OPTIMIZATION, STABILITY AND CHARACTERIZATION OF FACE SERUM FORMULATION

MUMTAZ BT M. SULTAN SUHAI BUDDEEN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (*Bioprocess*)

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

JULY 2018

To my beloved mother and father

ACKNOWLEDGEMENTS

In the name of Allah, The Most Gracious and The Most Merciful. In preparing this thesis, I was in contact with many people, researchers, academicians and practioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisor and cosupervisor, Dr Mariani Abdul Hamid and Dr Liza Md Salleh for her encouragement, guidance, helpful critics and friendship throughout my Master journey. I am also very thankful to the staff of Institute of Bioproduct Development (IBD) and Faculty of Chemical and Energy Engineering (FKT), Universiti Teknologi Malaysia (UTM) for their assistance, advices and support in my study. Without their continued support and interest, this thesis would not have been the same as presented here.

I am blessed with my fellow postgraduate friends that continue to encourage me throughout my study. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I will not forget their help in motivating me in completing my Master. Thank you for being such a good shoulders for me to hold on to.

Finally, I would like to express my sincere gratitude and appreciation to all of my family members especially my mother, Jeethun Alha Beevi Jamal Mohamed and my siblings for their endless support and motivation. Thank you for always be by my side.

ABSTRACT

Nowadays, the demand for skin care products which can give instant beauty effect is increasing rapidly. This has urged some companies to take short cut by incorporating hazardous chemicals into skin care products, consequently caused adverse skin effect over time. Instead, incorporation of face serum into daily skin care routine can give noticeable difference within four weeks. Face serum is a highly concentrated emulsion which consists of small molecules that allow better penetration into the skin thus deliver instant noticeable results. Nevertheless, the stability of face serum formulation needs to be maintained to ensure its effectiveness to the skin. The goal of this study was to determine the optimum and stable face serum formulation with regards to its viscosity and pH value with favourable rheology and sensory characteristics. The formulated face serum was prepared using emulsifiers, thickeners, alpha-mangostin and basic components for skin such as ceramide, amino acids and others. The concentration of emulsifiers and thickeners was optimized using D-optimal mixture design. The independent variables were thickeners (carbopol ultrez 20 and xanthan gum) and emulsifiers (glyceryl stearate and PEG 40 hydrogenated castor oil), while the dependent variables were the viscosity and pH value of the face serum formulations. The study continues in the stability testing concerning on centrifugation, freeze thaw, accelerated stability study and microbiological study. Rheology study was conducted to determine the flow behavior of the face serum. Lastly, 40 respondents was involved in a sensory evaluation test in order to pool public acceptance towards the characteristic of the commercial and formulated face serums. From the study, it was found that the optimum formulation of face serum formulation consists of 0.9% of carbopol ultrez 20, 0.3% of xanthan gum, 0.46% of PEG 40 hydrogenated castor oil and 0.34% of glyceryl stearate. The optimum viscosity and pH value was found to be 4082.65 ± 6.65 cP and 4.56 ± 0.26 , respectively. Coefficient of determination (R²) indicated a good fit between the predicted values and the experimental data points. The R^2 for viscosity and pH value were found to be 0.9559 and 0.9893, respectively. The stability studies revealed that the optimum formulation exhibits good stability throughout the 90 days of stability testing period as there were no significant change in its viscosity and pH value. Besides, the optimum formulation passed the microbiology test. The optimum formulation shows pseudoplastic Bingham fluid rheology which is the preferred flow behaviour for cosmetic emulsion. Results from the sensory evaluation test revealed that the formulated face serum was able to mimic the characteristics of the commercial face serum since the ANOVA of all attributes showed no significance value. D-optimal mixture design was successful in determining the optimal face serum formulation which is stable with preferred viscosity, pH value, rheology and sensory profile.

ABSTRAK

Sekarang ini, permintaan produk penjagaan kulit yang dapat memberikan kesan kecantikan dalam jangka masa pendek kian meningkat. Ini mendorong sesetengah syarikat mengambil jalan mudah dengan menerapkan bahan kimia merbahaya ke dalam produk penjagaan kulit, yang menyebabkan kesan buruk pada kulit dalam jangkamasa panjang. Sebaliknya, penerapan serum wajah ke dalam rutin penjagaan wajah mampu memberikan kesan drastik dalam masa empat minggu. Serum wajah merupakan emulsi pekat yang terdiri daripada molekul kecil yang mudah menyerap ke dalam kulit dan memberikan kesan jangkamasa pendek. Walaubagaimanapun, kestabilan formulasi serum wajah perlu dikekalkan demi menjamin keberkesanannya pada kulit. Kajian ini bertujuan menghasilkan formulasi serum wajah yang stabil dan optimum bersandar pada kelikatan dan pH dengan ciriciri reologi dan deria yang dikehendaki. Serum wajah dihasilkan dengan menggabungkan pengemulsi, pemekat, alfa-mangostina dan bahan asas kulit seperti seramid, asid amino dan lain-lain. Kepekatan pengemulsi dan pemekat dioptimumkan menggunakan perisian reka bentuk campuran D-optimal. Pembolehubah tak bersandar adalah pemekat (carbopol ultrez 20 dan gam xanthan) dan pengemulsi (gliseril stearat dan PEG 40 minyak kastor terhidrogenasi), manakala pemboleh ubah bersandar ialah kepekatan dan pH formulasi serum wajah. Seterusnya, kajian kestabilan merangkumi pengemparan, kestabilan beku-cair, kestabilan pecutan dan kajian mikrobiologi. Kajian reologi juga dijalankan bagi mengenalpasti kelikatan aliran serum wajah. Akhir sekali, seramai 40 orang responden mengikuti kajian deria bertujuan mengetahui penerimaan orang ramai terhadap ciri-ciri serum wajah yang dihasilkan berbanding jenama komersil. Melalui kajian ini, didapati bahawa formulasi optimum serum wajah dapat dihasilkan dengan 0.9% carbopol ultrez 20, 0.3% gam xanthan, 0.46% PEG 40 minyak kastor terhidrogenasi dan 0.34% gliseril stearat. Kepekatan dan pH optimum masingmasing adalah 4082.65 \pm 6.65 cP dan 4.56 \pm 0.26. Pekali (R²) menyatakan padanan baik antara nilai jangkaan dan nilai eksperimen. R² kelikatan dan pH masing-masing ialah 0.9559 dan 0.9893. Kajian kestabilan sepanjang 90 hari membuktikan formulasi optimum memiliki kestabilan yang baik, terbukti dengan tiada perubahan yang signifikan pada nilai kelikatan dan pH. Tambahan pula, formulasi optimum lulus ujian mikrobiologi. Formulasi optimum menunjukkan reologi bendalir Bingham pseudoplastik yang merupakan ciri aliran yang sesuai bagi kosmetik jenis emulsi. Keputusan dari kajian deria mendapati bahawa formulasi serum wajah yang dibuat adalah mirip kepada serum wajah komersil memandangkan ANOVA menunjukkan nilai perbezaan tidak signifikan. Perisian reka bentuk campuran D-optimal telah berjaya menghasilkan formulasi serum wajah optimum yang stabil yang juga memiliki kadar kelikatan, nilai pH, reologi dan nilai deria yang dikehendaki.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	XV
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xvii
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem Statement	4
	1.3 Objective	5
	1.4 Scope of Study	5
2	LITERATURE REVIEW	7
	2.1 Skin Care	7
	2.1.2 Anatomy of Human Skin	9
	2.1.3 pH Value of Human Skin	11

