CHARACTERIZATION OF ALUMINIUM DOPED ZINC OXIDE NANOSTRUCTURES SYNTHESIZED BY THERMAL EVAPORATION METHOD

NORAFIZAH BINTI SALIHIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

> Faculty of Science Universiti Teknologi Malaysia

> > FEBRUARY 2019

•

To my late father (Allahyarham Salihin bin Hj.Asri) to my beloved mother (Hjh. Noor Seah binti Mohamed) and to my siblings

ACKNOWLEDGEMENT

Alhamdulillah, all praise is for ALLAH S.W.T, the Almighty, the All Merciful and the All Compassionate for giving me good health, courage and patience to complete this research. My upmost gratitude to everyone who had been involved in completing this study.

In particular, I would like to acknowledge and extend my heartfelt gratitude to my former supervisor, Professor Dr Samsudi Sakrani and supervisor, Dr Abd Khamim Ismail for endless supports, motivations and guidances in my project.

I would like to thank to Ibnu Sina Institute for Fundamental Science Studies (Universiti Teknologi Malaysia) and Physics Department, Faculty of Science for the experimental facilities and support from the staffs. Special thanks to Dr. Firdaus Omar, Dr. Nurul Huda Yusof, Dr. Syahida Suhaimi and staff from Laboratory Management Unit for helping me to analyze the samples.

Finally, I would also like to thank to my family and friends for their understanding, prayers, love and encouragement during my Master's programme in Universiti Teknologi Malaysia.

ABSTRACT

This study focuses on the synthesis and characterization of undoped and aluminium (Al) doped ZnO nanostructures for examples nanoflowers, nanorods, nanowires and nanopetals grown by thermal evaporation method. Samples were grown on silicon (100) substrate. The silicon substrate was placed at 17 cm away from zinc target and aluminium powder mixture mounted on horizontal quartz tube under controlled oxygen. The aluminium concentration dependent morphology, crystalline structure and optical properties of these prepared nanostructures were determined. Samples were characterized using field emission scanning electron microscopy, energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Raman spectroscopy. ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence spectroscopy. As the Al dopant concentrations increased, the morphology of ZnO changed from uniform nanoflowers to randomly oriented nanostructures. The flower-like ZnO:Al nanorods have the length of about 333 nm and diameter of about 117 nm. The optimum dopant concentration which can produce uniform size, length and diameter was found to be 0.5 at% of Al. EDX analyses revealed the presence of Zn, O, and Al in the samples. From XRD patterns, the samples had high degree of crystallization with crystallite sizes of about 24.66 nm to 46.98 nm. The ZnO:Al nanoflowers also exhibited a strong ultra-violet emission at 380 nm. Additionally, the band gap energy of ZnO:Al was not significantly changed as found from UV-Vis analyses at 3.24 eV. The concentration of Al plays a significant important role in controlling structural, morphological and optical properties of ZnO nanostructures. The ZnO:Al nanostructures are expected for future technological application due to its impact on optical properties.

ABSTRAK

Kajian ini memberi tumpuan kepada sintesis dan pencirian nanostruktur contohnya nanobunga, nanorod, nanowayar dan nanokelopak ZnO yang tidak didop dan didop dengan aluminium (Al) yang dihasilkan menggunakan kaedah penyejatan haba. Sampel disintesis pada substrat silikon (100). Substrat silikon diletakkan pada jarak 17 cm dari sasaran zink dan campuran serbuk aluminium yang diletakkan pada tiub kuarza mendatar di bawah oksigen terkawal. Morfologi bersandar kepada kepekatan aluminium, struktur kristal dan sifat optik nanostruktur yang disediakan telah ditentukan. Sampel dicirikan menggunakan mikroskop pengimbasan elektron medan terpancar, analisis penyebaran tenaga X-ray (EDX), pembelauan sinar X-ray (XRD), spektroskopi Raman, spektroskopi ultraungu-nampak (UV-Vis) dan spektroskopi fotoluminasi. Apabila kepekatan dopan Al meningkat, morfologi ZnO berubah dari nanobunga ke nanostruktur berorientasikan secara rawak. Nanorod ZnO:Al berbentuk seperti bunga mempunyai panjang kira-kira 333 nm dan diameter kira-kira 117 nm. Kepekatan dopan optimum yang boleh menghasilkan saiz, panjang dan diameter seragam adalah didapati pada 0.5 at% Al. Analisis EDX mendedahkan kehadiran Zn, O, dan Al dalam sampel. Dari corak XRD, sampel mempunyai penghabluran tinggi dengan saiz kristal sekitar 24.66 nm hingga 46.98 nm. Nanobunga ZnO:Al juga mempamerkan sinaran ultraviolet kuat pada 380 nm. Tambahan lagi, tenaga jurang ZnO:Al tidak banyak berubah seperti yang didapati daripada analisis UV-Vis pada 3.24 eV. Kepekatan Al memainkan peranan penting dalam mengawal sifat-sifat struktur, morfologi dan optik nanostruktur ZnO. Nanostruktur ZnO yang didop dengan Al dijangka untuk aplikasi teknologi masa depan disebabkan kesannya terhadap sifat optik.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVATIONS	XV
	LIST OF APPENDICES	xviii
1	INTRODUCTION	1
	1.1 Background of the Study	1
	1.2 Problem Statement	4
	1.3 Research Objectives	5
	1.4 Scope of Study	6
	1.5 Significances and Original Contributions of This Study	6

