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ABSTRACT 

 

 

 

 

 

Nanofluids are a new type of heat transfer fluid engineered by uniform and 

stable suspension of nanometer sized particles into liquids. The heat transfer in 

nanofluids is important especially in the context of chemical engineering, aerospace 

engineering and industrial manufacturing processes. The reason is that, nanofluids 

were found to transfer heat more efficiently than the conventional fluids. Therefore, 

nanofluids research could lead to a major breakthrough in developing next generation 

coolants for numerous engineering applications. Due to this reason, several flow 

problems related to heat transfer over vertical flat plate, inclined plate and wedge 

were studied in this thesis. The main purpose of this study was to investigate the 

characteristics of two dimensional flow and surface heat transfer for two cases which 

are steady and unsteady convection flows. Nanofluids with two different base fluids 

(water and kerosene) containing magnetic and non magnetic nanoparticles were 

considered. The effect of magnetohydrodynamics  (MHD) on the  flow and heat 

transfer was also studied. The study starts with the formulation of the mathematical 

models that governed the fluid flow and heat transfer. Next, the governing nonlinear 

equations in the form of partial differential equations were reduced into ordinary 

differential equations using appropriate similarity transformation. The resulting 

systems of ordinary differential equations were then solved numerically using Keller 

box method. The numerical values of the skin friction coefficient, the local Nusselt 

number which represents the heat transfer rate at the surface as well as the velocity 

and temperature profiles were obtained for various values of the magnetic field 

inclination angle, magnetic interaction, plate inclination angle, nanoparticles volume 

fraction, wedge angle, moving wedge, unsteadiness, Grashof number and thermal 

buoyancy. All results obtained, were displayed graphically in addition to tabular 

form. The comparisons of results with previous studies were made to validate the 

results. For both steady and unsteady problems, it is found that magnetic field 

inclination angle can be used as controlling factor for certain situation because it 

enhances the skin friction and heat transfer rate. The plate inclination angle 

parameter and nanoparticles volume fraction parameter have tendency to increase 

momentum and thermal boundary layers thickness. For unsteady problems, it is 

observed that the unsteadiness parameter has significant effect on the nanofluids 

motion and heat transfer characteristic.  
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ABSTRAK 

 

 

 

 

Nanobendalir adalah sejenis bendalir  pemindahan  haba baharu yang direka 

bentuk oleh zarah berukuran nanometer yang seragam dan ampaian stabil yang di 

masukkan ke dalam cecair. Pemindahan haba dalam  nanobendalir  adalah penting 

terutamanya dalam  konteks kejuruteraan kimia, kejuruteraan aeroangkasa dan  

proses pembuatan industri. Ini adalah kerana, nanobendalir didapati memindahkan 

haba dengan  lebih cekap berbanding dengan bendalir konvensional. Oleh itu, 

penyelidikan berkenaan nanobendalir boleh membawa kepada penemuan baharu 

dalam proses penyejukan untuk pelbagai aplikasi kejuruteraan. Disebabkan oleh 

faktor ini,  beberapa masalah aliran berkaitan dengan  permindahan haba ke atas plat 

rata menegak, plat cenderung dan baji dikaji dalam tesis ini. Tujuan utama kajian ini 

adalah untuk menyiasat ciri aliran dua matra dan pemindahan haba permukaan bagi 

dua kes aliran iaitu aliran olakan  mantap dan tidak mantap. Nanobendalir yang 

terdiri daripada dua bendalir  asas yang berlainan (air dan minyak tanah) yang 

mengandungi  zarah nano bermagnet dan tidak bermagnet dipertimbangkan. Kesan  

hidrodinamik magnet (MHD) ke atas aliran dan  pemindahan haba juga dikaji. Kajian 

ini dimulakan dengan memfomulasi model-model matematik yang mengawal aliran 

dan pemindahan haba. Seterusnya, persamaan menakluk tak linear dalam bentuk 

persamaan pembezaan separa diturunkan kepada persamaan pembezaan biasa 

menggunakan penjelmaan keserupaan yang bersesuaian. Sistem persamaan 

pembezaan biasa  yang terhasil kemudiannya diselesaikan secara berangka 

menggunakan kaedah kotak Keller. Nilai berangka bagi pekali geseran kulit, nombor 