2.2	Face Serum		13	
	2.2.1	Face Serun	n Formulation	14
	2.2.2	Emulsifier		16
		2.2.2.1 G	lyceryl Stearate	22
		2.2.2.2 PH Ca	EG-40 Hydrogenated astor Oil	22
		2.2.2.3 Sc	by Lecithin	23
	2.2.3	Thickener		23
		2.2.3.1 Ao Ct	crylates/C ₁₀₋₃₀ Alkyl Acrylate cosspolymer	24
		2.2.3.2 Xa	anthan Gum	24
		2.2.3.3 H	ydroxyethyl Cellulose	25
	2.2.4	Preservativ	/e	25
	2.2.5	Active Ing	redients	27
		2.2.5.1 Be	eneficial Active Ingredients	28
		2.2.5.2 На	azardous Active Ingredients	29
	2.2.6	Emollient a	and Humectant	30
2.3	Optim	zation Proc	ess	30
2.4	Stabili	ty Testing		32
	2.4.1	Physicoche	emical Stability Study	33
	2.4.2	Microbiolo	gical Stability Study	34
	2.4.3	Packaging	Stability Study	35
2.5	Charac	cterization o	f Face Serum	36
	2.5.1	Rheology S	Study	36
	2.5.2	Sensory St	udy	42
ME	THOD	OLOGY		44
3.1	Introdu	iction		44
3.2	Chemi	cals and Rea	agents	47
3.3	Prelim	inary Study		48
	3.3.1	Determinati	ion of Lower and Upper Limit lent Variables	49
	3	.3.1.1 Visc Con	cosity Measurement of nmercial Face Serum	49
		3.3.1.2 pH Cor	Value Measurement of nmercial Face Serum	50

3

	3.3.2	Prepara	tion of Face Serum Formulation	50
	3.3.3	Screeni	ng of Thickeners and Emulsifiers	52
		3.3.3.1	Centrifugal Test	53
		3.3.3.2	Viscosity and pH Value Measurement of the Formulated Face Serum	53
3.4	Optin Optin	nization o nal Mixtu	of Face Serum Formulation using D- ire Design	54
3.5	Physic	cochemic	cal Stability Testing	56
	3.5.1	Freeze	Thaw Test	56
	3.5.2	Accele	rated Stability Testing	57
3.6	Micro	biologic	al Stability Testing	57
	3.6.1	Total P	late Count by Pour Plate Method	58
	3.6.2	Total Y Plate M	east and Mould Count by Pour Iethod	58
	3.6.3	Detecti	on of Specific Organisms	59
3.7	Chara	cterizatio	on of Face Serum	60
	3.7.1	Rheolog	gy Study	60
	3.7.2	Sensory	v Evaluation	61
3.8	Statist	tical Ana	lysis	62
RE	SULTS	S AND D	ISCUSSIONS	63
4.1	Introd	uction		63
4.2	Prelin	ninary St	udy	63
	4.2.1	Determ of Inde	nination of Lower and Upper Limit pendent Variables	64
		4.2.1.1	Viscosity of Commercial Face Serum	64
		4.2.1.2	pH Value of Commercial Face Serum	65
	4.2.2	Thicke	ners and Emulsifiers Screening	66
	4.2.3	Effect of Xantha Hydrog Glycer	of Carbopol Ultrez 20 (CU20), an Gum (XG), PEG 40 genated Castor Oil (PEG40) and yl Stearate (GS) on Viscosity	67
	4.2.4	Effect Xantha Hydrog Glycer	of Carbopol Ultrez 20 (CU20), in Gum (XG), PEG 40 genated Castor Oil (PEG40) and yl Stearate (GS) on pH Values.	70

4

4.	3 Opt Opt	imization of Face Serum Formulation using D- imal Mixture Design	71
	4.3	1 Analysis of Variance (ANOVA) for Viscosity and pH Value	72
	4.3	2 Effect of Variables and the Interactions on Response	78
	4.3	.3 Effect of Carbopol Ultrez 20, Xanthan Gum, PEG 40 Hydrogenated Castor Oil and Glyceryl Stearate on Viscosity	78
	4.3	4 Effect of Carbopol Ultrez 20, Xanthan Gum, PEG 40 Hydrogenated Castor Oil and Glyceryl Stearate on pH Value	81
	4.3	5 Optimum Face Serum Formulation from D-Optimal Mixture Design	83
	4.3	.6 Verification of the Model	84
4.	4 Phy	sicochemical Stability Study	85
	4.4	.1 Centrifugation	85
	4.4	2 Freeze Thaw	86
	4.4	.3 Accelerated Stability Study	88
4.	5 Mic	robiological Stability Study	97
4.	6 Cha	racterization of Face Serum	98
	4.6.	1 Rheology Study	99
	4.6.	2 Sensory Evaluation Study	102
5 C	ONCL	USIONS AND RECOMMENDATIONS	106
5.	1 Con	clusions	106
5.	2 Rec	ommendations	107
REFERENCES			109
Appendices A - I	Ę		122 - 136

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Function of basic skin care regiment	8
2.2	Composition of basic face serum	14
2.3	Type of emulsifiers	17
2.4	Relationship between HLB range and water solubility	20
2.5	Relationship between HLB range and application	20
2.6	Preservatives	26
2.7	Physicochemical stability study	33
2.8	Type of specific microbial/yeast and its characteristics for cosmetic finished products	34
2.9	Type of non-Newtonian flows	38
2.10	Sensory attributes example	42
2.11	The 9-point hedonic scale	43
3.1	List of chemical and reagents	47
3.2	Formulation of face serum	51

3.3	Emulsifiers ratio based on HLB value	52
3.4	Lower and upper limit of independent variables of face serum formulation	54
3.5	D-optimal mixture design for the face serum formulation	55
3.6	Detection of specific organisms	59
3.7	Description of face serums subjected for sensory evaluation test	61
4.1	D-Optimal mixture design and responses values for formulation process	71
4.2	Analysis of Variance (ANOVA) for viscosity	73
4.3	Analysis of Variance (ANOVA) for pH value	74
4.4	Goals and constraints of each variable	83
4.5	Comparison between responses of the experimental and predicted values	84
4.6	Phase separation on accelerated stability study (storage 45°C)	92
4.7	Microbiology result	98
4.8	Rheology description based on Herchel-Bulkley model	99
4.9	ANOVA of overall acceptance criteria on each face serum attributes	102
4.10	Conclusion of preferable face serum by its attributes	104

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Basic skin anatomy	9
2.2	Epidermis	10
2.3	Newtonian shear	37
2.4	Newtonian viscosity	37
2.5	Shear thinning	38
2.6	Pseudoplastic viscosity	38
2.7	Shear thickening	39
2.8	Dilatant viscosity	39
2.9	Bingham plastic shear	39
2.10	Bingham plastic viscosity	40
2.11	Viscoelastic shearing	40
2.12	Viscoelastic viscosity	40
3.1	Research outline. (a) Preliminary study. (b) Optimization, stability study and characterization	45
4.1	Viscosity of commercial face serums	65