LI	TERATURE REVIEW	7
2.1	Introduction	7
2.2	Previous Research on Aluminium Doped ZnO Nanostructures	
	(ZnO:Al)	7
2.3	Research on Nanoflowers	19
2.4	General Properties of Zinc Oxide (ZnO)	24
	2.4.1 The Basic Physical Properties of ZnO	24
	2.4.2 Crystal Structure of Zinc Oxide (ZnO)	25
2.5	General Properties of Aluminium (Al)	27
2.6	Thermal Evaporation Method	28
	2.6.1 Vapour Transport Method	29
	2.6.1.1 Vapour-Solid (VS) Mechanism	30
	2.6.2 Alloying Evaporation Deposition (AED) of ZnO:Al	
	Nanoflowers	32
	2.6.2.1 Source Transformation During the Growth of	
	ZnO:Al Nanostructures	33
	2.6.3 Doping Mechanism for Zno:Al Nanostructures	34
2.7	Structural and Optical Characterization of ZnO:Al	
	Nanoflowers	35
	2.7.1 Field Emission Scanning Electron Microscopy (FESEM)	
	Theory	35
	2.7.2 Energy Dispersive X-ray Spectroscopy (EDX) Theory	36
	2.7.3 X-ray Diffraction Theory	36
	2.7.4 Raman Spectroscopy Theory	38
	2.7.5 Photoluminescence Theory	40
	2.7.6 UV-Vis Spectroscopy Theory	42

2

45

-	
-	
ູ	

4

METHODOLOGY

3.1

3.2

3.3

3.4

3.5

Introduction	45
Research Frame Work	45
Preparation of Undoped and ZnO:Al by Thermal Evaporation	47
Experimental Setup and Procedures	49
Sample Characterizations Methods	51
3.5.1 Field Emission Scanning Electron Microscopy	52
3.5.2 Energy Dispersive X-ray Spectroscopy	53
3.5.3 X-ray Diffraction Technique	54
3.5.4 Raman Spectroscopy	55
3.5.5 Photoluminescence (PL) Spectroscopy	56
3.5.6 UV-Vis Spectroscopy	57

RESULTS AND DISCUSSION584.1Introduction584.2Structural Properties of Undoped ZnO Nanoflowers (ZONFs)58

4.3	Structural Properties of of ZnO:Al Nanoflowers	63
	4.3.1 FESEM and EDX Analysis	63
	4.3.2 X-ray Diffraction (XRD) Pattern	69
	4.3.3 Raman Spectral Analysis	72
4.4	Optical Properties of ZnO:Al NFs	73
	4.4.1 Photoluminescence Spectrum	73
	4.4.2 UV-Vis Spectrum	75

5 CONC		CLUSIONS	78
	5.1	Introduction	78
	5.2	ZnO:Al NFs Grown by Thermal Evaporation	78
	5.3	Morphological and Structural Properties of ZnO:Al NFs	79
	5.4	Optical Properties of ZnO:Al NFs	79
	5.5	Optimum Dopant Concentration in Synthesizing ZnO:Al NFs	79
	5.6	Future Studies	80
REFE	RENCES		81

5

Appendices

85 - 93

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	A brief summary of previous works of ZnO:Al NSs	
2.2	Physical properties of ZnO	
2.3	Physical properties of Aluminium	
2.4	Mechanisms involved in the formation of NFs	30
3.1	Growth parameter of ZnO NFs	47
3.2	Growth parameter of ZnO:Al NFs	48
4.1	Element composition of 0.5 at% ZnO:A1 NFs	69
4.2	Element composition of 1.0 at% ZnO:A1 NFs	69
4.3	XRD analysis of ZnO:Al NFs	71
4.4	Estimated optical values of ZnO:Al NFs	77