Nusselt setempat yang mewakili kadar pemindahan haba pada permukaan, serta 

profil halaju dan suhu diperoleh untuk pelbagai nilai sudut kecenderungan medan 

magnet, interaksi medan magnetik, sudut kecenderungan  plat, pecahan isipadu zarah 

nano, sudut baji, pergerakan baji, ketidakstabilan, nombor Grashof dan keapungan 

haba. Semua keputusan yang diperoleh dipersembahkan  secara graf dan dalam 

bentuk jadual. Perbandingan keputusan dengan kajian terdahulu dibuat untuk 

mengesahkan keputusan yang diperoleh. Bagi kedua-dua  masalah aliran mantap dan 

tidak mantap, didapati bahawa sudut kecenderungan medan  magnet boleh digunakan 

sebagai faktor pengawal pada  keadaan tertentu kerana ia meningkatkan geseran kulit 

dan kadar pemindahan  haba. Parameter sudut kecenderungan plat dan parameter  

pecahan isipadu zarah  nano mempunyai kecenderungan untuk meningkatkan 

ketebalan  lapisan sempadan momentum dan terma. Untuk masalah aliran tidak 

mantap, diperhatikan bahawa parameter ketidakstabilan mempunyai kesan yang 

signifikan terhadap gerakan bendalir nano dan ciri pemindahan haba.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In this chapter, the strength of this thesis is explained concisely. The 

background of the research is presented in Section 1.2. The problem statements as 

well as objective and scope of the research are given in Section 1.3, 1.4 and 1.5 

respectively. Consequently, the significance of the research is presented in Section 

1.6. Lastly, Section 1.7 gives the outline of the whole thesis. 

1.2  Research Background 

Fluid dynamics refers to the science involving the movement of fluids and 

gases, forces causing such movements and the interactions between the solids and 

fluids. This field of study is an important component of engineering science and 

technology and is used in our daily lives. Fluid dynamics, in some way, affect 

different areas like transportation, energy, defence, environment, manufacturing, 

medicine, etc (Anderson and Wendt, 1995). Furthermore, an advanced knowledge of 

this field is very useful for predicting weather, aerodynamic behaviour of the moving 

vehicles, movement of the biological fluids within the body, cooling pattern of the 

electronic components, and performance of the micro fluidic devices (Anderson and 

Wendt, 1995). Because of the massive complexity of this subject and its various 
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applications, it is viewed as very challenging and exciting. Need for a better 

understanding of this subject has led to its development and has also brought about 

the development of the related fields like numerical computing, applied mathematics 

and the experimental techniques. The field of fluid dynamics is based on the Navier-

Stokes equations, which could be used along with the other transport equations for 

concentration, energy or magnetic fields. Owing to their nonlinear nature, exact 

solutions are rare and many scenarios have to depend on the approximate 

computational or analytical solutions. This has led to the development of novel 

diagnostic techniques for the experimental and computational processes, which 

helped the scientists in their exploration of the complexities in this field (Kays et al., 

2005). 

 Since the humans discovered fire, they have been very fascinated with 

energy and heat. Also, after the industrial revolution, the mathematicians and 

scientists became very interested in predicting and modelling heat transfer. Many 

studies, involved in converting the energy and heat into power (led to the inventions 

like combustion and steam engines), highlighted the manner in which heat transfer 

occurred between the mediums and stated that this technique was important for 

energy conservation and for developing effective processes and devices (Kays et al., 

2005). Heat transfer takes place in three ways such as conduction, radiation and 

convection. Conduction refers to the direct heat transfer between the adjacent 

particles and occurs at the microscopic level. Radiation refers to the energy or heat 

transfer directly through the electromagnetic waves. On the other hand, convection is 

defined as the heat flow through the gases or liquids along with the mass flow. 

Hence, this heat transfer process occurs on a larger scale. Out of the three heat 

transfer processes, convection is very difficult to model as it requires a thorough 

understanding of the flow process of the fluids. 

Convection is further divided into three different types such as forced, free 

and mixed convections. When the motion of the fluids is induced by external 

resources like blowers, fluid machinery pumps or vehicle motion, it is known as the 

forced convection and this process is called as the forced convection flow. When the 

fluid motion is induced by the body forces like centrifugal or gravitational forces, it 

is called as the natural or free convection. Furthermore, a mixed convection flow 
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takes place when the forced and free convection mechanisms occur simultaneously 

and bring about a significant heat transfer (Kays et al., 2005).  

The free convection process has garnered a lot of interest from the 

researchers as it occurs in nature and can be successfully used in several engineering 

applications. In nature, the convection heat transfer takes place when air rises above 

the hot land or water surfaces and is an important feature of the weather systems. 

