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This study aims to determine the stability of atmospheric pressure non-thermal 

plasma generated in dielectric barrier discharge (DBD) based on temperature profiles 

measured using a fiber Bragg grating (FBG).  Two sets of the DBD reactor were 

fabricated using two symmetrical electrodes separated by 2.31 mm and 3.74 mm 

discharge gap, respectively with dielectric material of alumina plates.  The FBG was 

used as a temperature sensor by embedded directly into the plasma stream.  The 

temperature was measured at different applied voltages within range of 0 to 7 kV. The 

results show that the streamer discharge was generated by the DBD reactor with the 

2.31 mm discharge gap at 5.5 kV while the DBD reactor with the 3.74 mm discharge 

gap generated filamentary discharge at 7 kV.  The temperature increases proportionally 

as the applied voltages increases.  The stability of the DBD reactor was performed by 

operated at constant applied voltage for 600 seconds.  The temperature profiles of the 

DBD reactor with the 2.31 mm discharge gap were measured in the range of 210 - 231 

oC with applied voltage of 5.0 kV and in the range of 270 - 286 oC at 6 kV.  For the 

DBD reactor with the 3.74 mm discharge gap, the temperature profiles were measured 

in the range of 47 - 67 oC when operated at 6 kV and in the range of 193 - 245 oC at 7 

kV.  A huge temperature difference was found for the DBD reactor with the 3.74 mm 

discharge gap which results in localized heat generation of the discharge caused by the 

filamentary discharge. The filamentary discharge disrupted the homogeneity of the 

plasma and created the instabilities in the DBD reactor. The plasma intensity of the 

DBD reactor measured by the optical emission spectroscopy (OES) showed more 

fluctuation pattern when the filamentary discharge was generated compared to the 

streamer discharge.  From this finding, the FBG can be used for temperature profiles 

of the DBD reactor to determine its stability on the generation of the filamentary 

discharge.   
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Kajian ini bertujuan untuk menentukan kestabilan reaktor pelepasan halangan 

dielektrik (DBD) berdasarkan pemprofilan suhu menggunakan parutan gentian Bragg 

(FBG).  Dua set reaktor DBD difabrikasikan menggunakan dua elektrod bersimetri 

yang dipisahkan dengan jurang nyahcas 2.31 mm dan 3.74 mm bersama bahan 

dielektrik plat alumina.  FBG digunakan sebagai penderia suhu dengan dibenamkan 

secara terus ke dalam aluran plasma.  Suhu diukur pada voltan gunaan berbeza dalam 

julat voltan 0 hingga 7 kV.  Keputusan tersebut menunjukkan nyahcas strim dijana 

oleh reaktor DBD dengan jurang nyahcas 2.31 mm pada 5.5 kV manakala reaktor DBD 

dengan jurang nyahcas 3.74 mm menjana nyahcas filamen pada 7 kV.  Suhu meningkat 

secara berkadaran dengan peningkatan voltan gunaan.  Kestabilan reaktor DBD 

dipersembahkan dengan dikendalikan pada voltan gunaan malar untuk 600 saat.  Profil 

suhu reaktor DBD dengan jurang nyahcas 2.31 mm dan 3.74 mm diukur dalam julat 

suhu 210 - 231 oC dengan 5 kV voltan gunaan dan dalam julat suhu 270 - 286 oC pada 

6 kV.  Bagi reaktor DBD dengan jurang nyahcas 3.74 mm, profil suhu diukur dalam 

julat suhu 47 - 67 oC apabila dioperasi pada 6.0 kV dan dalam julat suhu 193 - 245 oC 

pada 7 kV.  Perbezaan suhu yang tinggi ditemui pada reaktor DBD dengan jurang 

nyahcas 3.74 mm yang hasilnya pada pembentukan haba setempat dalam nyahcas 

disebabkan oleh nyahcas filamen.  Nyahcas filamen mengendala kehomogenan plasma 

dan membentuk ketidakstabilan di dalam reaktor DBD.  Keamatan plasma bagi reaktor 

