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ABSTRACT

All forms of the heat engines waste a sizeable part of heat due to their

low efficiency. Thermoelectric (TE) materials can make use of this waste

heat to generate electricity. The figure of merit ZT of a material is crucial

in determining the energy conversion efficiency. However, to-date there is

no large-scale application of TE power generator (TEG) due to unavailability

of environmental friendly and high ZT materials. In recent studies it was

noted, reduction in the dimensionality of TE materials can decrease thermal

conductivity and hence increase ZT . In this regard, 2-D monolayer (ML) materials

are considered promising candidates for TEG. Palladium disulphide (PdS2) and

palladium diselenide (PdSe2) are historically known as high Seebeck coefficient

materials but there is still insufficient knowledge on their ML phase. In this

study, density functional theory based full-potential linearised augmented plane

wave method embedded in WIEN2k code is used to determine the structural and

electronic properties of palladium dichalcogenide (PdX2; X=S, Se, Te). Different

exchange correlation (xc) energy functionals are considered. From the data of

band energies obtained from WIEN2k calculations, BoltzTraP code is used to

calculate the TE properties. All calculated lattice constants on average are less

than 5 % of the experimental values. Optimised structures of PdX2 calculated with

Perdew-Burke-Ernzerhof generalised gradient approximation give better values of

band gap energy. Bulk phase PdS2 and PdSe2 have ZT of 0.99, while in ML phase

the achieved value of ZT is 1.01. The largest improvement on ZT is on PdTe2 where

the obtained ZT is 0.48 for bulk phase and ZT is 1.00 for ML phase. This study

has successfully demonstrated the enhancement of the TE properties for PdX2 by

reducing their dimensionality.
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ABSTRAK

Semua bentuk enjin haba membazirkan sebahagian besar haba dise-

babkan kecekapan yang rendah. Bahan termoelekrik (TE) boleh menggunakan

haba sisa ini untuk menjana tenaga elektrik. Angka merit ZT bagi bahan TE

penting dalam menentukan kecekapan penukaran tenaga. Namun demikian,

sehingga kini tiada aplikasi berskala besar dalam penjana kuasa TE (TEG) kerana

kekurangan bahan yang mesra alam dan ZT yang tinggi. Dalam kajian terkini

telah diperhatikan bahawa pengurangan dimensi bahan TE boleh mengurangkan

kekonduksian terma dan justeru meningkatkan ZT . Dalam hal ini, bahan 2-

D lapisan tunggal (ML) dianggap sebagai calon terjamin bagi TEG. Paladium

disulfida (PdS2) dan paladium diselenida (PdSe2) dikenali sebagai bahan pekali

Seebeck yang tinggi namun masih terdapat ilmu yang tidak mencukupi tentang

fasa ML mereka. Dalam kajian ini, kaedah keupayaan penuh gelombang

satah terimbuh linear berdasarkan teori fungsian ketumpatan tertanam dalam

kod WIEN2k digunakan bagi menentu ciri struktur dan elektronik paladium

dikalkogen (PdX2; X=S, Se, Te). Pelbagai fungsian tenaga pertukaran-korelasi

(xc) telah dipertimbangkan. Daripada data tenaga jalur yang diperolehi daripada

pengiraan, kod BoltzTraP digunakan untuk mengira sifat-sifat TE. Secara purata,

semua pemalar kekisi yang dikira adalah kurang daripada 5 % nilai eksperimen.

Struktur teroptimum PdX2 yang dikira dengan anggaran kecerunan teritlak

Perdew-Burke-Ernzerhof memberikan nilai tenaga jurang jalur yang lebih baik.

Fasa pukal PdS2 dan PdSe2 memiliki ZT 0.99, manakala fasa ML pula nilai yang

dicapai oleh ZT adalah 1.01. Peningkatan terbesar adalah pada PdTe2 di mana fasa

pukal mempunyai ZT 0.48 dan ZT 1.00 untuk fasa ML. Kajian ini memaparkan

kejayaan peningkatan sifat-sifat TE untuk PdX2 dengan mengurangkan dimensi

mereka.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The typical cars driven by internal combustion engine lose around 75 % of

the energy contributed by burning of petrol [1]. In many cases, large amount of

heat is dissipated, indicating the low efficiency of the energy conversion. In order

to increase the efficiency of internal combustion engine, a lot of further research

work is needed in the materials selection and the device designing. One of the

possible choice are the thermoelectric (TE) materials which can provide a solution

to these problems by recovering the useful electrical energy from the waste heat.

TE devices have a range of advantages [2] such as they can convert thermal

energy directly into electrical energy, with no extra parts that reduce efficiency.

Moreover, they are solid state devices, no wear out due to mechanical movement,

no extra maintenance and noiseless. Also, they have a long life span, particularly

when used in constant heat source and are scalable in which low to high voltage

can be generated by changing the size.

