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ABSTRACT 

Steel plate shear wall (SPSW) is a structure system which is mainly used in 

high-rise building to resist the lateral load either from the wind or earthquake. In this 

study, several models of perforated steel plate shear wall were analysed by using 

Abaqus software in order to study the behaviour of perforated steel plate shear wall 

with different aspect ratios when the location and size of the of opening are varied. 

The parameters concerned are ductility, energy dissipation and lateral load capacity 

of the perforated SPSW. 4 meter high perforated steel plate with varying width of 4 

m and 6 m are bounded by vertical and horizontal boundary elements which is fixed 

at its base and restrained at z-direction at the top. The plate and boundary element 

were made from A36 steel and ASTM A992 steel respectively. Cyclic loadings were 

applied laterally for each SPSW model and the lateral displacements at the top of the 

model were recorded to plot hysteretic curve in order to obtain the ductility, energy 

dissipation and lateral load capacity. It has been found that the energy dissipation, 

ductility and lateral load capacity are affected by the different location of the 

perforation in the SPSW, where SPSW with perforation that is closer to the acting 

forces has lower energy dissipation, ductility and lateral load capacity. Maximum 

energy dissipation, ductility and lateral load capacity were achieved when the 

perforation was located at the centre of the SPSW. The increase in size of perforation 

of the SPSW caused the energy dissipation, ductility and lateral load capacity to 

decrease, while wider width of SPSW have larger values for energy dissipation, 

ductility and lateral load capacity.  
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ABSTRAK 

Dinding ricih plat keluli (SPSW) adalah sistem struktur yang kebiasaanya 

digunakan di bangunan tinggi untuk menahan beban sisi sama ada dari angin ataupun 

gempa bumi. Dalam kajian ini, beberapa model dinding ricih plat keluli tertebuk 

akan dianalisis dengan menggunakan perisian Abaqus untuk mengkaji kelakuan 

tembok ricih plat keluli tertebuk dengan nisbah bidang yang berlainan apabila lokasi 

dan saiz tebukan diubah. Parameter yang dikaji adalah kemuluran, pelesapan tenaga 

dan kapasiti beban sisi plat keluli SPSW tertebuk. Plat tertebuk dengan ketinggian 4 

meter  dan kelebaran berbeza iaitu, 4 m dan 6 m dikelilingi oleh element sempadan 

menegak dan mengufuk yang disokong tegar di tapak dan terhalang daripada 

pergerakan pada paksi z pada bahagian atas model tersebut. Plat dan elemen 

sempadan, masing-masing diperbuat daripada keluli A36 dan keluli ASTM A992. 

Beban kitaran dikenakan pada setiap model dan anjakan sisi pada bahagian atas 

model direkodkan untuk melakarkan graf histeresis bagi mendapatkan kemuluran, 

pelesapan tenaga dan kapasiti beban sisi. Kemuluran, pelesapan tenaga dan kapasiti 

beban sisi didapati dipengaruhi oleh lokasi tebukan yang berbeza pada SPSW iaitu, 

SPSW yang mempunyai tebukan yang lebih hampir dengan beban kenaan 

mempunyai kemuluran, pelesapan tenaga dan kapasiti beban sisi yang lebih rendah. 

Kemuluran, pelesapan tenaga dan kapasiti beban sisi yang maksimum boleh dicapai 

apabila tebukan berada di tengah-tengah plat. Peningkatan saiz tebukan 

menyebabkan  kemuluran, pelesapan tenaga dan kapasiti beban sisi berkurang, 

manakala, SPSW yang lebih lebar mempunyai nilai kemuluran, pelesapan tenaga dan 

kapasiti beban sisi yang lebih tinggi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

With the construction of the tallest twin towers currently in the world in 

1996, more similar projects soon follow as Malaysia continues its rapid urban 

developments. These developments lead to more high-rise buildings to be 

constructed in order to save up more space which will be dwindling in the near 

future. Therefore, the technologies and skills required to build higher altitude 

structures needs to be emphasized more in order to expand and obtain new 

knowledge which can further enhance our understanding on the mechanics of tall 

building structures. 

