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ABSTRACT 

 

 

 

 

Recently, the need to create a versatile toluene methylation catalyst receives a 

major attention in the production of p-xylene due to its less energy intensive. The 

current catalyst produced low p-xylene yield due to its strong acidity and large pores. 

A novel fibrous silica beta zeolite (FSB) was successfully prepared by microemulsion 

assisted with zeolite-seeds crystallization using different urea-silica ratio. The 

properties of the catalysts were characterized using X-ray diffraction, field emission 

scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-

desorption, Fourier transform infrared spectroscopy using potassium bromide method 

and adsorption of 2,6-lutidine. The results indicate that different urea-silica ratio 

altered the density and perfection of dendrimeric silica fibres, consequently decreased 

the acidities, surface area and pore volume of the catalysts. Catalytic performance was 

conducted at 573 - 723 K under atmospheric pressure with a reactant molar ratio of 1. 

At 673 K, the p-xylene yield was in the following order: 0.5:1-FSB (23.3%) > 1:1-FSB 

(23.05%) > 1:0.5-FSB (7.59%) > beta (5.79%). Furthermore, the optimization using 

response surface methodology for 1:1-FSB catalyst demonstrated the reactant molar 

ratio and temperature as significant parameters with high coefficient of determination 

(R2 =0.9159). The Weisz-Prater criterion is in the following order: 1:1-FSB > 1:0.5-

FSB > 0.5:1-FSB > beta. The employment of the synthesized catalyst in the toluene 

methylation revealed a remarkable performance, suggesting its potential as a future 

catalyst in industrial application of toluene methylation and in other chemical 

processes. 
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ABSTRAK 

 

 

 

 

Baru-baru ini, keperluan untuk mencipta mangkin serba guna bagi aplikasi 

metilasi toluena mendapat perhatian besar dalam pengeluaran p-xilena kerana kurang 

menggunakan tenaga. Mangkin yang digunakan pada masa ini menghasilkan produk 

p-xilena yang rendah disebabkan keasidan yang kuat dan saiz liang yang besar. Satu 

zeolit beta berserat silika (FSB) telah berjaya disediakan dengan menggunakan kaedah 

mikroemulsi dibantu dengan penghabluran benih zeolit dengan nisbah urea-silika yang 

berlainan. Sifat-sifat mangkin telah dicirikan menggunakan pembelauan sinar-X, 

miskroskop elektron imbasan pancaran medan, mikroskop elektron transmisi, 

penjerapan-penyahjerapan nitrogen, spektroskopi inframerah transformasi Fourier 

menggunakan kaedah kalium bromida dan penjerapan 2,6-lutidin. Keputusan 

menunjukkan bahawa nisbah urea-silika yang berbeza mengubah ketumpatan dan 

kesempurnaan serat silika dendrimerik yang menyebabkan pengurangan keasidan, luas 

permukaan dan isipadu liang mangkin. Aktiviti pemangkinan telah dijalankan pada 

suhu 573- 723 K di bawah tekanan atmosfera dengan nisbah molar bahan tindak balas 

1. Pada 673 K, penghasilan p-xilena adalah seperti berikut: 0.5: 1-FSB (23.3%) > 1: 

1-FSB (23.05%) > 1: 0.5-FSB (7.59%) > beta (5.79%). Pengoptimuman menggunakan 

kaedah gerak balas permukaan untuk mangkin 1: 1-FSB menunjukkan nisbah molar 

bahan tindakbalas dan suhu tindakbalas sebagai parameter yang penting dengan pekali 

penentu yang tinggi (R2= 0.9159). Kriteria Weisz-Prater   adalah dalam susunan 

berikut: 1:1-FSB > 1:0.5-FSB > 0.5:1-FSB > beta. Penggunaan mangkin dalam 

metilasi toluena menunjukkan prestasi yang luar biasa, mencadangkan potensi ia 

sebagai mangkin masa hadapan dalam aplikasi industri metilasi toluena dan juga 

proses-proses kimia yang lain.   
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 CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Global demand of xylenes saw continued growth from years 2010 till 2015 

with the consumption of xylenes over the period increased at an average annual rate 

of 3.5 %. In October 2015, IHS Markit reported that the consumption is anticipated to 

increase up to 4.5 % in 2020 with growing capacity of 21% (IHS Markit, 2015). The 

growing demand is driven by the increasing demand in polyester industry where 

xylene finds its ultimate role as the basic chemical in producing the polyester 

monomers, mainly dimethyl terephthalate and terephtalic acid.  Xylene is a benzene 

derivative with three variation of methyl group positioned on the benzene ring, 

basically known as xylene isomers. The three isomers are ortho-, meta- and para-

xylene. Among the three isomers, para-xylene is leading the way as commercially 

desirable feedstock (Miyake et al., 2016). 