DBD yang diukur dengan spectrometer pancaran optik (OES) menunjukkan lebih pola 

fluktuasi apabila nyahcas filamen dijana berbanding dengan nyahcas strim.  Daripada 

dapatan ini, FBG boleh digunakan dalam pemprofilan suhu reaktor DBD untuk 

menentukan kestabilan reaktor dengan penjanaan nyahcas filamen. 
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INTRODUCTION 

1.1 Background of Study 

Plasma is classified as the fourth state of matter. It consists of a huge number 

of energetic ions and free electrons originated from neutral atoms or molecules 

undergoing an ionization process due to energy received from thermal, light or 

electrical energy. Plasma can be divided into two types, thermal plasma and non-

thermal plasma (NTP).  Thermal plasma is a state of energetic particles reaching 

thermodynamic equilibrium where the temperature of the ions, electrons, and neutral 

gas atoms or molecules is approximately equal throughout the system.  Meanwhile, 

NTP exist in non-thermal equilibrium state such that most of the kinetic energy 

absorbed by the electrons and only its temperature is much higher compare to ions and 

neutral gas temperature.  

Owing to the ability to produce more chemical reactions and high ionization 

rates, there are many ways to generate NTP such as corona discharges, gliding arc 

discharges, plasma jets, and dielectric barrier discharge (DBD) reactor.  The DBD 

reactor is the most significant utilization of NTP because of plasma formation that 

yield higher density of free electron and the reactor can be operated at low pressure 

and atmospheric pressure [1].  The DBD reactor offers solution for many applications 

such as air pollution control [2-4], wastewater treatment [5-6], sterilization [7-8], 
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volatile organic compounds (VOCs) decomposition [9-10] and aerodynamic flow 

control [11].       

The DBD reactor essentially is an electrical discharge between two 

asymmetrical electrodes separated by the dielectric material.  The DBD reactor has 

gathered great attention for aerodynamic technologies as a novel type of flow 

controller device and therefore introduced a potential and promising design called 

DBD plasma actuator.  These light-weight devices are designed fully electronic with 

no moving parts and quick response time which is favourably for aerodynamic 

applications [12].  These interesting characteristics of the DBD plasma actuator give 

rise the studies mainly focusing on improving airflow separation and reducing the 

vortex formation onto the actual airflow machinery [13-14]. 

The DBD reactor involves electrical discharges of the gas at atmospheric 

pressure.  The DBD reactor is also employed under the influence of high electric field 

resulting in ionization of gases where the outer shell electron is being ejected by strong 

electric fields thus producing free electrons. Then, electric field accelerates the free 

electrons causing collision between the accelerated electrons and gas molecules or 

atoms which results in more outer shell electron being ejected and accelerated. This 

process produced high energetic electrons and ions which are later referred as non-

thermal plasma (NTP). Plasma can be generated either in the form of diffuse discharge, 

filamentary discharge or at more extreme it can turn into plasma arc. 

Homogeneous and good uniformity of plasma discharges formed is known as 

diffuse discharge.  However, accumulation of microdischarges on the dielectric surface 

of the DBD reactor during the discharges creates local electric field which then 

changed the electric field distribution.  The build-up microdischarges create 

inhomogeneity and disrupt the discharge thus forming plasma filamentation known as 

filamentary discharge. These discharges are difficult to sustain due to the instabilities 

of the electric field in the DBD reactor.  The complexity and dynamicity of the plasma 

transition, diffuse-to-filamentary discharge are still being extensively studied.  Many 
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studies have been conducted such as charge particles density [15], plasma behaviour 

[16-17] and plasma temperature [18-19].  However, despite all the previous related 

literature, few efforts are done on thermal characterization on DBD reactor [20]. 

Filamentary discharges are formed from the bulk of the microdischarges causing 

power dissipation in the reactor which eventually results in heat generation thus 

showing temperature dependent parameters on the plasma discharges throughout the 

process [17].  Hence, an optical fiber called fiber Bragg grating (FBG) sensors are 

introduced in recent studies that demonstrated the in-situ measurement of temperature 

on monitoring the plasma discharges [21-22]. 