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	SEM images at different growth time (a) 2 hours		
	(b) 32 hours	19	
2.2	FESEM scanned (a) at low magnification		
	(b) at high magnification	20	
2.3	FESEM analysis of ZnO NFs (a) at low magnification		
	(b) at high magnification	21	
2.4	FESEM images of flower-like ZnO	21	
2.5	SEM images (a) ratio of (en) : (Zn^{2+}) is 1:1		
	(b) ratio of (en) : (Zn ²⁺) is 2.33:1	22	
2.6	FESEM images (a) low resolution (b) high resolution	22	
2.7	SEM analysis (a) low magnification		
	(b) high magnification	23	
2.8	FESEM analysis	24	
2.9	Wurtzite structure of ZnO	26	
2.10	Miller indices of hexagonal system	27	
2.11	Self-catalytic growth mechanism	31	
2.12	Source transformation during the growth of NRs	33	
2.13	X-ray diffraction	37	
2.14	X-ray Diffraction pattern of ZnO:Al	37	
2.15	Stokes- and anti-Stokes scattering	38	

2.16	Raman profile of undoped and ZnO:Al films	40
2.17	Photoluminescence process	41
2.18	PL spectra of ZnO:Al thin films	42
2.19	Difference in specular reflection and diffuse reflection	43
2.20	UV-Vis reflectance spectra of ZnO:Al thin films	44
2.21	A plot of In α against energy for different concentrations	
	of Al	44
3.1	Frame work chart to synthesize ZnO:Al NFs	46
3.2	Ultrasonic cleaner	49
3.3	Schematic of the experimental setup	50
3.4	Quartz tube furnace installed at Ibnusina Institute, UTM	51
3.5	FESEM at University Industry Research	
	Laboratory, UTM (HITACHI-SU8020)	53
3.6	X-ray Diffraction (XRD)	54
3.7	Raman spectrophotometer at University Industry	
	Research Laboratory	55
3.8	Photoluminescence instrument at Physics Department,	
	Faculty of Science	56
3.9	UV-Vis spectrophotometer at Physics Department,	
	Faculty of Science, UTM	57
4.1	FESEM images of undoped ZnO NSs on Si substrate	
	(a) at 600 °C (b) at 700 °C (c) at 750 °C (d) at 800 °C	60
4.2	FESEM images of undoped ZnO NFs (a) at 700 °C	
	(b) at 750 °C	61
4.3	XRD spectrum of undoped ZnO NFs at 700 °C	
	for 120 minutes	63
4.4	FESEM images of ZnO:Al nanoflowers scanned at 5000x	
	magnification (left side) and 25000x magnification	
	(right side) with zoom in area for in the red box (a) 0.5 at%	
	Al (b) 1.0 at% Al (c) 3.0 at% Al (d) 6.0 at% Al	65
4.5	EDX spectrum of ZnO:Al nanoflowers (a) 0.5 at% of Al	
	(b) 1.0 at% of Al	68

4.6	XRD profiles of ZnO:Al NFs	
4.7	Raman spectra of ZnO:Al NFs	
4.8 PL spectra of ZnO:Al NFs on silicon substrate with		
	different dopant concentrations	74
4.9	Spectral graph of reflectance analysis of ZnO:Al NFs	76
4.10	UV-Vis spectra for different doping level of ZnO:Al NFs	77

LIST OF ABBREVATIONS

θ	-	Angle
γ-AuZn	-	Solid Gold-Zinc
Å	-	Angstrom
a_0	-	Lattice constant
AED	-	Alloying Evaporation Deposition
AFM	-	Atomic Force Microscopy
Al	-	Aluminium
Al^{3+}	-	Aluminium ion
AlCl	-	Aluminium Chloride
Al ₂ O ₃	-	Aluminium Oxide
Ar	-	Argon
Au	-	Aurum/Gold
Au-Si	-	Gold-Silicon
c ₀	-	Lattice constant
°C	-	Degree celcius
Cr	-	Chromium
1D	-	One-dimensional
DOS	-	Density of States
EDX	-	Energy Dispersive X-ray
en	-	Ethylenediamine
eV	-	Electron-volt

F-E	-	Field-emission
FESEM	-	Field Emission Electron Microscopy
FEs	-	Field-emitters
g	-	Gram
g/cm ³	-	Gram per cubic centimetre
ħ	-	Photon
НСР	-	Hexagonal closed packing
HR-TEM	-	High-Resolution Transmission Electron Microscopy
JCPDS	-	Joint Committee on Powder Diffraction Standards
Κ	-	Kelvin
kV	-	Kilovolt
М	-	Mole
mm	-	Milimetre
nA	-	Nanoampere
NAPLD	-	Nanoparticle assisted pulsed laser deposition
NFs	-	Nanoflowers
nm	-	Nanometre
N/mm ²	-	Newton per square milimetre
NPs	-	Nanoplates
NRs	-	Nanorods
NSs	-	Nanostructures
NWs	-	Nanowires
O ₂	-	Oxygen
O ²⁻	-	Oxygen ion
РА	-	Photodecomposition Activity
PEI	-	Polyethyleneimine
PL	-	Photoluminescence
PLD	-	Pulsed Laser Deposition
sccm	-	Standard cubic centimeter per minute
SEM	-	Scanning Electron Microscopy
Si	-	Silicon