4.2	pH values of commercial face serums	66
4.3	Creaming phenomenone of unstable face serum	67
4.4	Effect of type of thickeners and HLB values on viscosity	68
4.5	Face serum (a) formulated with only XG, (b) formulated with the mixture of CU20 and XG	69
4.6	Effect of type of thickeners and HLB values on pH values	70
4.7	Relationship between predicted vs. actual for viscosity	75
4.8	Relationship between predicted vs. actual for pH	76
4.9	Normal plot of residuals for viscosity	77
4.10	Normal plot of residuals for pH	77
4.11	Trace plotted graph for viscosity	79
4.12	Trace plotted graph for pH	81
4.13	Fresh face serums	85
4.14	Viscosity before and after freeze thaw stability test	87
4.15	pH values before and after freeze thaw stability test	87
4.16	Stability study of face serum viscosity (a) sample 1 (F1) to sample 10 (F10), (b) sample 11 (F11) to sample optimum formulation (F OPTIMUM) at 25°C (room temperature)	88
4.17	Stability study of face serum viscosity (a) sample 1 (F1) to sample 10 (F10), (b) sample 11 (F11) to sample optimum formulation (F OPTIMUM) at 4° C	90
4.18	Stability study of face serum viscosity (a) sample 1 (F1) to sample 10 (F10), (b) 11 (F11) to sample optimum formulation (F OPTIMUM) at 45°C	91

xiii

4.19	Face serums (a) creaming and phase separation, (b) phase separation, (c) stable.	93
4.20	Stability study of face serum pH (a) sample 1 (F1) to sample 10 (F10), (b) sample 11 (F11) to sample optimum formulation (F OPTIMUM) at 25°C (room temperature).	94
4.21	Stability study of face serum pH (a) sample 1 (F1) to sample 10 (F 10), (b) sample 11 (F11) to sample optimum formulation (F OPTIMUM) at 4°C.	95
4.22	Stability study of face serum pH (a) sample 1 (F1) to sample 10 (F10), (b) sample 11 (F11) to sample optimum formulation (F OPTIMUM) at 45°C	96
4.23	Means plot for sensory evaluation test	103
4.24	Overall choice of face serum formulation	105

LIST OF ABBREVIATIONS

(a-MSH)-induced	-	(alpha-melanocyte stimulating hormone)-induced
α-mangostin	-	Alpha-mangostin
ALS	-	Ammonium lauryl sulfate
ANOVA	-	Analysis of Variance
CU20	-	Carbopol ultrez 20
CAGR	-	Compound annual growth rate
EDTA	-	Ethylene diamine tetraacetic acid
GS	-	Glyceryl stearate
HLB	-	Hydrophilic-lipophilic balance
IOM	-	Institute of Medicine
O/W	-	Oil in water
OFAT	-	One factor at a time
PEG40	-	PEG 40 hydrogenated castor oil
PEG	-	Polyethylene glycol
SLS	-	Sodium lauryl sulfate
SPF		Sun protection filter
UV	-	Ultraviolet
USD	-	United States Dollar
VRBD	-	Violet red bile dextrose
W/O	-	Water in oil
XG	-	Xanthan gum
XLD	-	Xylose lysine deoxycholate

LIST OF SYMBOLS

- cm Centimeter
- cP Centipoise
- pH Concentration of Hydrogen ion
- k Consistency index
- °C Degree celcius
- *n* Flow index
- g Gram
- H^+ Hydrogen ion
- μg Microgram
- ml Milliliter
- % Percentage
- rpm Rotation per minute
 - s Second
 - $\dot{\gamma}$ Shear rate
 - τ Shear Stress
 - τ_s Yield stress

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Consent Form	122
В	Sensory Evaluation Form	123
C1	Herschel Bulkley model coupled with sample 1	126
C2	Herschel Bulkley model coupled with sample 2	126
C3	Herschel Bulkley model coupled with sample 3	126
C4	Herschel Bulkley model coupled with sample 4	126
C5	Herschel Bulkley model coupled with sample 5	127
C6	Herschel Bulkley model coupled with sample 6	127
C7	Herschel Bulkley model coupled with sample 7	127
C8	Herschel Bulkley model coupled with sample 8	127
C9	Herschel Bulkley model coupled with sample 9	128
C10	Herschel Bulkley model coupled with sample 10	128
C11	Herschel Bulkley model coupled with sample 11	128
C12	Herschel Bulkley model coupled with sample 12	128

C13	Herschel Bulkley model coupled with sample 13	129
C14	Herschel Bulkley model coupled with sample 14	129
C15	Herschel Bulkley model coupled with sample 15	129
C16	Herschel Bulkley model coupled with sample 16	129
C17	Herschel Bulkley model coupled with sample 17	130
C18	Herschel Bulkley model coupled with sample 18	130
C19	Herschel Bulkley model coupled with sample 19	130
C20	Herschel Bulkley model coupled with sample 20	130
C21	Herschel Bulkley model coupled with sample Optimum	131
C22	Herschel Bulkley model coupled with sample X	131
C23	Herschel Bulkley model coupled with sample Y	131
C24	Herschel Bulkley model coupled with sample Z	131
D1	To calculate the HLB of an emulsion blend of 0.92% PEG 40 hydrogenated castor oil (HLB 15) and 1.78% glyceryl stearate (HLB 3.8)	132
D2	To determine the amount of PEG 40 hydrogenated castor oil (HLB 15) and glyceryl stearate (HLB 3.8) required to reach HLB 3 with a total of 0.32g	131
E1	Experimental and predicted value for viscosity	133
E2	Experimental and predicted value for pH	134
F1	IKA Ultra Turrax [®] Homogenizer (Model T25 digital, GmbH Co.KG., Germany)	135
F2	Brookfield DV-III Ultra Programmable Rheometer (Brookfield Engineering Laboratories Inc., USA)	135

F3	Hettich EBA 200S High Performance Centrifuge Machine (Andreas Hettich GmbH Co.KG., Germany)	135
F4	Brookfield DV-II+Pro Viscometer, (Brookfield Engineering Laboratories Inc., USA)	136
F5	Five Easy pH Meter (Mettler Toledo, USA)	136

CHAPTER 1

INTRODUCTION

1.1 Research Background

Public awareness on having beautiful and flawless skin has made skin care a compulsory routine for every individual including man. Statistics showed that by 2024, the global skin care market is estimated to be 180 billion USD (Statistica, 2018). Following a proper skin care routine will not only maintain skin health, but it may improve skin structure and skin function (Ganceviciene *et al.*, 2012). A basic skin care routine includes several products which are cleanser, toner, treatment mask, eye cream, face serum, moisturiser, sunscreen and night cream (Neil, 2012; Keefe *et al.*, 2004).

In the context of achieving beautiful skin, customers are more attracted to the products that promise instant results. This facilitates by the incorporation of hazardous chemicals such as hydroquinone and mercury. The hazardous ingredients are bleaching agents that bleach the melanin on the skin surface (Katsambas and Stratigos, 2001). This in turn caused major side effect includes skin irritation, chemical burns, skin exogenous ochronosis, contact dermatitis, cancer (leucomelanoderma) and even mutagenicity (FDA, 2017; Dadzie and Petit, 2009).

On the other hand, numerous studies on plant derived active ingredients (Hassan *et al.*, 2015; Gupta and Jain, 2011; Huang *et al.*, 2011) had been conducted in order to provide safe beauty solution for cosmetic products. In addition, a skin care formulation must be able to deliver the powerful agent into the skin to fulfil the intended objective. Face serum is the answer to deliver the precious active ingredient into the skin thus eliminates the use of hazardous chemicals in giving instant results.