Convection helps in the formation of the sea winds, oceanic currents and the rise of 

the plume of hot air from the fires. In the case of engineering applications, 

convection occurs in the microstructure configuration when the molten metals are 

cooled and also takes place when the fluid flows around the solar ponds and covered 

heat-dissipation fins. One of the most common industrial applications of the 

convection process is the cooling of the free air without using fans. This occurs at a 

smaller scale (computer chips) or in the larger scale process equipment (Bejan, 

2013).  

Several of the industries have expressed a need for better fluids which allow 

efficient heat transfer. However, the inherent poor thermal conductivity of a majority 

of the convection fluids has also fundamentally limited their heat transfer. Hence, a 

lot of research is being conducted for improving the fundamental limit (Bejan, 2013). 

One of the conventional methods for improving heat transfer in the thermal systems 

involves increasing the heat transfer surface areas of the cooling devices along with 

their flow velocity or dispersing the solid particles in the heat transfer fluids. 

Maxwell (1873) proposed the idea of suspending solid particles in the conventional 

heat transfer fluids for enhancing their thermal conductivity. Maxwell dispersed 

micrometre or millimetre-sized particles in the base liquids and improved their 

thermo-physical properties. However, this led to many problems like abrasion, 

sedimentation, clogged microchannels and a high pressure drop which prevented the 

use of the microparticle slurries as the heat transfer fluids. Thus, the use of the 

millimetre or micrometre-size particle suspension in the various heat transfer 

application was rejected. This idea was re-investigated after more than a century by 

Masuda et al. (1993) and Arnold Grimm et al.(2012). However, they also faced the 

problem of the sedimentation of solid particles.  
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In one study, Choi and Eastman (1995) used the nanoparticles suspension in 

the conventional base fluids. They observed a stable solution with no dispersed 

particles and were able to overcome a majority of the above-mentioned problems. 

This solution was called as the ‘Nanofluids’. Their experiments showed that the 

addition of the nanoparticles in the conventional base fluids improved its thermal 

conductivity. Additionally, this method was preferable than the micrometre-size 

particle addition, due to valid scientific observations like (i) Long suspension times 

(better stability), (ii) Larger surface area or volume ratio (1000 times larger), (iii) 

Low clogging or erosion, (iv) Low requirement for the pumping power, (v) Decrease 

in the inventory of the heat transfer fluid and (vi) Better energy saving. The novel 

properties displayed by the nanofluids help in their heat transfer-related applications. 

They help in more effective heat transfer than the conventional base fluids. Hence, 

when they are used for improving the performance and the design of the thermal 

management systems, they offer many benefits, like better reliability, a decrease in 

the cooling system sizes, a lesser requirement of the pumping power, high fuel and 

energy efficiency and low pollution (Sheikholeslami and Ganji, 2014). Also, the 

nanofluids show a significant effect in cooling the high-heat-flux systems and 

devices used in many industrial, consumer or defence industries. 

The field of magnetohydrodynamics (MHD) involving fluid mechanics 

includes the phenomena resulting from applying a magnetic field to an electrically 

conducting fluid. In recent years, the research around the field of MHD has 

developed quickly (Davidson, 2001). In an electrically conducting fluid, many 

applications have been derived through the study of flow and heat transfer when a 

magnetic field is applied past a heated surface. Some of these applications include 

manufacturing processes such as nuclear reactor, cooling down metallic plate and 

extrusion of polymers (Davidson, 2001). In electrically conducting fluid, the MHD 

flow can also control the heat transfer rate at the surface, which results in achieving 

the desired cooling effect. Although advanced nanofluids like Carbon 

Nanotubes(CNT)–water diamond–water are available, they are too expensive for 

practical uses. Thus, economically cheaper nanofluids were considered, which also 

offered better heat transfer improvements. Ferrofluids are basically magnetic 

nanofluids that are normally stable liquids comprising dispersed colloidal magnetic 

nanoparticles like cobalt (Co), Magnetite (Fe3O4) and nickel (Ni). Unlike 
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conventional non magnetic nanofluids, ferrofluids provide various advantages when 

employed as heat transfer media for example, (i) the solute nanoparticles’ properties 

such as thermal conductivity and viscosity can be modified by using external 

magnetic field to achieve a specific design requirements, (ii) the thermomagnetic 

convection in a ferrofluids can be controlled and enhanced by employing the external 

magnetic field, and (iii) the size and cost of components can be decreased by 

applying ferrofluids in heat transfer devices. In this context, few researchers 

(Sheikholeslami and Ganji (2014), Sheikholeslami and Gorji (2014)) have confirmed 

that ferrofluids gives excellent heat transfer improvements. 

