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ABSTRACT

The development of economic and industry depend upon how well the 
accuracy of crude oil price forecasting is managed. The study aims to reduce 
computation complexity and enhance forecasting accuracy of decomposition 
ensemble model. The propose model comprises four steps which are (i) 
decomposing the complex data into several IMFs using ensemble empirical mode 
decomposition (EEMD) method, (ii) reconstructing the decomposed IMFs through 
autocorrelation into stochastic and deterministic components, (iii) forecasting every 
reconstructed component, and (iv) ensemble all forecasted components for the final 
output. IMFs in the stochastic component are analysed separately. The findings 
confirm that the stochastic component contributed more variation as compared to 
deterministic component. For verification and illustration, Brent, West Texas 
Intermediate (WTI) daily, weekly, monthly and yearly, and Pakistan monthly spot 
crude oil prices were used as sample study. The empirical results indicated that the 
proposed model statistically outperformed all the considered benchmark models 
including the most popular auto-regressive integrated moving average (ARIMA) 
model, feed forward neural network (FFNN) model, decomposition ensemble model 
(EEMD-ARIMA and EEMD-FFNN), reconstruction decomposition ensemble model 
with stochastic and deterministic components (EEMD-(S+D)-ARIMA and EEMD- 
(S+D)-FFNN) and Rios and De Mello (RD) reconstruction decomposition ensemble 
model with stochastic and deterministic components (EEMD-RD-ARIMA and 
EEMD-RD-FFNN). To determine the performance, two descriptive statistical 
measures were applied, including the root mean square error (RMSE) and mean 
absolute percentage error (MAPE). The MAPE of the proposed EEMD-individual 
stochastic and deterministic (ISD)-FFNN model for daily and weekly data of Brent 
and WTI are <1%, however, for monthly Brent, WTI and Pakistan data are <5% 
shows a good fit produce by EEMD-ISD-FFNN. The MAPE of the model EEMD- 
ISD-FFNN for yearly Brent data is <30% indicate a reasonable fit and for WTI 
<20% implies a good fit. Whereas the MAPE of the EEMD-(S+D)-FFNN model for 
Brent yearly data <20% display a good fit and for WTI data <10% indicate excellent 
fit. In nutshell, the recommended model for yearly data is EEMD-(S+D)-FFNN. In 
conclusion, the proposed method of reconstruction of IMFs based on autocorrelation 
enhanced the forecasting accuracy of the EEMD model.
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ABSTRAK

