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ABSTRACT

A new class of heat transfer fluid based on nanotechnology known as nanofluid

has attracted much attention of many researchers due to its potential to improve the

thermal properties of conventional fluids. This new approach which significantly

enhance the heat transfer is becoming popular in many industrial applications such

as cooling applications, nuclear reactors, transportation industry, electronics and

instrumentation and biomedical applications. In this thesis, a mathematical model of

mixed convection flow of nanofluid is developed based on Tiwari and Das model to

study the influence of solid nanoparticles volume fraction on the Newtonian and non-

Newtonian fluid flow with heat transfer. Specifically, the flow of nanofluid past an

inclined stretching sheet for viscous, second grade, Jeffrey and Casson fluids with the

effect of g-jitter is considered. The velocity and temperature of the sheet are assumed

to vary linearly with distance through the sheet. The governing equation which consist

of coupled non-linear partial differential equations are solved numerically using an

implicit finite-difference scheme known as Keller-box method. The numerical results

of surface shear stress in terms of skin friction and heat transfer coefficient in terms

of Nusselt number as well as the velocity and temperature profiles for amplitude of

modulation, frequency of oscillation, solid nanoparticles volume fraction, inclination

angle, second grade parameter, Deborah number, ratio of relaxation to retardation times

and Casson parameter for assisting and opposing flows are presented graphically and

analyzed in details. Numerical result shows that, the presence of solid nanoparticles in

all types of fluid enhance the temperature profiles and consequently increase the heat

transfer coefficients. It is also found that, the second grade parameter and Deborah

number give rise to the values of the heat transfer coefficient but to a contradiction

for the inclination angle, ratio of relaxation to retardation times and Casson parameter.

Comparative results amongst all types of fluids also show that, Casson nanofluid has

the highest heat transfer coefficient but the lowest for skin friction coefficient.
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ABSTRAK

Suatu kelas baru bendalir pemindahan haba berasaskan nanoteknologi yang

dikenali sebagai nanobendalir telah menarik perhatian banyak penyelidik kerana

potensinya untuk bertambah baik sifat terma bendalir konvensional. Pendekatan baru

ini yang nyata sekali meningkatkan kadar pemindahan haba menjadi popular dalam

banyak aplikasi perindustrian seperti aplikasi penyejukan, reaktor nuklear, industri

pengangkutan, elektronik dan instrumentasi dan aplikasi bioperubatan. Dalam tesis

ini, model matematik aliran olakan campuran nanobendalir dibangunkan berdasarkan

model Tiwari dan Das untuk mengkaji pengaruh pecahan isipadu pepejal zarah

nano pada aliran bendalir Newtonan dan bukan Newtonan dengan pemindahan haba.

Khususnya, aliran nanobendalir merentasi helaian regangan condong untuk bendalir

likat, gred kedua, Jeffrey dan Casson dengan kesan ketar-g dipertimbangkan. Halaju

dan suhu permukaan diandaikan berubah secara linear dengan jarak disepanjang

permukaan. Persamaan menakluk yang terdiri daripada persamaan pembezaan separa

tak linear berganding diselesaikan secara berangka menggunakan skim beza terhingga

tersirat yang dikenali sebagai kaedah kotak-Keller. Nilai berangka tegasan ricih dalam

sebutan geseran kulit dan pekali pemindahan haba dalam sebutan nombor Nusselt serta

profil halaju dan suhu untuk perubahan amplitud, frekuensi bagi ayunan-satu harmonik,

pecahan isipadu zarah nano, sudut condongan, parameter gred kedua, nombor

Deborah, nisbah masa pengenduran kepada masa rencatan dan parameter Casson untuk

membantu dan menentang aliran dipersembahkan secara grafik dan dianalisa secara

terperinci. Analisis berangka menunjukkan bahawa, kehadiran pepejal zarah nano

dalam semua jenis bendalir meningkatkan profil suhu dan seterusnya meninggikan

pekali pemindahan haba. Didapati juga, parameter gred kedua dan nombor Deborah

menaikkan nilai pekali pemindahan haba tetapi menimbulkan percanggahan bagi sudut

condongan, nisbah masa pengenduran kepada masa rencatan dan parameter Casson.

Keputusan komparatif di antara semua jenis bendalir juga menunjukkan, Casson

nanobendalir mempunyai pekali pemindahan haba tertinggi tetapi paling rendah untuk

pekali geseran kulit.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Recent advancement in nanotechnology has led to the development of a new

innovative class of heat transfer in fluids known as nanofluid. Nanofluid can be

described as solid-liquid composite materials consisting of solid nanoparticles with

size typically of 1-100 nm, which is suspended in conventional fluids such as oil,

water and ethylene glycol mixture. This concept introduces advanced heat transfer

with substantially higher conductivity to enhance thermal characteristics. Pioneer

studies carried out by Choi (1995) and Choi et al. (2001) successfully showed that the

addition of a small amount of nanoparticles to convectional heat transfer liquids can

increase thermal conductivity of the fluid up to approximately two times. Based on the

experimental studies, it can be concluded that, the reason for the increase in thermal

conductivity of the fluid is not only attributed to the higher thermal conductivity of

the added nanoparticles, but also other mechanisms contributing to the increase in

performance. After this discovery, nanofluid has been considered by many researchers

to be one of the significant forces that could drive the next major industrial revolution

in this century especially in biological sciences, physical sciences, electronic cooling

and transportation. Broad range of current and future applications involving nanofluid

has been reviewed by Wong and De Leon (2010). Recently, suspensions of metal

nanoparticles are also being developed for other purposes, such as medical applications

including cancer therapy (Huang and El-Sayed (2010); Ellis et al. (2017); Kang
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et al. (2017); Mekheimer et al. (2018)).

