam AC yang disebabkan oleh aliran AH atau sebaliknya. 

Arah daya bertindak graviti mempunyai pengaruh yang besar terhadap aliran bendalir di 

AC. Oleh itu, kedudukan pesakit bersama DMD perlu dititikberatkan dalam memastikan 

fenomena nyahsambungan secara spontan. Sambungan secara spontan atau 

penyahsambungan Pemisahan Detasmen Membran DMD kemudiannya dapat diinduksi 

dalam simulasi untuk memahami dengan lebih jelas kejadiannya untuk mendapatkan 

rawatan yang sesuai. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Introduction 

 

The eye is one of the most important organs for humans, enabling sight of the 

reality before them and the world they live in. Any hindrances to its functionality can 

severely affect cognition. Descemet membrane detachment (DMD) is one such 

hindrance, a disease of the eye that may cause blindness when left untreated. Its 

formation involves the fluid flow inside the eye. However, the small dimensions of the 

human eye and the extremely low velocities of the flow of ocular fluid make it difficult 

for an in-vivo experiment. Therefore, many aspects of fluid flow within the eye have 

not yet been fully understood or quantitatively explained. Alternatively, computational 

simulations of the ocular fluid flow can be used to understand the flow mechanisms in 

the human eye especially when the eye has DMD. In this chapter, the background of 

the problem is explained and the anatomy of the human eye is elaborated to serve as 

illustrations of the basic mechanism of fluid motion.  
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From this, the statement of the problem and the objectives of this research are 

highlighted. Limitations and scopes of the research are also stated here to entice further 

research. Finally, the significance of the study and the outline of the thesis are proposed. 

 

 

Figure 1.1 Structure of Human Eye (Kara, 2011). 

 

1.2 Research Background 

 

The structure of the eye is shaped like a sphere. The front part forming a 

translucent dome is named the Cornea which covers the underlying iris that gives 

colouration and pupils, as show in Figure 1.1. The region that connects the Corneas 

with this underlying layer is called the anterior chamber (AC). The Corneas themselves 

contain several layers, three main and two auxiliary as shown in Figure 1.2 that is the 

epithelieum, the Stroma, the endothelium, the Browman layer and the Descemet 

membrane (DM). DMD occurs when the DM is separated from the Stroma and by the 

aqueous humour (AH) fluids which flow into the space between through a tear or 

minute fissure in the DM layer. The condition which causes DMD, have severe effects 

to vision of the eye.  
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DMD could also occur through artificial means as in cataract surgery, 

iridectomy, trabeculectomy, Corneal transplantation, deep lamellar keratoplasty, 

holmium laser sclerostomy, alkali burn and viscocanalostomy have been reported by 

Mulhern et al. (1996), Potter and Zalatimo (2005), Hirano et al. (2002) and Ünlü and 

Aksünger (2000). Sevillano et al. (2008) had reported a technique of curing DMD 

caused by cataract surgery with sulphur hexafluoride injection. Potter and Zalatimo 

(2005) had presented the case of treating the scrolled DMD by injecting fourteen 

percent of intracameral perfluoropropane (C3F8) into the AC. Recently, Couch and 

Baratz (2009), investigated two cases of delayed bilateral DM and in one eye it was 

fixed surgically and the other eye improved spontaneously. They estimated that the 

spontaneous reattachment happen because of the buoyancy effect or difference in 

pressure between the different region of the eyes which cause the AH flow in the AC. 

The spontaneous reattachment of the DM has been supported by some observational 

and anecdotal evidences (Marcon et al., 2002; Nouri et al., 2002; Couch and Baratz, 

2009; Ismail et al., 2013). 

 

 Fitt and Gonzalez (2006) had showed that under normal conditions the 

buoyancy effects due to temperature gradient in the AC enhance the AH to flow. Ismail 

et al. (2013) intended to explain the phenomena of the spontaneous reattachment and 

thus, developed a mathematical model to describe the AH flow in the AC with DMD. 

They concluded that the temperature difference across the eye and the orientation of 

the patient may control the clinical outcomes for the DMD. Nonetheless, the model 

developed by Ismail et al. (2013) was based on the lubrication theory limit, which 

includes a lot of simplification. Consequently, the model may only partially illuminate 

the behaviour of the fluid flow in the AC. Therefore, in this thesis, the fluid mechanical 

theory is applied to model the fluid flow in the AC with the presence of detached DM 

in order to study the flow mathematically and then to explain the spontaneous 

reattachment phenomena as noted by Couch and Baratz (2009) scientifically. 
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1.3 Statement of the Problem 

 

Data pertaining to the Flow of AC is difficult to obtain due to the miniscule 

size of both chambers.  The complexities of measuring fluid movements inside the 

living eye also add to the difficulty in obtaining the data. Circumventing this however 

is possible using computer generated simulations to understand the fluid mechanics of 

AH inside the AC. These models generated thus enable the better understanding of the 

fluid dynamics in the AC in cases where the observed party contracts DMD diseases. 

Currently, most studies present in literature uses the perturbation or asymptomatic 

methods which is incapable of solving complex fluid flow models used to describe 

fluid flow in the AC where DMD diseases are present. There is then a need for the 

numerical computation.  

 

The Finite Element Method is proposed in this study to obtain numerical results 

of fluid flow in the AC. Beforehand, it is understood that previous studies have been 

made to observe patient orientation and its effect to the reattachment phenomenon of 

DMD but they were conducted exclusively in a 2D setting, therein lies the problem of 

this research. The limitations of data from 2D models could not accurately describe 

the actual situation of the eyes which is a 3D object thus this paper proposes similar 

investigations but recreated in a 3D setting. Understanding the effect of DMD by 

different position of the patient and Flow of AH into the AC may unlock the ability to 

induce spontaneous reattachment, saving the patient from total vision loss. 
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1.4 Objectives of the Study 

 

This research aims to understand the characteristics of fluid flow in human eyes 

experiencing DMD in 3D anterior chamber (AC). The specific objectives are:  

 

1. To derive the equation of motion of AH flow in the AC during DMD. 

2. To demonstrate the implementation of COMSOL Multiphysics in 

model setting of the generalized the AH flow and the deformation of 

DMD. 

3. To investigate the AH flow during the DMD that influenced by the 

different position of the patient. 

 

1.5 Scope of the Study 

 

The modelling of fluid flow of human eyes with DMD is analysed specifically 

based on the Navier-Strokes Equation. The fluid flow in the AC that is considered as 

an incompressible Newtonian and driven by temperature gradient. Boussinesq 

approximation is applied to allow a more convenient procedure to obtain the solution. 

Solving the governing equations numerically using the finite element method. The 

COMSOL Multiphysic software is used for computing the numeric results of the 

plotting. The temperature gradient that drives the flow of fluids in the AC with DMD 

is also considered along with the position of the patient. For the purpose of the research, 

the position of patient discussed are stand and sleep. 

 

1.6 Significant of the Study   

 

DMD although a rare type of disease to the eyes, occurring mostly during 

cataract extraction, 50% of persons aged 65 - 74 and 70% of persons over 75 are found 

likely to be inflicted with cataract (Kara, 2011). The symptoms of cataracts include 

Cloudy vision, glare, colour visual problems and double vision. Surgery is usually 

required to treat cataracts by removing the offending Lens and replacing it with 

artificial Lens. Tearing of the DM is still unclear but a popular theory posits the 

mechanism to be due to the mechanical force applied to the cornea during surgery.  
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