SILAR	-	Successive Immersion Layer Adsorption Reaction
T-Ag	-	Triangular silver
UV	-	Ultraviolet
UV-Vis	-	Ultraviolet-visible
V_0	-	Oxygen vacancies
VLS	-	Vapour-Liquid-Solid
VS	-	Vapour-Solid
VSS	-	Vapour-Solid-Solid
XRD	-	X-ray Diffraction
Zn^{2+}	-	Zinc ion
Zni	-	Zinc intersitials
ZnO	-	Zinc Oxide
ZnO:C	-	Carbon doped Zinc Oxide
ZnO:Al	-	Aluminium doped Zinc Oxide
ZnS	-	Zinc sulfide
ZONFs	-	Zinc Oxide Nanoflowers

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	XRD Analysis JCPDS for Zyncite	85
APPENDIX B	XRD Analysis JCPDS for Silicon	85
APPENDIX C	Less focus of RAMAN analysis for 0.5 at% of Al	88
APPENDIX D	Over focus of RAMAN analysis for 0.5 at% of Al	89
APPENDIX E	Less focus of RAMAN analysis for 1.0 at% of Al	90
APPENDIX F	Over focus of RAMAN analysis for 1.0 at% of Al	91
APPENDIX G	Less focus of RAMAN analysis for 3.0 at% of Al	92
APPENDIX H	Over focus of RAMAN analysis for 3.0 at% of Al	93

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Materials can be divided in three groups which are conductors, semiconductors and insulators based on their electrical properties. In this new era, researchers give tremendous attention on semiconductor materials due to its potential technological application. Semiconductors such as InP, GaAs, ZnO and SiO₂.ZnO are being used in optoelectronic, electronic, biomedical sciences and sensor device. Among these semiconductors, ZnO is one of the most studied materials for their electronic and optical properties for application prospects.

Zinc oxide (ZnO) is a combination of II-VI semiconductor that is widely used in optoelectronic devices. ZnO has a wide band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. Recently, nanostructure materials have been of interest because of their behaviour which is expected to be superior in tiny dimensions. One-dimensional nanostructures comprise nanobelts, nanorods, nanowires and nanotubes are applied in many devices such as gas sensors (Tang *et al.*, 2016), light emitting diodes, solar cells and lasers (Bu, 2014b). Besides that, ZnO has been proposed in humidity sensors and nanogenerators due to its moisture sensitivity and piezoelectricity. ZnO has a stable wurtzite structure with lattice parameters a = 0.325 nm and c = 0.521 nm (Fan and Lu, 2005). The non-central symmetry in wurtzite structure contributes to piezoelectric and pyroelectric effect. A tetrahedral unit of Zn²⁺ and O²⁻ form polar surface which could give a unique growth morphologies; nanowires, nanosprings, nanorings, nanocombs, nanohelixes, nanorods and nanocages. Therefore, ZnO could give a huge impact for technological applications such as ultrasensitive nano-sized gas sensors, nanolasers, field-emitters (FEs) and nanoresonators.

There are several growth mechanisms to synthesize nanostrutures (NSs) including Vapour-Liquid-Solid (VLS), Vapour-Solid-Solid (VSS) and Vapour-Solid (VS). Temperature and other parameters can directly affect the growth mechanism. In VLS mechanism, a mixture of ZnO (vapour) and Au (catalyst) will form alloy (liquid Au-ZnO) and then ZnO NFs with temperature greater than 400 °C. For VSS mechanism, a mixture of ZnO (vapour) and Au (catalyst) will form Alloy (solid γ -AuZn) and then ZnO NFs with temperature smaller than 400 °C or greater 400 °C depending on catalyst or materials. VS mechanism involves a mixture of Zn (catalyst free) and O₂ to form ZnO (solid).

Although it is possible to synthesize high quality of nanoflowers (NFs) through various methods such as chemical bath deposition (Shi and Walker, 2016), sol-gel (Zhou *et al.*, 2016) and hydrothermal (Cunha and Souza, 2013; Adhyapak *et al.*, 2014; Saleem *et al.*, 2017), such methods required a long deposition time. Another alternative method NFs was thermal evaporation (Umar *et al.*, 2016). The metallic powder was evaporated in the furnace and then oxidized in the presence of argon or helium and oxygen.

Abdulgafour *et al.* (2010) have revealed that the growth of low density and non-uniformity of undoped ZnO NFs on Silicon (Si) substrate is by thermal evaporation. Some defects were also found in the crystal structure as presented in PL

analysis. In the experiment, the Si substrate was placed at the top of alumina boat with the face towards the Zn powder and heated from 400 °C to 850 °C for one hour.