According to Sasidharan *et al.*, (2014), face serum is a highly concentrated emulsion which available in water based and oil based. Serums or defined as concentrates, contain approximately ten times more of biologically active substances than creams, therefore allows better skin problems treatment. Incorporating a few drops of face serum with daily skin care routine will deliver noticeable results within a month or less (Herman-Axel, 2014; Sasidharan *et al.*, 2014). This is because face serums are made of very small molecules that help it to penetrate deep into the skin quickly (Sasidharan *et al.*, 2014). Serum is packed with a bunch of beneficiary active components and nutrients (Herman-Axel, 2014) such as antioxidants, ceramides, amino acids and others. This explains why face serum always being the most costly item in a skin care set (Herman-Axel, 2014).

In formulating a face serum, the physical properties and stability are the main characteristics in determining its quality. A face serum formulation is basically an emulsion consists of two immiscible liquids. In order to prevent emulsion instabilities, thickener and emulsifier are introduced to the system. Emulsifier will balance the system by minimising the interfacial tension between the two immiscible liquids and at the same time stabilises the dispersion phase from coalescence. Contributing to the system, thickener also plays an important role as rheology modifier and provides flexibility to the flow characteristic of the emulsion (Moravkova and Filip, 2014). Besides stability, another problem to tackle in face serum formulation is pH value. If the pH value of the skin is changed, the skin's natural microbiology and function will be interrupted. This in turn causes numerous skin problems including acne, skin flakiness, excessive sebum secretion and other serious conditions (Schreml *et al.*, 2014). According to Schreml *et al.*, (2014), the natural skin microflora is intact on the skin with pH value ranging from 4 to 4.5, while pH value ranging from 8 to 9 eliminates the skin natural microflora (Schreml *et al.*, 2014). Formulating a face serum with suitable pH range can helps in improving the skin barrier function.

Formulating a face serum or any other formulation can be challenging. This is because the traditional 'One Factor at a Time' (OFAT) method was highly time consuming and may result in unnecessary experiment that consume costs (Mostefa *et al.*, 2006). OFAT was done by changing one factor at a time while keeping the other factor as constant. On the contrary, optimization using Design Expert software could save time, costs and labour. D-optimal design is suitable to be used in formulating cosmetic formulations (Mostefa *et al.*, 2006; Djuris *et al.*, 2014; Suhaimi *et al.*, 2017) thus it is applied in this study.

Next, intricate customers' preferences always come into consideration in formulating a cosmetic formula. Customers are the most important judge that could determine the marketability of the product (Masson, 2011). In regards to this matter, sensory evaluation has become a useful tool in estimating customers' expectation on the texture of a cosmetic formula. Coupling sensory test with rheological study always give better prediction and understanding of how the product behave in the production plant and the end customer (Lukic *et al.*, 2013).

Therefore, the present work is aimed to produce efficient and stable face serum by optimising the thickeners and emulsifiers using D-optimal mixture design. This is done in order to fulfill customer preferences.

1.2 Problem Statement

The high demand of instant beauty products had urged some companies to incorporate hazardous chemicals into skin care products. This in turn caused adverse skin effect over time. Instead, incorporation of face serum into daily skin care routine can give noticeable difference within four weeks (Sasidharan *et al.*, 2014; Herman-Axel, 2014). To date, there are very few researches done on face serum.

In formulating a face serum, the mixing of water phase and oil phase is crucial in order to create a stable system over an extended period or longer product shelf life. Naturally, the oil and water system is thermodynamically unstable. Incorporation of emulsifiers into the system can minimize the interfacial difference between the water and oil phases thus mix the system. In addition, incorporation of thickener in a formulation can increase the stability of the formulation. Another factor to be considered is the pH value. The pH value of the skin care product should be able to keep the skin natural micro flora intact. This is important as neutral and alkaline pH value of a skin care product can destroys the skin barrier function.

Other than that, the subjective preferences of consumers in choosing their preferred face serum always become an issue for the product formulator. Therefore, sensory evaluation plays an important role to determine the customer acceptance towards the face serum formulation. Thus, the effect of thickeners and emulsifiers was studied and optimized in formulating a stable face serum with the best viscosity, rheology and pH value which can fulfill customer preferences.

1.3 Objective of Research

The main objective of this study is to determine the optimum and stable face serum. The specific objectives of this study are:

- 1. To optimise the thickeners and emulsifiers of face serum formulation with regard to the viscosity and pH value.
- 2. To determine the most stable face serum formulation in term of its physicochemical stability study and microbiological study.
- 3. To characterise the face serum formulation in term of its flow behavior and sensory profile.

1.4 Scope of Study

The scopes of this study are:

- 1. Thickeners and emulsifiers of the face serum formulation were varied while other ingredients were made constant.
- 2. In the preliminary part, the thickeners used were carbopol ultrez 20, xanthan gum and hydroxyethyl cellulose, while the emulsifiers used were soy lecithin, glyceryl stearate and PEG 40 hydrogenated castor oil. The responses were phase separation, viscosity and pH value.
- Optimization of the emulsifiers (PEG hydrogenated castor oil and glyceryl stearate) and the thickeners (carbopol ultrez 20 and xanthan gum) of the face serum formulation with regards to its viscosity and pH value was done using D-Optimal Mixture Design in Design Expert software.

- 4. Evaluation of the physicochemical stability of the face serum was made using three methods stated in COLIPA Standard (Marx, 2004) which are centrifugation (3000rpm for 30 minutes), accelerated stability study (4°C, 25°C and 45°C for three months respectively) and freeze thaw (-10°C, 25°C and 45°C for three cycles) with regards to its phase separation, viscosity and pH value.
- 5. The microbiological study was conducted using tryptic soy agar (total plate count), saboroud agar (total yeast, mould and *Candida albicans*), baird parker agar (*Staphylococcus aureus*), mac conkey agar (*Escherichia coli*), cetrimide agar (*Pseudomonas sp*), Xylose Lysine Deoxycholate (XLD) (*Salmonella sp*) agar and Violet Red Bile Dextrose (VRBD) agar (*Enterobacteria sp*) based on the standard method of topical cosmetic preparation in British Pharmacopoeia 2015.
- 6. Determination of the flow behavior of the formulated and commercial face serum formulations was done using the aid of Hershel Bulkley model.
- Sensory profile was determine by sensory evaluation of the formulated and commercial face serum formulations with regards to its texture, absorption, moisture and after feel characteristics. It was done on 40 participants and analysed using SPSS software.