There are many review articles [3, 4, 5, 6] published from 2010 onwards

which indicate the popular trend of TE related studies as well. Even though

there are lots of studies on TE materials and devices, large scale productions and

applications of TE generators (TEGs) are still not available. Zheng et al. [7] reported

that the reasons behind this are not only due to the low efficiency of TE materials,

but also because of the low reproducibility of some proclaimed high figure of merit,

ZT of TE materials.
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The figure of merit of TE material is defined by many properties. The

properties that give direct impact are the Seebeck coefficient S , electrical

conductivity σ, and thermal conductivity κ. There are other properties that also

govern the performance of TE materials as mentioned by Hamid Elsheikh et al. [5]

but is out of the scope of this study. These three properties are interrelated and in

general, interfere each other negatively.

In order to overcome the negative correlation between electrical conduc-

tivity and thermal conductivity, various methods have been proposed. One of the

methods is reducing the dimension of the materials. Studies [8, 9, 10] have shown

that by reducing the dimension, the figure of merit of TE material can be increased

due to the decrease in lattice thermal conductivity. There are also studies [11, 12]

which show that transition metal dichalcogenide system is the appropriate system

to increase figure of merit by making monolayer into few layer compared to the

bulk structure.

Palladium disulphide and palladium diselenide have shown reasonable

Seebeck coefficient [13] values although, a recent study [14] shows higher Seebeck

coefficient values for the monolayer phase, which attracts the interest of the

author to initiate this study. In bulk structure, palladium ditelluride is reported

as a metallic material, but studies [15, 16] show it a semiconductor one in

monolayer structure. Despite of the possibility to develop a good TE material,

there are no satisfied outcomes from the ab initio studies [17, 14] on the

electronic properties for bulk phase palladium dichalcogenide when compared

with experimental results. The situation becomes more interesting as there is only

one experimental study related to monolayer palladium dichalcogenide found to

date [18] (published near the end of the current project) as far as the author knows

and the results of computational studies [15, 19, 14, 16] are inconclusive.
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In addition, the study by Sun et al. [14] on TE properties of palladium

diselenide is also yet incomplete. There is no study on TE properties of palladium

disulphide and palladium ditelluride as far as the author knows. This study intends

to determine the electronic properties and thermoelectric properties of bulk and

monolayer phase of palladium dichalcogenide within density functional theory

(DFT) based approaches and Boltzmann transport equation.

1.2 Statement of Problem

As mentioned in the background of the study, thermoelectric materials

with high figure of merit which have high electrical conductivity, high Seebeck

coefficient, as well as low thermal conductivity are in great need but as a family

of possible good candidate materials for TE exposition, the literature on electronic

properties of PdX2 (where X is either S, Se, or Te) for either bulk phase or monolayer

phase is insufficient which is crucial to study thermoelectric properties of the

materials.

1.3 Research Objectives

In order to resolve the problems, the following objectives are set:

(a) To calculate the structural properties of PdX2 bulk structure,

(b) To compute the electronic properties of PdX2 bulk and monolayer

structure,

(c) To determine the TE properties of PdX2 bulk and monolayer

structure,

where X is either S, Se, or Te.
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1.4 Scope of Study

The structural and electronic properties of PdS2, PdSe2 and PdTe2 are

studied based on density functional theory (DFT) with full potential linearised

augmented plane wave approach (FP-L(APW)) by using WIEN2k software

[20]. Both the bulk and monolayer structure are studied using local density

approximation (LDA) exchange-correlation (xc) functional [21], Perdew-Burke-

Ernzerhof (PBE) generalised gradient approximation (GGA) xc functional [22], Wu-

Cohen (WC) GGA xc functional [23], and PBE correction for solids and surfaces

(PBEsol) GGA xc functional [24]. The spin-orbit coupling effect and use of

Tran-Blaha modified Becke-Johnson potential functional (TB-mBJ) [25] is also

considered. The relaxation within space group symmetry is used to optimise the

lattice constants and atomic positions. Then, the band structures, the total density

of states, and partial density of states of the optimised structures are calculated.

Lastly, the electronic transport properties, including electrical conductivity per

relaxation time (of electrons), electronic thermal conductivity per relaxation time

(of electrons) and Seebeck’s coefficient of the structures are calculated using

BoltzTraP software [26].

1.5 Significance of Study

Some of the studies mentioned in Section 1.1 have shown the improve-

ment of TE features in terms of higher electrical conductivity, lower thermal

conductivity, higher Seebeck coefficient resulting in a higher figure of merit for

a same 2D material. This study intends to exploit the possible enhancement of

TE properties of PdX2 by computational method which are relatively lower cost

than the experimental method, and also expected to give better insights of band

structures, electrical and thermal conductivity, and Seebeck coefficient changes of

monolayer PdX2. These efforts are hoped to get a high-efficiency material for TE

generator and stimulate more research on TE materials.
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1.6 Research Questions

Regarding to the research objectives, the following research questions are

set:

(a) What will be the optimum structure for palladium dichalcogenides

in the ground state?

(b) How do the electronics properties change when palladium

dichalcogenides are made into monolayer instead of bulk crystal?

(c) What are the properties contributing to the change of thermo-

electric properties when the dimension of palladium dichalcogenides are

reduced?

1.7 Research Hypothesis

The monolayer structure of palladium dichalcogenides is expected to have

better performance of Seebeck effect when compared with their bulk counterpart

due to the lower thermal conductivity.
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