Currently, doped ZnO NFs have a wide range of application such as piezoelectric devices, transparent conducting electrode devices, gas sensor devices and photo voltaic devices. Aluminium doped zinc oxide (ZnO:Al) has advantages of low-production cost, non-toxicity and thermal stability. It is one of the materials using in photocatalysis, photosensors and optoelectronic devices. Most researchers now pay much attention on ZnO:Al especially in the field of material science and technology.

The morphology of Al doped ZnO thin films changed to stacking of nanowires when the Al concentration increases (Chandramohan *et al.*, 2012). The quality of crystalline structure and optical transmission of thin films strongly depended on the concentration of Al dopants. Moreover, the samples had potential in constructing gas sensors due to high ratio between surface and volume of nanowires.

Recent literatures also showed that complex growth morphologies were observed by using microscopes. Mamat and his co-workers (2011) prepared Al doped ZnO NSs which the films consisted of nanorod-nanoflake networks. Zhang *et al.* (2013), Tashi (2013) and Kumar *et al.* (2014) concluded that the morphology of ZnO:Al NSs varies with different Al concentrations and Al does not affect the hexagonal structural of ZnO. Most of the previous studies on ZnO:Al NSs claimed that the samples exhibited in ultraviolet (UV) and visible region upon in photoluminescence (PL) analysis (Rajan *et al.*, 2014; Bu, 2014b and Tang *et al.*, 2016).

In terms of energy band gap, Kumar *et al.* (2014) found that it was increased with increasing Al concentration. However, Dhas *et al.* (2017) has contradicted the finding about the energy band gap. This implies that different materials and methods may generate different results.

1.2 Problem Statement

Nanotechnology has become an intensively and extensively pursued topic in this new era because it provides a deeper understanding of functional materials for advanced applications. This leads the researchers who work in nanomaterial fields to construct advanced nanoscale devices and optoelectronic devices. ZnO is considered to be a promising candidate for optoelectronic devices, UV sensors and gas sensors.

The formation of nanorods, nanowires and nanosheets which in microscopic view resemble flowers is known as nanoflowers (NFs). Non-uniformity of undoped ZnO NFs on Silicon (Si) substrate by thermal evaporation were observed through scanning electron microscopy (SEM) (Abdulgafour *et al.*, 2010). Some oxygen vacancies were detected in PL analysis which is related to visible emissions. Moreover, a few studies have been conducted on the doping of ZnO NFs by simple technique which is thermal evaporation method.

So far, many reports have focused on synthesis of ZnO:Al NSs via various methods including sol-gel, pulsed-laser deposition, precipitation, chemical bath, evaporation-deposition and thermal evaporation. However, Tashi (2013) have revealed that the growth of low density and non-uniformity size of ZnO:Al nanowires (NWs) on Silicon (Si) substrate by thermal evaporation. The morphology of ZnO varies with different concentrations of Al (Mamat *et al.*, 2011; Zhang *et al.*, 2013 and Kumar *et al.*, 2014).

Some defects were also found in the crystal structure based on PL analysis (Tashi, 2013; Rajan *et al.*, 2014 and Tang *et al.*, 2016). A broad of blue to violet region was observed which indicate that there is few oxygen vacancies and Zn intersitials.

The influence of dopants on the formation of ZnO nanostructures would keen to a better understanding of their growing mechanisms. Since the growth parameters affect the structural, magnetic and electrical properties of ZnO, thus the main focus here is to synthesize aluminium (Al) doped ZnO NFs and discovers the influence of dopant concentrations on the structural and optical properties. Furthermore, the structural and optical of ZnO:Al NFs are expected to be improved. In this work, the reactions were carried out in an electric furnace as Zn powder was evaporated directly. The process did not use metal catalyst to avoid catalyst contamination. During the growth of ZnO:Al NFs, it is expected that more than one mechanism involve in the process. In this study, the formation of ZnO:Al NFs involves VS mechanism as the absence of the use of catalyst in the reaction. Undoubtedly, Zn nanoparticle acts as seed in the nucleation base process which is believed that VLS mechanism also occured.

1.3 Research Objectives

The objectives of this study are:

- i) To synthesize aluminium doped zinc oxide (ZnO:Al) nanoflowers by thermal evaporation method.
- ii) To characterize the grown nanostructures for structural, morphology and optical properties.
- iii) To determine the aluminium concentration dependent morphological, structural and optical properties for optimization.