 On 5 June 2015, earthquake struck Ranau, Sabah, Malaysia with a moment 

magnitude of 6.0 which lasted about 30 seconds and took 18 lives on Mount 

Kinabalu and caused several structural damages on the buildings of the surrounding 

regions. It is also considered the strongest earthquake that affected Malaysia since 

1976. The event came out as a surprise due to the location epicentre location of the 

earthquake which is in Sabah, a place not well-known for destructive earthquake 

unlike Sumatra, Nepal, Taiwan and Japan, which straddle fast-moving tectonic plate 

boundaries. Therefore, most structures on the surrounding areas are susceptible to 

earthquake due to lack of standards for earthquake-resistant structural design in 

Malaysia. Ever since then, awareness on the importance of earthquake-resistant 

design raised and Malaysia quickly responded by introducing the standards for 

earthquake design in which the Ministry of Science, Technology and Innovation 

(MOSTI), through the Department of Standards Malaysia developed a Malaysian 

Standards (MS EN 1998-1:2015 (NATIONAL ANNEX:2017)) for earthquake-

resistant building design code based on European Eurocode 8 ‘Design Of Structures 

For Earthquake Resistance ― Part 1: General Rules, Seismic Actions and Rules For 
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Buildings’. Therefore, earthquake become one of the important factors that needs to 

be considered in designing structures in Malaysia ever since.  

With the consideration of earthquake in structural design, the lateral effects 

from the earthquake on a structure can be minimized. However, tall buildings have 

other source of lateral actions included acting on the structure in the form of wind 

load which increases with altitude. Therefore, tall buildings are not only susceptible 

to earthquake, but also from the wind load. Numerous  methods and innovations are 

being researched and studied thoroughly in order to reduce the effects of lateral load 

on a structure. One such method is to use the steel plate shear wall (SPSW) in order 

to reduce the energy released by the earthquake and wind thus stabilizing the 

structure from swaying and minimize the damages. 

Steel plate shear wall (SPSW) consists of thin steel infill plates called the web 

plate which is bounded by boundary elements which is columns and beams with 

bolted or welded connections. SPSWs have been used in the US since the 1970s 

primarily for seismic retrofits, as most practicing engineers usually hesitate to use 

systems due to the lack of standard codes and clear history of past performance. 

However, recent studies and researches have raised the prospect of using SPSWs as a 

promising alternative to conventional systems in high-risk seismic regions due to the 

energy dissipating qualities of the web plate under extreme cyclic loading. Compared 

to reinforced concrete shear walls, SPSWs is significantly faster to construct and 

much lighter thus reducing the material construction duration and materials which is 

essential factors affecting the overall cost of the project. 

1.2 Problem Statement 

SPSW is one of the most efficient tall building systems to resist earthquake. 

However, SPSW sometimes need to be perforated to allow people to go through it or 

to serve as windows. Research proves that perforation of SPSW will reduce its 

capacity to resist the lateral load. Previous research did study the effect of the size of 

the perforation and the location of the perforation to the shear capacity of the SPSW. 
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However, does the relationship remain the same when the size of the SPSW is 

altered? The height of the SPSW may always be about 4 meters but the breadth may 

change from one building to the other building. The answers to these questions are 

important to enable engineers and architects to make the correct decision regarding 

the size and location of perforation of the SPSW they design.  

Furthermore, ductility and energy dissipation are important in the seismic 

resistance structure design. Ductility factor required for structure is typically in the 

range 3 to 6 (Park, 1988). The seismic input energy imparted to a structure is 

dissipated by hysteretic behavior. It is generally recognized that there is a strong 

correlation between the energy dissipated by hysteretic action and the seismically 

induced level of damage. Thus, how do energy dissipation and ductility of SPSW are 

affected by the size and the location of the perforation? 

1.3 Research Objectives 

The objectives of the research are : 

(a) To obtain ductility, energy dissipation and shear capacity of the SPSW when 

the size and location of the perforation are varied. 

(b) To find the effect of the width of the SPSW to ductility, energy dissipation 

and lateral load capacity for different location and size of the perforation 

1.4 Scope 

This study will focus on the behavior of ductility, energy dissipation of 

perforated steel plate shear wall (SPSW). The material used for the steel plate web is 

A36 mild steel, which is commonly used. Only numerical simulations of the SPSW 

will be performed. The SPSW has a height of 4 meters and fix supported at the 
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