FBG plays an important role as a sensor to determine physical measurement 

likes pressure, strain, and temperature [23].  In this study, FBG sensor are used to 

monitor temperature profile of the plasma generated by the DBD reactor.  The FBG 

sensors are embedded in between the plasma reactor which is directly positioned into 

the plasma stream to obtain temperature measurement [24].  FBG sensors is fast 

respond optical sensing technique with the capability to operate on high voltage and 

temperature condition becoming convenient and suitable devices unlike other 

conventional techniques. 

1.2 Problem Statement 

Plasma filamentation in the DBD reactor is perplexing to understand its 

influences on the homogeneous discharge. This plasma transition makes it difficult to 

find the most preferable high operating voltage and stability for the DBD reactor since 

plasma aching, big energetic plasma filaments are easily formed. Previous studies 

highlighted the study on temperature characteristics of the DBD reactor to understand 

the nature of the plasma discharges using conventional devices like thermocouple, 

infrared (IR) thermal sensors and emission spectroscopy.  These devices can only 

facilitate the temperature profiles from outside or near the plasma reactor wall due to 

incapability to withstand high electric field environment.  This makes the FBG sensor 
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a new alternative temperature sensor that offer in-situ measurement, high temperature 

sensitivity and insusceptible to electromagnetic interference.  The FBG sensor is 

capable of being positioned directly onto the plasma stream without disrupting the 

plasma discharge of the DBD reactor.  This makes the temperature measurement by 

the FBG sensor can be done without disrupt the plasma formation which its suitable to 

be used as indicator of plasma stability based on temperature behaviour. 

1.3 Objectives 

The objectives of this research are: 

1. To design and fabricate a dielectric barrier discharge (DBD) reactor.  

2. To measure the temperature profiles of the DBD reactor using fiber Bragg 

grating (FBG) arrays at different applied voltages and discharge gaps. 

3. To determine the stability of the DBD reactor operating at different applied 

voltages and discharge gaps. 

1.4 Scope of Study 

A DBD reactor is designed and fabricated with two asymmetrical copper 

electrodes assembled with the alumina plates attached in between the electrodes.  The 

alumina plates are used as the dielectric material for the DBD reactor.  The reactor is 

operated with applied voltage of 0 - 7 kV, generated by 20 kHz AC power supply.  

Different sets of discharge gap are prepared for the DBD reactor using stainless steel 

flat washers as spacers.  The FBG sensors are embedded in between the electrodes for 

the plasma temperature measurements.  The temperature profiles are measured using 

the optical spectrum analyzer (OSA) by observing the Bragg wavelength shift, ΔλB.  
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The DBD reactor also use the optical emission spectrometer (OES) to monitor the 

plasma intensity of the DBD reactor. 

1.5 Significance of Study 

Temperature profiles are important parameter of interest to study the plasma 

stability of the DBD reactor. The DBD reactor are known to generate diffuse and 

filamentary discharges depending on the applications especially the plasma actuator. 

These discharges are necessary to discriminate their formation for stability of the DBD 

reactor.  The filamentary discharges are difficult to sustain and manage which could 

potentially lead to plasma arching thus damaging the plasma reactor.  Good dielectric 

material has high dielectric constant that also could help increases the applied voltage 

range of the DBD reactor.  The use of the FBG sensor in this study is to determine the 

suitable high operating voltage range of the DBD reactor.  FBG sensor offers fast 

response and multiplex capabilities sensor that enable the device to be used as localized 

sensor and distributed sensor [23-25] which is essential in profiling the temperature.  

The FBG sensor is installed inside the plasma stream of the DBD reactor increasing 

the accuracy of the temperature measurement obtained.  By operating the FBG sensor 

as a temperature sensor, the plasma generated by the DBD reactor help to distinguish 

the filamentary discharge that disrupting the stability of the DBD reactor.  The OES 

are used simultaneously with the FBG sensor to determine the influences of the 

filamentary to the plasma intensity of the DBD reactor operating with different applied 

voltage and discharge gaps.  The FBG sensor can be used to determine the influences 

of the filamentary discharge on the temperature profiles of the DBD reactor at different 

discharge gaps and applied voltages. 
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