1.4 Scope of Study

Recently, there has been a drastic increase of the literature of NFs. However, most of the previous works studied on undoped ZnO. Doping is the best tool to manipulate the structural, optical and electrical properties of ZnO. So, it is an opportunity to explore a further detail the doped counterparts. Group III elements are close lattice matching with ZnO and it can be considered as a dopant in this work. This research based on aluminium doped ZnO NFs with dopant concentrations ranging from 0.5 at% to 6.0 at%. A p-type ZnO was formed when doped with Al because it behaves as an acceptor in ZnO with its energy level located at 0.1 eV below the bottom of the conduction band (Kanai, 1991). Additionally, when doped with Al, the various concentrations of Al may affect the structural and optical properties of ZnO:Al NFs. This process was completed without a catalyst unlike the other methods. FESEM, EDX, RAMAN and XRD were used to investigate the surface features of the sample and its content and the optical properties of the sample were analyzed by using PL and UV-Vis spectrophotometer.

1.5 Significances Study

The development of nanotechnology gives impact in the quality of human life including computer, textile, medicine, communication and economy. NFs have unique morphology which are expected to show different magnetic, optical and electrical properties from their bulk 3D structures. Thus, the study on structural and optical of Al doped ZnO NFs with different dopant concentrations will contribute a new knowledge in the gas sensing and electronic industry for better live of mankind.

REFERENCES

- Abdulgafour, H. I., Hassan, Z., Al-Hardan, N., and Yam, F. K. (2010). Growth of Zinc Oxide Nanoflowers by Thermal Evaporation Method. *Physica B: Condensed Matter*, 405(11), 2570–2572.
- Adhyapak, P. V., Meshram, S. P., Mulla, I. S., Pardeshi, S. K., and Amalnerkar, D. P. (2014). Controlled Synthesis of Zinc Oxide Nanoflowers by Succinate-Assisted Hydrothermal Route and Their Morphology-Dependent Photocatalytic Performance. *Materials Science in Semiconductor Processing*, 27(1), 197–206.
- Bu, I. Y. Y. (2014a). Sol–Gel Production of Aluminium Doped Zinc Oxide Using Aluminium Nitrate. *Materials Science in Semiconductor Processing*, 27, 19–25.
- Bu, I. Y. (2014b). Effects of the Pre-Annealing Temperature on Structural and Optical Properties of Sol–Gel Deposited Aluminium Doped Zinc Oxide. *Ceramics International*, 40(8, Part A), 11941–11946.
- Chandramohan, R., Dhanasekaran, V., Ezhilvizhian, S., Vijayan, T. A., Thirumalai, J., Peter, A. J., and Mahalingam, T. (2012). Spectral Properties of Aluminium Doped Zinc Oxide Thin Films Prepared by SILAR Method. *Journal of Materials Science: Materials in Electronics*, 23(2), 390–397.
- Cunha, D. M., and Souza, F. L. (2013). Facile Synthetic Route for Producing One-Dimensional Zinc Oxide Nanoflowers and Characterization of Their Optical Properties. *Journal of Alloys and Compounds*, 577, 158–164.
- Dang, H. S., J. W. and S. S. F. (2003). The Synthesis of Metal Oxide Nanowires by Directly Heating Metal Sample in Appropriate Oxygen Atmosphere. *Nanotechnology*, 6(14), 738–741.
- Das S., Dutta K. and Pramanik A. (2013) Morphology Control of ZnO with Citrate:A Time and Concentration Dependent Mechanistic Insight *CrystEngComm*,15, 6349-6358
- Dhas, C. R., Venkatesh, R., Christy, A. J., Arivukarasan, D., Anitha, B., Kirubakaran, D. D., and Sanjeeviraja, C. (2017). Recent Trends in Materials Science and Applications, 189, 351–365.
- Fan Z., L. J. G. (2005). Zinc Oxide Nanotstructures: Synthesis and Properties. Department of Chemical Engineering and Material Science & Department of Electrical Engineering and Computer Science, University of California, Irvine, California.
- Fox, M. (2001). Optical Properties of Solids. New York: Oxford University Press.
- Ghosh, A., Kumari, N., Tewari, S., and Bhattacharjee, A. (2013). Structural and optical properties of pure and Al doped ZnO nanocrystals. *Indian Journal of Physics*, 87(11), 1099–1104.
- He, B. B. (2009). *Two-Dimensional X-Ray Diffraction*. New Jersey: John Wiley & Sons, Inc.