In this day and age, different geometries also improve the thermal 

conductivity process. Many studies have investigated and proposed novel techniques 

for improving the heat transfer (Bejan, 2013). Also, researchers have investigated the 

role played by the variation in the device geometry on the heat transfer rate. Several 

numerical and experimental studies were published which determined the effects of 

the separation flow on the heat transfer performance, based on the configurations and 

the boundary conditions. Based on the above discussion, clearly, very few studies 

have investigated the heat transfer of the aligned MHD magnetic and non magnetic 

nanofluids flowing over the flat or inclined plates and wedges. More investigation 

needs to be carried out by varying the magnetic nanoparticles, geometries and the 

conventional base fluids to determine their effects on the velocity, heat transfer as 

well as skin friction and Nusselt number. 

1.3  Problem Statement 

Fluid heating and cooling holds lot of significance in several sectors, 

including manufacturing, power, electronics and transportation. Effectual ways of 

cooling are extremely essential for cooling any high-energy apparatus. The usual 

heat transfer fluids like ethylene glycol, water and engine oil have inadequate or 

substandard heat transfer competences because of their limited heat transfer 

attributes. On the other hand, metals demonstrate thermal conductivities almost 

thrice more compared to such fluids. Thus, it is obvious that a blend of the two 
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substances is sought to create a heat transfer medium which performs like a fluid but 

exhibits a thermal conductivity like that of a metal. As mentioned earlier, nanofluids 

can overcome these issues. It is a fluid which comprises tiny volumetric amounts of 

nanometre-sized particles known as nanoparticles. It is basically engineered colloidal 

suspensions of nanoparticles within a base fluid. The nanoparticles utilised in 

nanofluids are mostly formulated from oxides, metals, carbides or CNTs. 

Nanofluids are often a topic of research due to their heat transfer attributes. 

These nanofluids improve convective properties as well as thermal conductivity over 

the base fluid’s properties. Normally, the heat transfer coefficient improves by 

almost 40% and thermal conductivity improvements have been found in the range of 

15 to 40% over the base fluid (Yu et al., 2008). Such levels of increase in thermal 

conductivity cannot be completely attributed to the added nanoparticles’ higher 

thermal conductivity. Attribution behind performance enhancements must have come 

from other mechanisms as well. Besides, there are many potential applications that 

use the interaction between nanofluids and the magnetic field to address issues such 

as liquid sodium that results in cooling of nuclear reactors and induction flow meter 

that relies on the potential difference in the fluid, which is in the direction 

perpendicular to the magnetic field and to the motion. Therefore, this study has 

explored the following research questions: 

1. How is the mathematical model of the steady and unsteady aligned MHD 

free convection boundary layer flows over three different geometries 

which are a flat plate, an inclined plate and a wedge formulated? 

2. How do the mathematical models describing the nature of steady and 

unsteady aligned MHD free convection boundary layer flows over three 

different geometries which are a flat plate, an inclined plate and a wedge? 

3. How does the presence of magnetic and non magnetic nanoparticles in 

the base fluid together with aligned MHD and other parameters affect the 

fluid motion, heat transfer, skin friction and Nusselt number?   
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1.4  Research Objectives 

This study numerically investigates the steady and unsteady of aligned MHD 

free convection of boundary layer flows of magnetic and non magnetic nanofluids 

over a flat plate, an inclined plate and a wedge. This includes the constitution of 

suitable mathematics models by formulating the appropriate governing equations 

with some physical conditions and solving the resulting governing equations 

numerically. The specific objectives of this research are the following: 

1. To derive the mathematical models of the problems which consist of 

continuity, momentum and energy equations. 

2. To carry out mathematical formulation and simplification. 

3. To solve the dimensionless governing equations numerically by using 

Keller box method. 

4. To develop computational algorithm for solving the problem. 

5. To obtain the numerical results of velocity and temperature profiles as 

well as skin friction and Nusselt number for each of the problem. 

6. To analyse the results obtained graphically and tabulated for different 

physical condition namely magnetic field inclination angle parameter, 

magnetic interaction parameter, plate inclination angle parameter, 

nanoparticles volume fraction parameter, wedge angle parameter, moving 

wedge parameter, unsteadiness parameter, Grashof number and thermal 

buoyancy parameter. 
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1.5  Scope of Research  

This thesis is focused on the steady and unsteady aligned MHD free 

convection flows, incompressible and two dimensional laminar boundary layer flow 

of magnetic and non magnetic nanofluids past along three geometries such as  

wedge, vertical an inclined plates. The constant wall temperature and no slip velocity 

condition are considered. Nanoparticles are suspended inside regular fluids where 

water and kerosene are chosen for this purpose. The selected nanoparticles are 

magnetic nanoparticles (Fe3O4) and non magnetic nanoparticles (alumina oxide 

(Al2O3)) (Sheikholeslami and Ganji, 2014, Sheikholeslami and Gorji, 2014). The 

base fluids and the selected nanoparticles are assumed to be in thermal equilibrium. 