 

 

The aromatics of benzene, toluene and xylene (BTX) are generally obtained in 

one package via catalytic reforming and naphtha pyrolysis. However, since these 

processes involve petroleum resources, there has been motivation to find new 

alternatives to produce the aromatics, especially xylenes. This is due to the forecast of 

petroleum resources getting exhausted in the future. In addition, these processes are 

energy intensive due to the repetitive adsorption, separation and isomerization 

(Miyake et al., 2016). Furthermore, in these processes, benzene and xylene are 

produced insufficiently in relative to the market demand since the fraction of BTX is
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determined by the thermodynamic equilibrium (Lu et al., 2013). Hence, transformation 

of toluene to xylene would therefore be of great importance to balance the deficiency 

of xylene production. 

 

 

Alkylation, disproportionation and trans-alkylation are among several different 

approaches in producing the valuable xylene. Nevertheless, extensive researches have 

been done over toluene alkylation currently as a promising way of producing xylenes. 

In toluene alkylation, usually a specific alcohol or olefin is adopted as the alkylating 

agent. In the present work, methanol is proposed to be the alkylating agent because it 

can be produced from nonpetroleum resources and the catalyst for its production has 

been widely studied (Miyake et al., 2016). In toluene methylation with methanol, 

toluene is reacted with methanol to form xylene. Under certain reaction conditions, the 

reaction is reported to be accompanied by several side reactions, for instance, 

dealkylation, disproportionation and trans-alkylation, which lead to formation of 

benzene, light hydrocarbons and bulkier aromatic products such as trimethylbenzene 

and tetrametylbenzene (Ahn et al., 2014).  

 

 

In general, varieties of zeolite-based catalysts have been studied in used for 

catalyzing toluene alkylation with methanol. The reaction has been carried out over 

mordenite, ZSM-5, beta (Ahn et al., 2013). These zeolites have caught attention as 

alkylation catalyst with their remarkable properties that provide the development of 

cleaner and more efficient processes where they allow easy separation from reaction 

products and elimination of problems associated with disposal of spent catalysts such 

as AlCl3 (Guisnet and Gilson, 2002). Owing to their ordered framework and specific 

pore structures, these crystalline aluminosilicates possess unique properties of high 

thermal stability, high active sites and selectivity which enable application in various 

reactions (Qiao and Huo, 2017). Among the available zeolites, only a few studies had 

been reported utilizing beta zeolite in toluene alkylation with methanol due to its poor 

performance (Tangesnifard and Ghaziaskar, 2016; Smirniotis and Ruckenstein, 1995). 

Beta zeolites contain 12-membered rings with three-dimensional pore opening 

systems. Its large pore opening size (7.6 x 6.4 Å) might play a role in shape selectivity 

and minimizing diffusion limitation in toluene alkylation reaction (Tian et al., 2016).  
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The shape and size of zeolites significantly affects their performances in both 

fundamental research and industrial which indicate the essential of morphological 

control study. In 2010, Polshettiwar and his research groups initiated the first fibrous 

morphology using silica-based material by adopting microemulsion technique. The 

new class catalyst, namely fibrous nano-silica (KCC-1), is reported to exhibit excellent 

physical properties, including a high surface area, good thermal properties and high 

mechanical stability. Furthermore, it has also been successfully applied in a range of 

important applications such as catalysis, drug delivery, CO2- conversion (Huang et al., 

2014). The fibrous structure which consists of dendrimeric fibres contributes to high 

surface area and enhance the accessibility of active sites. The microemulsion technique 

involves the combination of surfactant, oil phase and water. The formation of fibrous 

morphology is believed to be sensitive to the synthesis conditions thus a motivation to 

explore the effects of synthesisparameters on the morphology of catalysts.   

 

 

To the best of our knowledge, there is no report utilizing fibrous beta zeolites 

in toluene methylation reaction. Hence, present work would be of synthesizing fibrous 

beta zeolites by using microemulsion templating method. The fibrous beta zeolite is 

proposed for toluene alkylation with methanol to give xylene isomers. It is predicted 

that fibrous beta would provide suitable acidity with higher diffusion limitation which 

lead to better performance of catalytic activity. 

 

 

 

 

1.2 Problem Statement 

 

 

Previous decades have shown the increasing demand for xylene and the trend 

is anticipated to continue growing. This situation has caught researchers’ attention in 

finding new alternative route for production of xylene due to the problem that might 

arise regarding petroleum resources. The methylation of toluene holds as the key 

alternative process in overcoming the current xylene deficiency. The alkylation of 

toluene with methanol is advantageous from the excess toluene produced, which is an 

efficient and economically viable in producing the required xylene (Lu et al., 2013).  
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Zeolites such as MOR, beta, MCM-22 and ZSM-5 have been employed as 

catalysts in toluene alkylation process due to tunable intrinsic acidity, surface area and 

uniform pores (Ahn et al., 2014; Tangesnifard and Ghaziaskar, 2016; Wang et al., 

2017). Zeolite consisting of aluminosilicate framework possesses with good thermal 

stability, different pore size and wide varieties of Si/Al ratio which in turns provide 

the tunable acidity. These properties make it suitable for facilitating acid-catalyzed 

reactions. However, diffusion limitation and accessibility of active sites become the 

major constraints to the zeolite catalytic activity in certain reactions. In effort to 

overcome the diffusion limitation, development of hierarchically porous zeolite is one 

of the great invention where this material has been proved to increase the catalyst 

ability in isomerization, alkylation and cracking (Teh et al., 2015). 