Perkembangan ekonomi dan industri bergantung kepada sejauh mana 
ketepatan ramalan harga minyak mentah diuruskan. Kajian ini bertujuan untuk 
mengurangkan kerumitan perhitungan dan meningkatkan ketepatan ramalan 
menggunakan model pengabunggan. Model pengabungan ini terdiri daripada empat 
langkah iaitu (i) menguraikan data kompleks ke dalam beberapa IMF menggunakan 
kaedah penguraian mod empirikal (EEMD), (ii) mengkelaskan IMF yang diuraikan 
melalui autokorelasi ke dalam komponen stokastik dan deterministik, (iii) 
meramalkan setiap komponen yang dibina semula, dan (iv) mengabungkan semua 
ramalan untuk dijadikan sebagai hasil ramalan akhir. IMF dalam komponen stokastik 
dianalisis secara berasingan. Penemuan mengesahkan bahawa komponen stokastik 
menyumbang lebih banyak variasi berbanding komponen deterministik. Untuk 
pengesahan dan ilustrasi, harga minyak mentah Brent, West Texas Intermediate 
(WTI) harian, mingguan, bulanan dan tahunan, dan harga minyak mentah bulanan 
Pakistan digunakan sebagai sampel kajian. Keputusan empirikal menunjukkan 
bahawa model yang dicadangkan secara statistik mengatasi semua model penanda 
aras yang dipertimbangkan termasuk model purata gerak bersepadu auto-regresif 
yang paling popular (ARIMA), model rangkaian neural suap ke hadapan (FFNN), 
model pengabungan penguraian (EEMD-ARIMA dan EEMD-FFNN), model 
pengabungan penguraian pembinaan semula dengan komponen stokastik dan 
deterministik (EEMD-(S+D)-ARIMA dan EEMD-(S+D)-FFNN) dan Rios dan De 
Mello (RD) model gabungan penguraian pembinaan dengan komponen stokastik dan 
deterministik (EEMD-RD-ARIMA dan EEMD-RD-FFNN). Untuk menentukan 
prestasi model yang dicadangkan, dua statistik deskriptif telah digunakan, termasuk 
punca min ralat kuasa dua (RMSE) dan min ralat mutlak (MAPE). MAPE bagi 
model stokastik EEMD-individu dan deterministik (ISD)-FFNN yang dicadangkan 
untuk setiap data harian dan mingguan untuk Brent dan WTI adalah <1%, 
bagaimanapun, untuk data bulanan bagi Brent, WTI dan Pakistan adalah <5%, 
menunjukkan pemadanan yang begitu baik dihasilkan oleh EEMD-ISD-FFNN. 
MAPE bagi model EEMD-ISD-FFNN untuk data tahunan Brent adalah <30% 
menandakan pemadanan yang munasabah dan untuk WTI adalah <20% 
menunjukkan pemadanan yang baik. Sedangkan MAPE bagi model EEMD-(S+D)- 
FFNN untuk data tahunan bagi Brent adalah <20% memaparkan pemadanan yang 
baik dan untuk data WTI adalah <10% menandakan pemadanan yang begitu baik. 
Secara ringkasnya, model yang dicadangkan untuk data tahunan adalah model 
EEMD-(S+D)-FFNN. Kesimpulannya, kaedah cadangan pembinaan semula IMF 
berdasarkan autokorelasi meningkatkan ketepatan ramalan model EEMD.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides an overview of the research undertaken in this research 

project. First background of this study will briefly be discussed followed by problem 

statement which describes the problem. Besides, the chapter presents the research 

questions which this study attempts to answer. Moreover, the chapter puts forward 

the research objectives followed by the significance of the study. The scope of this 

research study is also explained in this chapter. The second and last section of this 

study dwells upon the contribution of the study and the origination of the thesis 

respectively.

1.2 Background of the Study

Crude oil is a very important commodity in the world because of its unique 

nature as it affects the life of every individual in many ways. According to 

International Energy Agency (IEA), as of early 2017, the world currently consumes

97.9 million barrels of oil and liquid fuels daily. In global markets it is the most

active and heavily traded commodity. Due to high demand of crude oil in every field 

of life, it needs more attention as compared to other commodities. Oil is a non­

renewable commodity, but the world consumes it in different ways thus it is a 

challenge for mathematician, statistician and econometrician to develop a better
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strategy for understanding the price changing aspect of crude oil. Crude oil is treated 

as a special commodity among different world players such as oil companies, oil 

producing nations, oil importing nations, speculators and individual refineries. Due 

to the uneven nature of geo political and global socio-economic events the prices of 

crude oil are sensitive. Fluctuation in the price of the crude oil involves several 

factors like supply, demand, inventory and consumption but irrespective of these 

factors the oil prices are also influenced by irregular and unpredictable elements 

which are random in nature. These characteristics of the crude oil price make 

fluctuation in the market. Due to the irregular and stochastic nature of oil prices it is 

a very complex and challenging task for researchers to develop appropriate models 

for forecasting the crude oil prices. The complex and compound nature of crude oil 

price makes this area widely opened for researchers to develop different procedures 

for forecasting the crude oil prices in a good manner. As far as the world economy is 

concerned, crude oil plays an increasingly important role as two third of the world’s 

energy demand is met by crude oil (Alvarez-Ramirez et al., 2003). Like other 

commodities, the price of crude oil is also measured from the demand and supply. 