By following Tiwari and Das (2007), several nanofluids models are derived. Bearing 

this scope in mind and apart from Chapters 1, 2 and 3, the following problems have 

been considered in Chapters 4, 5, 6, 7, 8 and 9 of the thesis. 

1. Steady aligned MHD free convection flow of magnetic and non magnetic 

nanofluids along a vertical flat plate. 

2. Steady aligned MHD free convection flow of magnetic and non magnetic 

nanofluids along an inclined plate. 

3. Steady aligned MHD free convection flow of magnetic and non magnetic 

nanofluids along a static and moving wedge. 

4. Unsteady aligned MHD free convection flow of magnetic and non 

magnetic nanofluids along a vertical flat plate with leading edge 

accretion. 

5. Unsteady aligned MHD free convection flow of magnetic and non 

magnetic nanofluids along an inclined plate with leading edge accretion. 

6. Unsteady aligned MHD free convection flow of magnetic and non 

magnetic nanofluids along a wedge. 
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The problems are formulated and transformed using similarity transformation 

and solved numerically by Keller box method with the help of FOTRAN software. 

The scope and research framework of this study are shown in Figures 1.1 and 1.2 

respectively. 

Steady and unsteady aligned MHD free convection flow of magnetic and non 

magnetic nanofluids past along wedge, vertical and inclined plates. 
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Figure 1.2 Research framework 
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1.6  Significance of Research   

Cooling is essential for maintaining the stability and the performance of many 

devices like power electronics, computers, car engines and the high-power lasers or 

x-rays. Thermal conductivity is an important process in many of the consumer and 

industrial processes. However, the inherent poor thermal conductivity of the 

conventional base fluids fundamentally limits their heat transfer process and they are 

unable to satisfy the current industrial and technological demands (Sheikholeslami 

and Ganji, 2014). Hence the significance of this thesis are: 

1. To develop a theory of magnetic and non magnetic nanofluids  and explain 

how nanoparticles change the thermal properties of magnetic and non 

magnetic nanofluids and present different effects and conditions that provide 

the best option needed in the flow and heat transfer characteristics. 

2. The results obtained from this research enable to enhance knowledge of the 

steady and unsteady aligned MHD free convection flow and heat transfer  

past along a vertical flat plate, an inclined plate and a wedge. 

3. The results obtained can be used as bases for complex flow problems 

frequently occuring in engineering and applied sciences. This idea can be 

extend for other fluids. 

1.7  Thesis Organization 

This thesis consists of ten chapters in which Chapter 1 consist of the 

introduction of the research, Chapter 2 discuses on the literature review, Chapter 3 

deliberated the derivation of the governing equations which represent the problem, 

Chapters 4 to 9 represent six research problems of this study and lastly, Chapter 10 

represents the main conclusion of the overall problems.  
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Chapter 1 which represents introductory part of the main research contains 

the background of research, problem statement of research, objective of research, 

scope of research and significance of research. Then, in Chapter 2, previous research 

work regarding the research area concerning the proposed problems is reviewed and 

discussed.  

In Chapter 3, the derivation of the basic governing equations for nanofluids 

are discussed in detail. Further, the formulation of the main problem which involves 

the derivation of the volume forces, Boussinesq and boundary layer approximations 

are employed.  

Chapters 4 to 6 present the problem on the effect of steady aligned MHD on 

free convection flow of magnetic and non magnetic nanofluids past along a vertical 

flat plate, an inclined plate and a wedge. The nonlinear PDEs that govern the 

problem are transformed into nonlinear ODEs by using similarity transformation. 

Physical quantities are also included in this chapter to analyze. The full numerical 

processes of Keller box method is also explained in Chapter 4. 

Further, Chapters 7 to 9 discuss the unsteady problem on the effect of aligned 

MHD on free convection flow of magnetic and non magnetic nanofluids past along a 

vertical flat plate, an inclined plate and a wedge. For vertical and inclined plate the 

effect of leading edge accretion is highlighted.  

In each chapter, the content begins with the introduction, followed by 

mathematical formulation continued with solution procedures and will end up with 

the details on results and discussion. 

Finally in Chapter 10, concluding remarks of the thesis, proposed future work 

and implications are presented. At the end, all the references used in this thesis are 

listed in the references. 
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