 

 

Although beta zeolite has been used as catalyst for alkylation of toluene and 

has favorable properties such as three-dimensional structure, mild acidity and thermal 

stability, the material possesses large pore structure that disabled the shape selectivity 

and diffusion limitation function hence resulting in low selectivity (Ahn et al., 2016; 

Ahn et al., 2013). In the toluene alkylation with methanol, the reaction yields multi-

products which is affected by undesired reactions. Cracked products and higher 

methylated compounds other than xylenes such as ethylbenzene and 

trimethylbenzenes are some of the common undesired products. The presence of 

cracked products and higher methylated compounds reduced the selectivity and yields 

of desired xylenes. The utilization of beta zeolite favors secondary reactions due to its 

large opening. The wide pore openings reduce the diffusion limitation and allows 

further methylation of desired product thus producing bulkier aromatic compounds. 

Despite the drawbacks, the catalytic activity can still be enhanced by increasing the 

diffusion limitation and lowering the acidity, simultaneously.  

 

 

In order to suppress the formation of these undesired products, there is a need 

to design a new modified catalyst with better properties which could possibly better 

the selectivity in toluene alkylation. Implementation of silica-based fibrous material to 

zeolite is foreseen to be able to overcome these problems. The material is anticipated 

to mild the acidity which is compatible with the need of reaction and increase the 

diffusional limitation of products. The presence of dendrimeric fibres aid in increasing 
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the diffusion limitation, where smaller size molecules will easily diffuse out from the 

zeolite and preventing larger molecules out, thus improving the selectivity of desired 

products. Utilizing microemulsion technique, the zeolite-based fibrous material is 

expected to be successfully synthesized.  

 

 

 

 

1.3 Objectives of Study 

 

 

The aims of this study are: 

 

i. To synthesize and characterize fibrous-silica beta (FSB) zeolite with different 

urea-TEOS ratio. 

ii. To study the catalytic activity of catalysts on toluene methylation. 

iii. To optimize the reaction condition under various parameters (reaction 

treatment temperature, reactant molar ratio and reaction temperature) using 

Response Surface Methodology (RSM)  

iv. To study the mass transfer of catalyst and propose mechanism for the toluene 

methylation.  

 

 

 

 

1.4 Scope of Study 

 

 

The scope of this study consists of five parts including catalyst preparation, 

characterization of catalysts, catalytic testing, optimization of reaction conditions and 

kinetic and mechanism of toluene methylation study. The following describes the 

limitations of study in details: 

 

 

i. Fibrous-silica beta zeolite was synthesized using microemulsion method. 

Three different ratios of urea-TEOS were adopted for comparative study. The 

proposed urea-TEOS ratio were 0.5:1, 1:1 and 1:0.5. The catalysts were 

referred as 0.5:1-FSB, 1:1-FSB and 1:0.5-FSB. 
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ii. All catalysts were subjected to Field Emission Scanning Electron Microscope 

(FESEM) and Transmission Electron Microscope (TEM) studies for the 

observation of morphology and confirmation of fibrous formation. To obtain 

the surface area and pore size of catalysts, N2 adsorption-desorption was 

performed onto the catalysts. Meanwhile, the nature and strength of acidity was 

studied by using IR of 2,6-lutidine.  

iii. Catalytic testing was done using all catalysts in toluene methylation process. 

The reactions were carried out at atmospheric pressure using nitrogen as carrier 

gas in the micro quartz reactor. The reaction temperature was varied within 

range of 573-723 K. 

iv. The optimization of toluene methylation condition was accomplished using 

RSM. Relationship between three independent variables such as treatment 

temperature (723-823 K), reaction temperature (573-623 K) and reactant molar 

ratio of methanol to toluene (0.5-1.5) were studied and with expectation to 

come out with an optimum condition.  

v. The internal mass transfer of catalyst in the toluene methylation was 

determined based on Weisz-Prater criterion. Furthermore, Arrhenius 

expression was used in order to find the required activation energy. The 

mechanism of toluene methylation was proposed based on the product 

distribution obtained from the catalytic testing using 1:1-FSB.  

 

 

 

 

1.5 Significance of Study 

 

 

This study prepared the fibrous catalysts of beta using different urea-TEOS 

ratios, 0.5:1-FSB, 1:1-FSB and 1:0.5-FSB. A detailed investigation of the physical and 

chemical properties of the catalysts as well as its relationship to the catalytic activity 

in toluene methylation were conducted. These catalysts were expected to exhibit 

higher conversion and yield for p-xylene. Consequently, these findings would be 

beneficial for catalysis applications in chemical processes. and also contributing to 

petrochemical industries as well as for knowledge transfer.  
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