- Barton, S. (2012). The Composition and Development of Moisturizers. In Loden, M. and Maibach, H. I. (Eds.). Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers. (pp 313-340). New York, London: Springer Heidelberg Dordrecht.
- Benderly, D. and Zolotarsky, Y. (2013). Beyond Thickening-Use of Alkyl Acrylate Crosspolymer in Personal Care Formulations. In Patil and Ferrito. (Eds.). Polymers for Personal Care and Cosmetics. (pp 205-218) ACS Symposium Series, American Chemical Society: Washington, DC.
- Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A. (2008). Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. *Talanta*. 76, 965-977.
- Blaak, J., Wohlfart, R., and Schürer, N. Y. (2011). Treatment of Aged Skin with a pH
 4 Skin Care Product Normalizes Increased Skin Surface pH and Improves Barrier
 Function: Results of a Pilot Study. *Journal of Cosmetics, Dermatological Sciences and Applications.* 1, 50-58.
- Brannan, D. K. (1995). Cosmetic Preservation. *Journal of Social Cosmetic Chemistry*. 46, 199-220.
- British Pharmacopoeia. (2015). Microbiological Examination of Topical Cosmetics-Methods of Test. BP 2015, Volume IV, Appendix XVI B.
- Brookfield Engineering Labs, Inc. (2014) Brookfield DV-II Ultra Programmable Rheometer Operating Instructions. Middleboro, USA, M/98-211-B0104.
- Brookfield Engineering Labs, Inc. (2014) Brookfield DV-II+Pro Viscometer Operating Instructions. Middleboro, USA, M03-165-F0612.
- Brookfield Engineering Labs, Inc. (2014). *More Solutions to Sticky Problems*. [Brochure]. 1-5. Middleboro, USA.
- Chen, L. G., Yang, L. L. and Wang, C. C. (2008). Anti-inflammatory Activity of Mangostins from *Garcinia mangostana*. *Food Chem. Toxicol.* 46, 688-693.
- Chhabra, R. P. (January, 4-9, 2010). Non-Newtonian Fluids: An Introduction. *Schoolcum-Symposium on Rheology of Complex Fluids*. Madras, Chennai, India. 1-33.
- Chomnawang, M. T., Surassmo, S., Nukoolkarn, V. S. and Gritsanapan, W. (2005). Antimicrobial Effects of Thai Medicinal Plants against Acne-inducing Bacteria. *J. Ethnopharmacol.* 101, 330-333.
- Chu, D. H. (2008). Overview of Biology, Development and Structure of Skin. In K.Wolff, L. A. Goldsmith, S. I. Katz, B. A. Gilchrest, A. S. Paller, and D. J. Leffell

(Eds.), *Fitzpatrick's dermatology in general medicine* (7th ed. :57-73). New York: McGraw-Hill.

- Cochran, W. C. and Cox, G. M. (1992). *Experimental Design*. (2nd ed.) New York: John Wiley & Sons, Inc. 5-7
- Collins, P. H. (1991). Black Feminist Thought; Knowledge, Consciousness, and the Politics of Empowerment. New York: Routledge. 129-133
- Dadzie, O. E. and Petit, A. (2009). Skin Bleaching: Highlighting the Misuse of Cutaneous Depigmenting Agents. *Journal of European Academy of Dermatology* and Venereology. 23, 741-750.
- Dhiaa, A. H. (2012). The Temperature Effect on the Viscosity and Density of Xanthan Gum Solution. *KUFA Journal of Engineering*. 3(2), 17-30.
- Dikstein, S. and Zlotogorski, A. (1994). Measurement of Skin pH. Acta Dermatology. 185, 18-20.
- Ding, J., Tracey, P. J., Li, W., Peng, G. and Whitten, P. G. (2013). Review on Shear Thickening Fluids and Applications. *Textiles and Light Industrial Science and Technology*. 2(4), 161-173.
- Djekic, L., and Primorac, M. (2008). The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. *International Journal of Pharmaceutics*. 352, 231–239.
- Djuris, J., Vasiljevic, S., Jokie, S. And Ibric, S. (2014). Application of D-optimal Experimental Design Method to Optimize the Formulation of O/W Cosmetic Emulsions. *International Journal of Cosmetic Science*. 36, 79-87.
- Dutton, G. (1999). A Changing Landscape for Cosmetics and Personal Care. Chemical Market Reporter, 255(14), 3.
- El-Bialee, N. M. and Sorour, M. A. (2011). Effect of Adulteration on Honey Properties. *International Journal of Applied Science and Technology*. 1(6), 122-133.
- Engler, D. E. (2005). Mercury "Bleaching" Creams. Journal of the American Academy of Dermatology. 52(6), 1113-1114.
- Epstein, H., (2014). Skin Care Products. In Barel, A. O., Paye, M., Maibach, H. I., (Eds.). Handbook of Cosmetic Science and Technology (pp. 103-106). Florida, FL: CRC Press.
- Estanqueiro, M., Conceição, J., Amara, M. H., Santos, D., Silva, J. B. and Lobo, J. M.S. (2014). Characterization and Stability Studies of Emulsion Systems

Containing Pumice. *Brazilian Journal of Pharmaceutical Sciences*. 50(2), 361-369.

- Fang, B., Yu, M., Zhang, W., and Wang, F. (2016). A New Alternative to Cosmetics Preservation and the Effect of the Particle Size of the Emulsion Droplets on Preservation Efficacy. *International Journal of Cosmetic Science*. 38, 496–503.
- FDA (15 November, 2017). Alpha Hydroxy Acids. Retrieved (2018, January 29) from:

https://www.fda.gov/Cosmetics/ProductsIngredients/Ingredients/ucm107940.htm

FDA, (November 15, 2017). Parabens in Cosmetics. Retrieved (2018, January 29) from

https://www.fda.gov/Cosmetics/ProductsIngredients/Ingredients/ucm128042.htm

- FDA. (1995). Frequency of use of cosmetic ingredients. *FDA database*. Washington, D.C.: FDA.
- Fitzpatrick, T. B., Arndt, K. A., El-Mofty, A. M., Pathak, M. A. (1966). Hydroquinone and Psoralens in the Therapy of Hypermelanosis and Vitiligo. *Achive of Dermatology*. 93(5), 589-600.
- Flores, M., Morillo. M., Crespo, M. L. (1997). Deterioration of Raw Materials and Cosmetic Products by Preservative Resistant Microorganisms. *International Biodeterioration & Biodegradation*. 40(2), 157-160.
- Fluhr, J. W., Kao, J., Jain, M., Ahn, S. K., Feingold, K. R. And Elias, P. M. (2001). Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. *J Invest Dermatol.* 117, 52–58.
- Franck, A. (2016). Understanding Rheology of Structured Fluids. [Brochure]. TA Instruments. 1-5
- Fraud, S., Rees, E. K., Mahenthiralingam, E., Russel, A. D., and Maillard, J. Y. (2003). Aromatic Alcohols and Their Effect on Gram-negative Bacteria, Cocci and Mycobacteria. *J Antimicrob Chem*, 51(6), 1435-1436.
- Ganceviciene, R., Liakou, A. I., Theodoridis, A., Makrantonaki, E. and Zouboulis, C.C. (2012). Skin Anti-Aging Strategies. *Dermato-Endocrinology*. 4(3), 308–319.
- Gediya, S. K., Mistry, R. B. Patel, U. K., Blessy, M. and Jain, H. N. (2011). Herbal Plants: Used as a Cosmetics. *Journal of Natural Product Plant Resources*. 1(1), 24-32.
- Geerligs, M. (2009). *Skin Layer Mechanics*. Eindhoven, The Netherlands: Koninklijke Philips Electronics N. V.