Experimental evaluations propose that these factors are accountable for latest drop in 

crude oil prices. Since both supply and demand are related factors underlying the 

recent decline in crude oil prices are likely to continue over the near- to medium- 

term, crude oil prices are expected to remain soft but unstable, with a steady 

regaining over the next decade (Baffes et al., 2015).

Additionally, the whole aggregate economic activity can be disturbed by a 

sharp movement of crude oil price which may fluctuate the nation’s economy 

significantly. Furthermore, the impacts can be reflected in two ways on nation’s 

economy. Firstly, the oil importing countries’ economic growth is adversely 

influenced increasing inflation with sharp rise in crude oil prices. Secondly, the oil 

exporting countries face a serious budgetary shortfall problems by a small fall in 

crude oil prices (Abosedra and Baghestani, 2004). The topic of forecasting crude oil 

price is very important although it is difficult to foretell it due to its high volatility 

and inherent difficulties (Wang, 2005).
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In the last two decades, typical statistical tools and econometric methods 

were used for forecasting crude oil prices, such as generalized autoregressive 

conditional heteroscedasticity (GARCH) models, autoregressive moving average 

(ARIMA) models, linear regression, naive random walk, error correction model 

(ECM), vector autoregressive (VAR) models, and also computational approaches 

such as artificial neural networks (ANN), decomposition-ensemble techniques of 

wavelet decomposition, empirical mode decomposition (EMD) and ensemble 

empirical mode decomposition (EEMD) have been used. Nowadays the 

decomposition procedures are more popular in the financial markets due to the 

reason that these techniques are more flexible and produce high level of accuracy. 

Recently, some modified decomposition-ensemble technique is used for forecasting 

the crude oil prices such as (Yu et al., 2015) suggested an EEMD based technique to 

enhance forecasting accuracy and reduce complexity in computation as well as in 

time.

Furthermore, for forecasting crude oil prices (Yu et al., 2016) proposed a new 

EEMD paradigm and extended extreme learning machine (EELM) based on the 

principle of “decomposition and ensemble”. Moreover, (Zhu et al., 2016) proposed a 

new multi-scale paradigm through a kernel function incorporating EEMD, particle 

swarm optimization (PSO) and least-square support vector machines (LSSVM). The 

EEMD method was used to decompose the original time series into intrinsic mode 

functions (IMFs) and a trend function through sifting processes. However, an 

important issue could arise regarding the model computational time, cost and 

complexity. Because, the decomposition-ensemble models break down the time 

series into many IMFs and a trend function.

To solve the above issue different authors introduced the reconstruction of 

IMFs and trend function into some components aiming to reduce the computational 

time and model selection complexity (Rios and De Mello, 2013; Shu-ping et al., 

2014; Yu et al., 2015; Zhu et al., 2016). Rios and De Mello (2013) divided the IMFs 

and trend function obtained from EMD into two groups called stochastic and 

deterministic components. They used the recurrence plot (RP) and average mutual 

information (AMI) for dividing the IMFs and trend function into stochastic and
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deterministic components. The empirical study assured that the reconstruction of 

IMFs and trend function into stochastic and deterministic components enhanced the 

forecasting accuracy. Shu-ping et al. (2014) also divided the IMFs and trend function 

of EMD into high, medium, and low frequencies and in a trend sequence through 

run-length judgment method and outperformed the decomposition ensemble results 

using all IMFs and trend function for forecasting the crude oil prices.

EEMD paradigm IMFs and trend function was also reconstructed into 

components by (Yu et al., 2015) using the “data-characteristic-driven” approach. The 

main data characteristics were data complexity (i.e. high and low) and pattern 

characteristics (i.e. cyclicity, mutability, and tendency), the empirical results showed 

that the reconstruction of IMFs and trend function into components enhanced the 

forecasting accuracy. Zhu et al. (2016) also divided the EEMD IMFs and trend 

function into groups i.e. high frequency’s (HFs), low frequency’s (LFs) and trend. 