- Humayun Q., Kashif M., and Hashim U. (2013) Structural, Optical, Electrical, and Photoresponse Properties of Postannealed Sn-Doped ZnO Nanorods. *Journal of Nanomaterials*, 1-8
- Kamalianfar, a., Halim, S. a., Naseri, M. G., Navasery, M., Din, F. U., Zahedi, J. a M., and Monfared, a. L. (2013). Synthesis and Characterization of ZnO Flower-Like Multisheets Grown on Metal Buffer Layer. *International Journal of Electrochemical Science*, 8, 7724–7733.
- Kanai, Y. (1991). Admittance Spectroscopy of Cu-Doped ZnO Crystals. Japan Journal of Applied Physics. volume 30, 703-707.
- Khan, W., Khan, Z. A., Saad, A. A., Shervani, S., Saleem, A., and Naqvi, A. H. (2013). Synthesis and Characterization of Al Doped Zno Nanoparticles. *International Journal of Modern Physics: Conference Series*, 22, 630–636.
- Kochuveedu, S. T. and D. H. K. (2014). Surface Plasmon Resonance Mediated Photoluminescence Properties of Nanostructured Multicomponent Fluorophore Systems. *Nanoscale*, 6, 4966–4984.
- Kumar, N. S., Bangera, K. V., and Shivakumar, G. K. (2014). Properties of Nanostructured Al Doped Zno Thin Films Grown by Spray Pyrolysis Technique. *Semiconductors*, 48(8), 1023–1027.
- Lauhon, L. J., Gudiksen, M. S. and Lieber C. M. (2004). Semiconductor Nanowire Heterostructurestle. *Phil. Trans. R. Soc. Lond. A*, 362, 1247–1260.
- Liu B. and Zeng H. C. (2003). Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, *Journal of the American Chemical Society*, 125 (15), 4430–4431.
- Liu, C.P. (2007). *Multi-Channel ZnO nanoconductors with Tunable Opto-Electrical Properties*. National Cheng Kung University, Tainan, Taiwan.
- Liu, P., Li, Y., Guo, Y., and Zhang, Z. (2012). Growth of Catalyst-Free High-Quality ZnO Nanowires by Thermal Evaporation Under Air Ambient. *Nanoscale Research Letters*, 7(1), 220.
- Louhichi, M., Romdhane, S., Fkiri, A., Smiri, L. S., and Bouchriha, H. (2015). Structural and Photoluminescence Properties of Al-Doped Zinc Oxide Nanoparticles Synthesized in Polyol. *Applied Surface Science*, 356, 998–1004.
- Mamat, M. H., Khusaimi, Z., Musa, M. Z., Malek, M. F., and Rusop, M. (2011). Fabrication of Ultraviolet Photoconductive Sensor Using A Novel Aluminium-Doped Zinc Oxide Nanorod-Nanoflake Network Thin Film Prepared Via Ultrasonic-Assisted Sol-Gel and Immersion Methods. Sensors and Actuators, A: Physical, 171(2), 241–247.
- Manikandan, E., Murugan, V., Kavitha, G., Babu, P., and Maaza, M. (2014). Nanoflower Rod Wire-Like Structures of Dual Metal (Al And Cr) Doped Zno Thin Films: Structural, Optical And Electronic Properties. *Materials Letters*, 131, 225–228.
- Mohanta, A., Simmons, J. G., Everitt, H. O., Shen, G., Margaret Kim, S., and Kung, P. (2014). Effect of Pressure and Al Doping on Structural and Optical Properties of Zno Nanowires Synthesized by Chemical Vapor Deposition. *Journal of*

Luminescence, 146, 470-474.

- Mugwang, Karimi., Njoroge., and Omayio, O. (2015). Characterization of Aluminum Doped Zinc Oxide (AZO) Thin Films Prepared by Reactive Thermal Evaporation for Solar Cell Applications. *Fundamentals of Renewable Energy and Applications 5*(4).
- Ortega, Y., Haussler, D., Piquaras, J., P. F. and W. J. (2012). Complex Hierarchical Arrangements of Stacked Nanoplates in Al-Doped ZnO. *Physica Status Solidi A*, 209(8), 1487–1492.
- Pal, M., Bera, S., Sarkar, S., and Jana, S. (2014). Influence of Al Doping on Microstructural, Optical and Photocatalytic Properties of Sol–Gel Based Nanostructured Zinc Oxide Films on Glass. *RSC Adv.*, 4(23), 11552–11563.
- Pinner, P. G. S. and R. (2001). *The Surface Treatment and Finishing of Aluminum and Its Alloys* (6th ed.). ASM International.
- Rajan, S. T., Subramanian, B., Kumar, A. K. N., Jayachandran, M., and Rao, M. S. R. (2014). Fabrication of Nanowires of Al-Doped ZnO Using Nanoparticle Assisted Pulsed Laser Deposition (NAPLD) for Device Applications. *Journal* of Alloys and Compounds, 584, 611–616.
- Razeghi, M. (2006). Fundamentals of Solid State Engineering (2nd ed.). Springer
- Safa, S., Azimirad, R., Mohammadi, K., Hejazi, R. and Khayatian, A. (2015). Investigation of Ethanol Vapor Sensing Properties of ZnO Flower-Like Nanostructures. *Measurement: Journal of the International Measurement Confederation*, 73, 588–595.
- Saleem, M., Ahmad, M. A., Fang, L., Raza, R., Akhtar, M. N., and Rehman, S. U. (2017). Solution-Derived ZnO Nanoflowers Based Photoelectrodes for Dye-Sensitized Solar Cells. *Materials Research Bulletin*, (2016).
- Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E., and Moshfegh, A. Z. (2015). Recent progress on doped ZnO nanostructures for visible-light photocatalysis. *Thin Solid Films*.
- Sheini F.J., More M.A., Jadkar S.R., Patil K.R., Pillai V.K, J. D. S. (2010). Observation of Photoconductivity in Sn-doped ZnO Nanowires and Their Photoenhanced Field Emission BehaviorNo Title. J. Phys. Chem., C 114 3843– 3849.
- Shi, Z., & Walker, A. V. (2016). Zinc oxide Chemical Bath Deposition on Functionalized organic thin films: Formation of nanorods, nanorockets and nanoflowers. *Thin Solid Films*, 606, 106–112.
- Silambarasan, M., Saravanan, S., and Soga, T. (2015). Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. *International Journal of ChemTech Research*, 7(3), 1644–1650.
- Suhaimi, S. B. (2016). Characterizations of Tin-Doped Zinc Oxide Nanowires Grown by Thermal Evaporation Method. PhD Thesis. Universiti Teknologi Malaysia, Skudai.
- Suhaimi, S., Sakrani, S., Dorji, T., and Ismail, A. K. (2014). A Catalyst-Free Growth of Aluminium-Doped ZnO Nanorods by Thermal Evaporation. 4–9.