- Geerligs, M. (2010). *General Introduction*. In *Skin layer mechanics* (pp. 2-5). The Netherlands, Eindhoven: University of Technology Eindhoven.
- Gopalakannan, S., and Senthilvelan, T. (2013). Application of Response Surface Method on Machining of Al-SiC nano-composites. *Measurement*. 46, 2705-2715.
- Gopalakrishnan, G., Banumathi, B. and Suresh, G. (1997). Evaluation of the Antifungal Activity of Natural Xanthones from *Garcinia mangostana* and their Synthetic Derivatives. J. Nat. Prod. 60, 519-524.
- Greive, K. (2015, June). Cleansers and Moisturisers: The Basics. *Wound Practice and Research*. 23(2), 76-81.
- Gunathilake, R., Schurer, N. Y., Shoo, B. A., Celli, A., Hachem, J. P., Crumrine, D., Sirimanna, G., Feingold, K. R., Mauro, T. M. and Elias, P. M. (2009) pHregulated mechanisms account for pigment-type differences in epidermal barrier function. *J Invest Dermatol.* 129(7), 1719–1729.
- Gupta, N. and Jain, U. K. (2011). Investigation of Wound Healing Activity of Methanolic Extract of Stem Bark of Mimusops Elengi Linn. African Journal of Traditional Complementary and Alternative Medicine. 8(2), 98-103.
- Haake, A. R. and Hollbrook, K. (1999). The Structure and Development of Skin. In I.
 Freedberg, A. Eisen, K. Wolff, K. Austen, L. Goldsmith, S. Katz, et al. (Eds.), Fitzpatrick's Dermatology in General Medicine (5th ed.). (pp. 70-111). New York: McGraw-Hill.
- Haaland, P. D. (1989). *Experimental Design in Biotechnology*. Marcel Dekker: New York. 259.
- Hamid, M. A. and Park, C. S. (Unpublished note). Inhibitory Effects of *α-mangostin* on Melanin Synthesis and Tyrosinase Activity of B16F1 Melanoma Cells. 1-35.
- Hassan, W. N. A. W., Zulkifli, R. M., Basar, N., Ahmad, F., Yunus, M. A. C. (2015). Antioxidant and Tyrosinase Inhibition Activities of a-mangostin and Garcinia Mangostana Linn. Pericarp Extract. *Journal of Applied Pharmaceutical Science*. 5(9), 37-40.
- Hengge, U. R., Ruzicka, T., Schwartz, R. A., and Cork, M. J. (2006). Adverse Effects of Topical Glucocorticosteroids. *Journal of the American Academy of Dermatology*. 54(1), 1-15.
- Herman-Axel, P. (2014). Skin Care Tips to Get the Glow: All About Serums. In *WebMD*. Retrieved (2017, February 22) from <u>http://www.webmd.com/beauty/skin-glow-13/serums</u>

- ICI Americas, Inc. (1984). *The HLB System: A Time-saving Guide to Emulsifier Selection*. Wilmington Delaware: ICI Americas, Incorporated. 4-7.
- Iinuma, M., Tosa, H., Tanaka, T., Asai, F. F., Kobayashi, Y., Shimano, R. and Miyauchi, K. (1996). Antibacterial Activity of Xanthones from Guttiferaceous Plants Against Methicillin-resistant *Staphylococcus aureus*. J. Pharm. Pharmacol. 48, 861-865.
- Indian Standard. (2011). Microbiological Examination of Cosmetics and Cosmetic Raw Materials-Methods of Test (Second Revision). IS 14648:2011. Bureau of Indian Standards: New Delhi.
- Isaac, V., Chiari, B. G., Miglioli, K., Moreira, R., Oliveira, J. R. S., Salgado, H., Relkin, P., Corrêa, M. A., Salgado, A. and Ribeiro, H. M. (2012). Development of a Topical Formulation Containing S. Lutea Extract: Stability, In Vitro Studies and Cutaneous Permeation. *Journal of Applied Pharmaceutical Science*. 2(8), 174-179.
- Jackson, S. M., Williams, M. L., Feingold, K. R., and Elias, P. M. (1993). Pathoniology of the Stratum Corneum. *Western Journal of Medicine*. 158(3), 279-285.
- Jackson, S. M., Williams, M. L., Feingold, K. R., and Elias, P. M. (1993). Pathoniology of the Stratum Corneum. *Western Journal of Medicine*. 158(3), 279-285.
- James, W. D., Berger, T. G., and Elson, D. M. (2006). *Andrews' Diseases of the Skin: Clinical Dermatology* (10th ed.) Philadelphia: Elsevier Saunders.
- Johnson, M., (2002). Cheese pH-what's behind the rise and fall? A Technical Resource for Dairy Manufacturers, 4(14), 1-11.
- Jung, H. A., Jung, B. N., Su, W. J., Keller, R. G. and Kinghorn, M. (2006). Antioxidant Xanthones from the Pericarp of *Garcinia mangostana* (Mangosteen). *J. Agric. Food Chem.* 54, 2077-2082.
- Karsheva, M., Georgieva, S. and Handjieva, S. (2007). The Choice of the Thickener-A Way to Improve the Cosmetics Sensory Properties. *Journal of the University of Chemical Technology and Metallurgy*. 42(2), 187-194.
- Katsambas, A. D. and Stratigos, A. J. (2001). Depigmenting and Bleaching Agents: Coping with Hyperpigmentation. *Clinics in Dermatology*. 19, 483-488.
- Keefe, C. R., Abbruzzese, A., Vervynck, E. A. and Bottiglieri, P. (2004). U.S. Patent No. 0191330 A1. Washington DC: V.S. Patent and Trademark Office.

- Kettaneh-Wold, N. (1991). Use of Experimental Design in the Pharmaceutical Industry. J. Pharm. Biomed. Anal. 9, 605-610.
- Khalil, M. R., Abd-Elbary, A., Kaseem, A. M., Ghorab M. M., and Basha, M. (2013). Solid lipid nanoparticles for topical delivery of meloxicam: Development and in vitro characterization. (pp. 779-798). 1st Annual International Interdisciplininary Conference, AIIC. Azores, Portugal.
- Kooyers, T. J. and Westerhof, W. (2006). Toxicology and Health Risks of Hydroquinone in Skin Lightening Formulations. *Journal of the European* Academy of Dermatology and Venereology. 20(7), 777-780.
- Korting, H. C. and Braun-Falco, O. (1996). The Effect of Detergents on Skin pH and its Consequences. *Clinics in Dermatology*. 14, 23-27.
- Korting, H. C., Hubner, K., Greiner, K., Hamm, G. and Braun-Falco, O. (1990). Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. *Acta Derm Venereol.* 70(5), 429–431.
- Kowalska, M., Ziomek, M. and Zbikowska, A. (2015). Stability of Cosmetic Emulsion Containing Different Amount of Hemp Oil. *International Journal of Cosmetic Science*. 37, 408-416.
- Laba, D. (2001). How Do I Thicken My Cosmetic Formula? *Cosmetics & Toileteries Magazine*. 116(11), 35-44. New Jersey, USA: Allured Publishing Corp.
- Lademann, J., Otberg, N., Jacobi, U., Hoffman, R. M., and Blume-Peytavi, U. (2005). Follicular Penetration and Targeting. *J. Investig. Dermatol. Symp. Proc.* 10: 301-303.
- Lambers, H., Piessens, S., Bloem, A., Pronk, H. and Finkel, P. (2006). Natural Skin Surface pH is on Average Below 5, which is Beneficial for its Resident Flora. *International Journal of Cosmetic Science*. 28, 359-370.
- Lawless, H. T. and Classen, M. R. (1993). The Central Dogma in Sensory Evaluation. Food Technology. 47(6), 139-146.
- Łopaciuk, A. and Łoboda, M. (2013, 19-21 June). Global Beauty Industry Trends in the 21st Century. *Management, Knowledge and Learning International Conference*. Zadar, Croatia, 1079-1087.
- Lukic, M., Pantelic, I. and Savic, S. (2013). Sensory Profiling of Cosmetic Products: Could it be Easier? Use of Rheology and Textural Analysis. *Household and Personal Care Today*. 8(2), 46-51.