Later, the HFs was forecasted using ARIMA model, while LFs and trend were 

forecasted by the PSO-LSSVM methods and for the final prediction the whole 

forecasted results are simply combined. Most of the above studies have used two or 

more criteria for reconstruction of IMFs and trend function such as recurrence plot, 

average mutual information, high frequency, low frequency, trend, data complexity 

and data pattern characteristics. The use of these different criteria motivates this 

thesis to develop a single criterion for reconstruction of EEMD IMFs and trend 

function and to enhance the forecasting accuracy as compared to the other 

procedures of reconstruction of IMFs and trend function.

1.3 Problem Statement

The complex data of crude oil prices was effectively handled by the 

decomposition ensemble models EEMD-ARIMA and EEMD-FFNN as compared to 

single ARIMA and FFNN models. EEMD divided the data into several IMFs and in 

a trend function to simplify the task of forecasting. However, an important issue 

arose regarding the model computational time, cost and complexity and most



probably sometimes leading to a poor result because the estimation errors of all 

models be accumulated in the last ensemble step of forecasting (Yu et al., 2015).

To overcome the above problem different studies have been executed (Rios 

and De Mello, 2013; Shu-ping et al., 2014; Yu et al., 2015; Zhu et al., 2016) which 

reconstructed the IMFs and trend function into some meaningful components using 

the different data characteristics, data patterns, high frequencies, medium 

frequencies, low frequencies, trend, run-length judgement method, recurrence plot, 

and average mutual information. All studies of reconstruction of IMFs and trend 

function obtained from EEMD exploited different procedures to make new 

components and most of them used more than one procedure for reconstructing of 

IMFs and trend function.

The above problem of reconstruction of IMFs and trend function motivated 

the researcher to develop a single procedure for reconstruction of IMFs and trend 

function. Thus, in this research project IMFs and trend function obtained from 

EEMD are divided into two components i.e. stochastic and deterministic based on 

autocorrelation. A threshold value of autocorrelation will be fixed (see chapter 4) for 

dividing the IMFs and trend function into stochastic and deterministic components 

by simulating different time series with different number of observations and 

threshold values. All IMFs and trend function with determinism rate greater than a 

threshold are added to form the deterministic component and the remaining ones are 

summed to form the stochastic component. After getting the stochastic and 

deterministic components, appropriate model selection for crude oil price forecasting 

is attempted. To check the effect of the reconstruction of IMFs and trend function 

into stochastic and deterministic components, the two models are used (see chapter 

5). i.e. EEMD-Stochastic(S)+Deterministic(D)-ARIMA or EEMD-(S+D)-ARIMA 

and EEMD-(S+D)-FFNN.

Furthermore, in this thesis the IMFs being part of the stochastic component is 

studied in more details because from the analysis it proves that it significantly 

influences the overall results. Hence, the IMFs being part of the stochastic 

component will be modelled individually for possible increase in forecasting

5



accuracy. Thus, the models EEMD-Individual Stochastic (IS) Deterministic (D)- 

ARIMA or EEMD-ISD-ARIMA and EEMD-ISD-FFNN are fitted for crude oil 

prices (see chapter 6). Therefore, the focus of this study is to establish the best 

optimal forecasting model for crude oil price. By doing so, it is expected to further 

improve the forecasting accuracy of the crude oil price.

1.4 Research Questions

The research questions of this study are as follows:

i) Would decomposition techniques improve forecasting accuracy as compared 

to single ARIMA and FFNN models?

ii) Could the IMFs obtained from decomposition ensemble models be separated 

further into stochastic and deterministic components?

iii) Could the reconstructed decomposition ensemble models outperform the 

ARIMA, FFNN, EEMD-ARIMA and EEMD-FFNN models?

iv) Could the reconstructed decomposition ensemble models perform well for 

daily, weekly, monthly and yearly data or its use is specific to certain data 

sets?