- Tang, J. F., Lu, Y. M., & Chu, S. Y. (2016). The growth of AZO nanostructures with high doping concentration using vertical reaction layer synthesizing method and their applications. *Sensors and Actuators, B: Chemical*, 225, 327–333.
- Tashi Dorji (2013). Synthesis And Characterization of Aluminium Doped Zinc Oxide Nanowires on Non-Catalytic Silica Substrates. Master thesis. Universiti Teknologi Malaysia, Skudai.
- Tripathi, R. M., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., and Shrivastav, B. R. (2014). ZnO Nanoflowers: Novel Biogenic Synthesis and Enhanced Photocatalytic Activity. *Journal of Photochemistry and Photobiology B: Biology*, 141, 288–295.
- Umar, A., Algarni, H., Kim, S. H., and Al-Assiri, M. S. (2016). Time Dependent Growth of ZnO Nanoflowers with Enhanced Field Emission Properties. *Ceramics International*, 42(11), 13215–13222.
- Umar, A., Kim, S. H., Lee, Y. S., Nahm, K. S., and Hahn, Y. B. (2005). Catalyst-Free Large-Quantity Synthesis of ZnO Nanorods by a Vapor-Solid Growth Mechanism: Structural and Optical Properties. *Journal of Crystal Growth*, 282(1–2), 131–136.
- Van Khai, T., Maneeratanasarn, P., Choi, B. G., Ham, H., and Shim, K. B. (2012). Diameter and Density-Controlled Synthesis of Well-Aligned ZnO Nanowire Arrays and Their Properties Using a Thermal Evaporation Technique. *Physica Status Solidi (A)*, 209(8), 1498–1510.
- Wang, R. C., Liu, C. P., J. L. H. and S. J. C. (2005). Single-Crystalline Al:ZnO Nanowires/Nanotubes Synthesized at Low Temperature. *Applied Physics Letters*, 86:251104.
- Yuan, H. J., Xie, S. S., Liu, D. F., Yan, X. Q., Zhou, Z. P., Ci, L. J., and Wang, G. (2003). Characterization of Zinc Oxide Crystal Nanowires Grown by Thermal Evaporation of Zns Powders. *Chemical Physics Letters*, 371(3–4), 337–341.
- Zhang, Y., Liu, L., Xing, J., Yu, L., Zhang, J., and Zhang, Z. (2013). Preparation of Al-Doped ZnO Nanostructures and Their Application in Acrylic Resin-Based Heat Insulation Coatings. *Materials Science in Semiconductor Processing*, 16(6), 1573–1579.
- Zhou, S. L., Zhang, S., Liu, F., Liu, J. J., Xue, J. J., Yang, D. J., and Chang, C. T. (2016). ZnO Nanoflowers Photocatalysis of Norfloxacin: Effect of Triangular Silver Nanoplates and Water Matrix on Degradation Rates. *Journal of Photochemistry and Photobiology A: Chemistry*, 328, 97–104.
- Zhu, F.Y., Wang, Q.Q., Zhang, X.S., Hu, W., Zhao, X., and Zhang, H. X. (2014). 3D Nanostructure Reconstruction Based on the SEM Imaging Principle, and Applications. *Nanotechnology*, 25(18).