- Lundov, M. D., Moesby, L., Zachariae, C. and Johansen, J. D. (2009). Contamination versus Preservation of Cosmetics: A Review on Legislation, Usage, Infections and Contact Allergy. *Contact Dermatitis*. 60, 70-78.
- Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nyström, Å., Pettersen, J. and Bergman, R. (1998) Experimental design and optimization. *Chemometr Intell Lab.* 42, 3-40.
- Marx, S. (Ed.) (2004, March). Guidelines on Stability Testing of Cosmetic Products. The European Cosmetic Toiletry and Perfumery Association (Colipa) and Cosmetic, Toiletry and Fragrance Association (CTFA). (pp 1-8). Colipa: Brussels.
- Masson, P. (2011, November). Sensory analysis: A Scientific Approach to Perceived Effects. *Evic International Neuronal Net's*. (pp 11). Progress: Bordeaux, France.
- McClements, D.J. (1999) Emulsion Rheology, in Food Emulsions: Principles, Practice, and Techniques., CRC Press LLC: Boca Raton.
- McDermott, A. and Kennedy, L. (2015). About Face-The Smart Woman's Guide to Beauty: Your Essential Skincare and Make-up Bible for the Changing Face of Beauty. Gill & Macmillan Ltd: Bloomberg, New York City.
- Michael and Ash, I. (2004). *Handbook of Green Chemicals*. (2nd ed.) Endicott, NY: Synapse Information Resource, Inc.
- Michalun, M. V. and DiNardo, J. C. (2014). Milady's Skin Care and Cosmetic Ingredients Dictionary, (4th ed.). Cengage Learning.
- Michalun, N. and Michalun, M. V. (2001). *Milady's Skin Care and Cosmetic Ingredients Dictionary*. (2nd ed.). Australia (Albany, N. Y.): Milady Thomson.
- Moffat, J., Morris, V. J., Al-Assaf, S., and Gunning, A. P. (2016). Visualisation of Xanthan Confirmation by Atomic Force Microscopy. *Carbohydrate Polymers*. 148, 380-389.
- Montenegro, L., Rapisarda, L., Ministeri, C., and Puglisi, G. (2015). Effects of Lipids and Emulsifiers on the Physicochemical and Sensory Properties of Cosmetic Emulsions Containing Vitamin E. *Cosmetics*. 2, 35-47.
- Montgomery, D. C. (2001). *Design and Analysis of Experiments*. (5th ed.) New York: John Wiley & Sons, Inc.
- Montgomery, D. C. (2009). *Design and Analysis of Experiments: Model Adequacy Checking*. 7th edition. (pp. 75-79) John Wiley and Sons (Asia) Inc: Hoboken.

- Moravkova, T. and Filip, P. (2014). The Influence of Thickeners on the Rheological and Sensory Properties of Cosmetic Lotions. Acta Polytechnica Hungarica. 11(6), 173-186.
- Moreira, P. D. L., Jorge, A. T. S., Marques, J. P. P., Gesztesi, J. L., Ribeiro, P. L. and Rocha, S. (2012). U.S. Patent No. US 2012/0172326 A1. Washington DC: V.S. Patent and Trademark Office.
- Morrison, F.A. (2004). *What is Rheology Anyway?*. In *The Industrial Physicist*. (pp. 29-31) American Institute of Physics: New York.
- Mostefa, N. M., Sadok, A. H., Sabri, N. and Hadji, A. (2006). Determination of Optimal Cream Formulation from Long-term Stability Investigation using a Surface Response Modelling. *International Journal of Cosmetic Science*. 28, 211-218.
- Murad, H. and Lange, D. P. (2003). *The Murad Method: Wrinkle-Proof, Repair, and Renew Your Skin with the Proven 5-Week Program.* St. Martin's Press: New York.
- Murphy, G. F. (1997). *Histology of the Skin*. In Elder, D. R., Elenitas, C., Jaworsky, and Johnson, B. Jr. (Eds.) *Lever's Histopathology of the Skin* (8th ed. pp. 5-45).
 Pniladelphia: Lippincott Williams & Wilkins.
- Nantarat. T., Chansakaow. S. and Leelapornpisid. P. (2015). Optimization, Characterization and Stability Of Essential Oils Blend Loaded Nanoemulsions by PIC Technique for Anti-Tyrosinase Activity. *International Journal of Pharmacy and Pharmaceutical Sciences*.7(3), 308-312.
- National Health Surveilance Agency Brazil (ANVISA). (2004). *Cosmetic Products Stability Guide*. Volume 1, (pp. 1-50). Anvisa Publishing House: Brazil.
- Neill, U. S. (2012). Skin Care in the Aging Female: Myths and Truths. *The Journal of Clinical Investigation*. 122(2), 473–477
- Nguyen, P. T. and Marquis, R. E. (2011). Antimicrobial Actions of a-mangostin Against Oral Streptococci. *Can J Microbiol.* 57(3), 217-225.
- Nowak, E., Kovalchuk, N. M., Che, Z., and Simmons, M. J. H. (2016). Effect of surfactant concentration and viscosity of outer phase during the coalescence of a Surfactant-laden Drop with a Surfactant-free drop. *Colloids and Surfaces A: physicochemical and Engineering Aspects*. 505, 124-131.

- Nursakinah, I., Ismail, A. R., Rahimi, M. Y., and Idris, A. B. (2013). Evaluation of HLB Values of Mixed Non-Ionic Surfactants on the Stability of Oil-In-Water Emulsion System. *AIP Conference Proceedings*. 1571(850), 850-856.
- Olumide, Y. M., Akinkuqbe, A. O., Altraide, D., Mohammed, T., Ahamefule, N., Ayanlowo, S., Onyekonwu, C., Essen, N. (2008). Complications of Chronic Use of Skin Lightening Cosmetics. *International Journal of Dermatology*. 47(4), 344-353.
- Park, J., Zheng, W. (2012). Human Exposure and Health Effects of Inorganic and Elemental Mercury. *Journal of Preventive Medicine & Public Health*. 45(6), 344-352.
- Particle Sciences. (2009). Skin and Nail: Barrier Function, Structure, and Anatomy Considerations for Drug Delivery. [Brochure]. Bentlehem, PA, USA: Particle Sciences, Drug Development Services.
- Particle Sciences. (2011). *Emulsion Stability and Testing*. [Brochure]. Bentlehem, PA, USA: Particle Sciences, Drug Development Services.
- Priddy, S. A., Hanley, T. R., and Effler, W. T., (1999). Separation Optimization for the Recovery of Phenyl Ethyl Alcohol. *Applied Biochem Biotechnology*. 77(79), 473-484.
- Realdon, N., Perin, F., Morpurgo, M. and Ragazzi, E. (2002). Influence of Processing Conditions in the Manufacture of O/W Creams I. Effect on Dispersion Grade and Rheological Characteristics. *Il. Farmaco.* 57, 341-347.
- Research and Markets. (2016, September 26). Global Facial Serum Market 2016-2020. (Research Report no. 3846143). Dublin, Ireland. Retrieved (2017, March 1) from: <u>http://www.researchandmarkets.com/reports/3846143/global-facial-serum-market-2016-2020</u>
- Romanowski. P. (1 April 2015). An Introduction to Cosmetic Tehnology. *The American Oil Chemists' Society (AOCS)*: South Boulder, Urbana, Illinois, USA.
- Santana, C. R., Perrechil, A. F. and Cunha, L. R., (2013). High- and low-energy emulsifications for food applications: A focus on process parameters, *Food Engineering Reviews*. 5, 107-122.
- Sasidharan, S., Joseph, P. and Junise. (2014). Formulation and evaluation of Fairness Serum using Polyherbal Extracts. *International Journal of Pharmacy*. 4(3), 105-112.

- Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G. and Garbe, C. (2001).
 Dermicidin: a novel human antibiotic peptide secreted by sweat glands. *Nat Immunol.* 2(12), 1133-1137.
- Schmid-Wendtner, M. H. and Korting H. C. (2006). The pH of the Skin Surface and its Impact on the Barrier Function. Skin Pharmacology and Physiology. 19, 296-302.
- Schreml, S., Kemper, M. and Abels, C. (2014). Skin pH in the Elderly and Appropriate Skin Care. *EMJ Dermatol.* 86-94.
- Schreml, S., Zeller, V., Meier, R. J., Korting, H. C., Behm, B., Landthaler, M. and Babilas, P. (2012). Impact of Age and Body Site on Adult Female Skin Surface pH. *Dermatology*. 224, 66-71.
- Sedlewicz, L. B. (2011). *Current Trends in Cosmetic Preservation*. [Brochure] Fairfield NJ, US: Schülke Inc.
- Sharma, B.R., Naresh, L., Dhuldhoya, N. C., Merchant, S. U., and Merchant, U. C. (2006). Xanthan Gum-A Boon to Food Industry. *Food Promotion Chronicle*. 1(5), 27-30.
- Sheth, B. B. and Gullapalli, P. R. (1999). Influence of an optimized non-ionic emulsifer blend on properties of oil-in-water emulsions. *European Journal of Pharmaceutics and Biopharmaceutics*. 48, 233-238
- Shi, V., Tran, K. and Lio, P. (2012). A comparison of physicochemical properties of a selection of modern moisturizers: hydrophilic index and pH. *J Drugs Dermatol*. 11, 633-636.
- Singh, B. and Ahuja, N. (2004). Response Surface Optimization of Drug Delivery System. In Jain, N. K. (Ed.) Progress in Controlled and Novel Drug Delivery Systems. (1st ed., pp. 470-509). New Delhi: CBS Publishers & Distributors.
- Singh-Ackbarali, D. and Maharaj, R. (2014). Sensory Evaluation as a Tool in Determining Acceptability of Innovative Products Developed by Undergraduate Students in Food Science and Technology at the University of Trinidad and Tobago. *Journal of Curriculum and Teaching*. 3(1), 10-27.
- Smaoui, S., Hlima, H. B., Jarraya, R., Kamoun, N. G., Ellouze, R., Damak, M. (2012). Cosmetic Emulsion from Virgin Olive Oil: Formulation and Bio-Physical Evaluation. *African Journal of Biotechnology*. 11(40), 9664-9671.

- Speedy, L. (2014). The Effects of Shear on Neutralized Carbomers in Aqueous Conditions. *Ensign Laboratories*. 1-11.
- Spencer, M. C. (1961). Hydroquinone Bleaching. Archive of Dermatology. 84, 131-134.
- Stat-Ease, Inc. (2002). Design-Expert user's Guide. Version 6.0.6. Design Expert Software.
- Statistica (2018). Size of the Anti-Aging market Worldwide in 2013 and 2019 (in Billion U.S. Dollars). Retrieved (2018, January 29) from: https://www.statista.com/statistics/509679/value-of-the-global-anti-aging-market/
- Statistica (2018). Size of the Global Skin Care Market 2012-2024(in Billion U.S.Dollars).Retrieved(2018,April15)from:https://www.statista.com/statistics/254612/global-skin-care-market-size/
- Suhaimi, S. H., Hasham, R. and Rosli, N. A. (2017). Optimization of Orthosiphon Stamineus Loaded onto Nanostructured Lipid Carrier using D Optimal Mixture Design. *Chemical Engineering Transactions*. 56, 1141-1146.
- Sulzberger, M. B., and Witten, V. H. (1952). The effect of Topically Applied Compound F in selected Dermatoses. *Journal of Investigative Dermatology*. 19(2), 101-102.
- Svensson, L. (2012). Design and Performance of Small Scale Sensory Consumer Tests. Swedish University of Agricultural Sciences. Master Thesis Agronomist program-Food Science.
- The Personal Care Products Council. (2017). *Skin Care Products (Creams, Lotions, Powders, and Sprays)*. Washington, D.C. Retrieved (2017, December 30) from: http://www.cosmeticsinfo.org/product/skin-care-products-creams-lotions-powders-and-sprays
- Thiemann, A., and Jänichen, J. (2014, November). The Formulator's Guide to Safe Cosmetic Preservation, *Preservatives*. Dr Straetmans: Germany. 39-43.
- Tolleson, W. H. (2005). Human Melanocyte Biology, Toxicology, and Pathology. *Journal of Environmental Science and Health.* 23, 105-161.
- Vermeer, B. J. and Gilchrest, B. A. (1996). Cosmeceuticals: A Proposal for Rational Definition, Evaluation and Regulation. *Arch Dermatol.* 132, 337-340.
- Vočadlo, L. (2007). Core Viscosity. In D. Gubbins, and E. Herrero-Bervera (Ed.), Encyclopedia of Geomagnetism and Paleomagnetism (pp. 104). Dordrecht, The Netherlands: Springer.

- Wang, F., Wang, Y. J., Sun, Z. (2002). Conformational Role of Xanthan Gum in its Interaction with Guar Gum. *Journal of Food Science*. 67(9), 3289-3294.
- Winter, R. M. S. (1994). *A Consumer's Dictionary of Cosmetic Ingredients*. (4th ed.) New York: Crown Trade Paperback.
- Wollenweber, U. and Farwick, M. (2006). Application of Skin-Identical Ceramide 3 for Enhanced Skin Moisturization and Smoothness: Latest Results. *Euro Cosmetics*. Special Issue. 1-5. Degussa: Germany.
- Yosipovitch, G. and Maibach, H. I. (1996, December). Skin Surface pH: A Protective Acid Mantle. *Cosmetics & Toiletries[®] Magazine*. 111(12), 101.
- Yunus, M. A. C., Yaw, L. C. and Idham, Z. (2011). Effects of variables on the production of red-fleshed pitaya powder using response surface methodology. *Jurnal Teknologi*. 56, 15-29.
- Zen, N. I. M., Gani, S. S. A., Shamsudin, R. and Masoumi, H. R. F. (2015). The Use of D-Optimal Mixture Design in Optimizing Development of Okara Tablet Formulation as a Dietary Supplement. *The Scientific World Journal*. 2015, 1-7.
- Zhong, L., Oostrom, M., Truex, M. J., Vermeul, V. R. and Szecsody, J. E. (2013). Rheological Behavior of Xanthan Gum Solution related to shear Thinning Fluid. *Journal of Hazardous Materials*. 244(245), 160-170.
- Ziosi, P., Manfredini, S., Vandini, A., Vertuani, S. and Fraternali, M. (2013, August). Caprylyl Glycol/Phenethyl Alcohol Blend for Alternative Preservation of Cosmetics. *Cosmetics & Toiletries[®] magazine*. 128(8), 538-549.
- Zlotogorski, A. (1987). Distribution of Skin Surface pH on the Forehead and Cheek of Adults. *Archives of Dermatological Research*. 279, 398-401.
- Zulkifli, H. (2013). Efficacy of Labisia Pumila (Kacip Fatimah) Anti Aging Regenerating Face Serum on Malay Skin Condition. Master, Universiti Teknologi Malaysia, Skudai.