The above all research questions will be answered through empirical analysis 

all over the study

1.5 Research Objectives

The sole aim of this thesis is the reconstruction of IMFs and trend function 

obtained from EEMD aiming to enhance forecasting accuracy and reducing the 

computational time and model selection complexity. The objectives of this thesis are 

as follows:
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i) To determine if the decomposition-ensemble models can effectively modelled 

the complex data of crude oil price as compared to single ARIMA and FFNN 

models.

ii) To determine a threshold value which divided the IMFs and trend function 

obtained from EEMD into stochastic and deterministic components.

iii) To determine the best model for reconstructed components for forecasting the 

crude oil price by using the ARIMA and FFNN models.

iv) To compare the IMFs and trend function obtained from EEMD and 

reconstructed components by using the ARIMA and FFNN models.

1.6 Significance of the Study

The objective of this research is to develop a new procedure for 

reconstruction of IMFs and trend function obtained from EEMD and designs an 

appropriate model for world crude oil price forecasting with reconstructed stochastic 

and deterministic components. The advantages of the new proposed method of 

reconstruction of IMFs and trend function are as listed as (i) the proposed procedure 

of reconstruction of IMFs and trend function based on only one criterion which is 

autocorrelation of all IMFs, (ii) the proposed procedure of reconstruction of IMFs 

and trend function takes less time in model selection for every reconstructed 

component because the number of IMFs reduces from the original number, (iii) the 

forecasting accuracy also increases with the use of new reconstructed components 

which is essential for new models, and (iv) the new proposed procedure of 

reconstruction of IMFs and trend function could also be implemented in automatic 

function of some software like R and Matlab from which the system will 

automatically reconstruct the new components because the new procedure does not 

require human monitoring. The models which proposed the reconstructed 

components are EEMD-(S+D)- ARIMA, EEMD-(S+D)-FFNN, EEMD-ISD-ARIMA 

and EEMD-ISD-FFNN in this thesis.

The new proposed models EEMD-ISD-ARIMA and EEMD-ISD-FFNN 

significantly improved the forecasting accuracy of the crude oil price as compared to

7
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single ARIMA and FFNN models and EEMD-ARIMA and EEMD-FFNN which 

used all IMFS and trend function and EEMD-(S+D)-ARIMA, EEMD-(S+D)-FFNN 

which used only stochastic and deterministic components. As a test case different 

crude oil price series were used and forecasted including daily, weekly, monthly and 

yearly data to check its usefulness, generalizability and robustness of the proposed 

method. The empirical results assured the importance of the proposed reconstruction 

technique and significantly improved the forecasting accuracy of the crude oil price 

and recommended for the forecasting of crude oil price.

In general, the new procedure which is designed in this study for forecasting 

crude oil price would be useful for investors, suppliers, government agencies for 

planning their activities within the available resources and the statisticians, 

econometrician and researchers in particular to grasp the crude oil price 

understanding and will produce more up-to-date and better forecasts for future crude 

oil price.

1.7 Scope of the Study

This study only focused on the crude oil price forecasting. The well-known 

linear and non-linear single models ARIMA and FFNN are applied to check the 

effect of reconstruction of IMFs and trend function obtained from EEMD. For 

decomposition of time series, only the EEMD method is exploited. For 

reconstruction of IMFs and trend function only two methods are employed; the 

average mutual information (AMI) and the proposed method of autocorrelation. For 

fixing the threshold value of determinism rate of autocorrelation, the simulation of 

different time series was carried out using four different scenarios. In this study only 

one step ahead forecast is performed. Three different crude oil price series Brent, 

WTI and Pakistan were utilized as a test case. The Brent and WTI crude oil price 

series consist of daily, weekly, monthly and yearly while Pakistan has only monthly 

data. For analysis all crude oil price time series were distributed into two different 

groups such as training and testing. The training set consists of the first 80 percent of



the total observations while the last 20 percent was used as a testing set for model 

evaluation.
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1.8 Contribution of the Thesis

The contributions of this research study are listed as below:

i) Simulations were carried out to fix the threshold value of autocorrelation to 

divide the IMFs into stochastic and deterministic components using different 

number of observations with four different scenarios (Chapter 4 page 97).

ii) The new procedure of reconstruction of IMFs and trend function obtained 

from EEMD is developed (Chapter 5 page 123).

iii) The new models EEMD-ISD-ARIMA and EEMD-ISD-FFNN are developed 

for forecasting the crude oil price which empirically assured the improvement 

in accuracy (Chapter 6 page 171).

iv) In this study different crude oil price series is used including daily, weekly, 

monthly and yearly data of Brent, WTI and Pakistan to check the usefulness, 

generalizability and robustness of the proposed models (Chapter 6 page 172).

1.9 Organization of the Thesis

This research study is organized in seven chapters. The contents of each 

chapter are outlined as follows:

Chapter one is the introduction. In first section the chapter is introduced 

followed by the background of the study which shows an overview on time series 

analysis and the methods commonly considered to decompose the time series. Next, 

is the problem statement which outlined the problem to be solved in this thesis 

followed by the research questions which are to be answered followed by the 

objectives of this study to achieve. The next section presents the significance of this
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thesis followed by the scope of the study and then summary of the contribution of 

this thesis. Finally, the organization of the thesis is presented which outlined the 

whole chapters in detail.

Chapter two consists of the literature review. The chapter starts with the 

introduction which describes the chapter accordingly followed by different 

approaches used for forecasting the crude oil price including cause and effect and a 

univariate approach. The chapter further presents that this study is focused on the 

time series analysis so next are the reviews of different procedures used for 

modelling the time series including ARIMA, GARCH and FFNN models. Next 

section highlights the work on decomposition ensemble techniques including the 

EMD and EEMD followed by the reconstructed of IMFs and trend function obtained 

from EMD and EEMD. The data sets used in different studies are also presented with 

complete details followed by the critical review to identify the research gap of the 

study. The last section puts forward of the chapter summary.

Chapter three consists of the research methodology. The chapter starts with 

the introduction and describes the chapter accordingly followed by the mathematical 

formulation and steps involved in every technique and model used in this thesis like 

ARIMA, GARCH, FFNN and EEMD. Next, are the methodologies for 

reconstruction of IMFs and trend function, simulations. The chapter further explains 

the chosen tests and proposed models. The real-world crude oil price data are also 

described in this chapter followed by the forecasting accuracy measures which are 

RMSE and MAPE. The last section presents the summary of the chapter.

Chapter four consists of the threshold value determination. The first section 

introduces the chapter contents followed by the experimental setup which describes 

the different scenarios used for data generation for simulations. Next, is discussed the 

computation and validation of the threshold values using four different scenarios. 

The last section is the summary of the chapter.

Chapter five consists of the real-world application using stochastic and 

deterministic components. The first section introduces the chapter contents followed
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by the data used in this research. Next, are the decomposition of daily, weekly, 

monthly and yearly data by EEMD. After the decomposition the reconstruction of 

IMFs and trend function outlined in detail and divide the IMFs into stochastic and 

deterministic components. The chapter further explains and analyse the stochastic 

and deterministic componetnts followed by the forecasting accuracy measures which 

are RMSE and MAPE. The last section presents the summary of the chapter.

Chapter six consists of the analysis. The chapter starts with the introduction 

and describes the chapter accordingly followed by the ARIMA modelling approach 

consists of identification, diagnostic checking, estimation, forecasting and evaluation 

of different models. Next is the ANN approach describe the steps involves in FFNN 

modelling including the transfer function and number of hidden nodes. The chapter 

further consists of analysis of all data followed by the forecasting accuracy measures 

which are RMSE and MAPE. The last section presents the summary of the chapter.

Chapter Seven concludes the thesis by summarizing the results, discussing 

the conclusion, limitations and future work.
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