Numerous models and methods have been proposed by different authors to

study convective flows of nanofluid, including the most popular models proposed

by Buongiorno (2006) and Tiwari and Das (2007). Buongiorno considered seven

slip mechanisms that can produce a relative velocity between the nanoparticles and

the base fluid. Conclusively, among all the mechanisms, only Brownian diffusion

and thermophoresis are found to be important factors in the convective transport

process in nanofluid. Based on that, Buongiorno proposed a mathematical model

by treating nanofluid as a two-component mixture which are Brownian diffusion

and thermophoresis, and introduced these terms in the conservation equations for

mass and energy. On the other hand, Tiwari and Das (2007) had proposed a

theoretical model to analyze the behaviour of nanofluid by taking into account the

solid volume fraction. It is worth mentioning that both proposed nanofluid models

were recently used by Habibi Matin et al. (2012), Mahdy (2012), Subhashini and

Sumathi (2014), Imtiaz et al. (2014), Uddin et al. (2015), Hayat et al. (2016b),

Othman et al. (2017), and Besthapu et al. (2017) in their papers. Several other

researchers further proposed the studies of nanofluid in different types of fluid, for

example, Sandeep et al. (2015), Abbasi et al. (2016), Madhu and Kishnan (2016),

Nabwey et al. (2017) and Naseem et al. (2017). All previous works used Newtonian

fluid as the base fluid. Ellahi et al. (2012) pointed out that, non-Newtonian nanofluids

have potential roles in physiological transport as biological solutions, as well as

in polymer melts and paints. Therefore, for this research, convective heat transfer

behaviour of nanofluid with Newtonian and non-Newtonian base fluids have been

considered, by applying Tiwari and Das model.

In the study of science, fluids can be classified into two categories, known as

Newtonian and non-Newtonian fluids. Basically, a Newtonian fluid is a fluid in which

the viscous stresses arising from its flow, at every point, are linearly proportional to the

local strain rate or the rate of change of its deformation over time (Kirby, 2010). The

relation defines the Newtonian fluid behaviour is known as Newton’ s Law of viscosity,
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given by

τ = µ
∂u

∂y

where τ denotes the shear stress exerted by the fluid, µ is the dynamic viscosity of

the fluid and ∂u/∂y is the rate of the strain or velocity gradient. On the other hand,

fluids which do not obey or opposite of the Newton’ s law of viscosity, are defined as

non-Newtonian fluid. This type of fluid is typically not independent on the shear rate,

and classified on the basis of their properties. In fact, the mathematical systems for

non-Newtonian fluid are much more complicated due to the higher order of equation,

compared to the Newtonian fluid.

Due to the diversity of non-Newtonian fluids in nature, there is no single

constitutive relationship available in the literature that can describe the rheology of

all the non-Newtonian fluids. Therefore, various constitutive equations which exhibit

different rheological effects have been suggested to predict the behaviour of non-

Newtonian fluids, by describing the nonlinear relationship between stress and the rate

of strain. Recently, many types of non-Newtonian fluid models have become very

popular in the literature, such as Casson fluid, Jeffrey fluid and viscoelastic fluid.

The simplest subclass of viscoelastic fluid, known as second grade fluid

model, was proposed by Coleman and Noll (1960). It is found in polymer fluids,

where these fluids exhibit both viscous and elastic characteristics. Viscous materials,

like honey, resist shear flow and strain linearly with time when a stress is applied.

Meanwhile, elastic materials strain instantaneously when stretched and quickly return

to their original state once the stress is removed. This fluid model is useful in

explaining normal stress effects but is not applicable for predicting the shear thinning

or shear thickening effects (Hayat and Qasim, 2011). Another subclass of non-

Newtonian fluids, known as Jeffrey fluid, is attractive to researchers due to its

simplicity. Theoretically, Jeffrey fluid model exhibits both characteristics of relaxation

and retardation times (Nadeem et al., 2014), which are significant in studying the

viscoelastic properties for polymer industries (Ali and Asghar, 2012). This model
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constitutes a viscoelastic fluid model which exhibits shear-thinning characteristics,

yields stress and has high shear viscosity. It can also be degenerated to a Newtonian

fluid at a very high wall shear stress, especially when the wall stress is much greater

than yield stress (Bird et al., 1987). This fluid model also approximates reasonably well

the rheological behavior of other liquids including physiological suspensions, foams,

geological materials, cosmetics, and syrups (Gaffar et al., 2017).

Among non-Newtonian fluids, Casson fluid has received attention of

researchers due to its unique properties. Casson fluid is a subtype of viscoplastic

fluid (Hussanan et al., 2016) which was originally introduced by Casson (1959) for

the prediction of the flow behaviour of pigment-oil suspensions. Casson fluid model

can be defined as a shear thinning liquid which is assumed to have an infinite viscosity

at zero rate of shear, a yield stress below which no flow occurs, and a zero viscosity

at an infinite rate of shear (Dash et al., 1996). It means that, if a shear stress less than

the yield stress is applied to the fluid, it behaves like a solid, whereas if a shear stress

greater than the yield stress is applied, the fluid will start to move. Some examples

of Casson fluid are jelly, tomato sauce, honey, soup, concentrated fruit juice, as well

as human red blood cell which can form a chainlike structure known as aggregates

or rouleaux. In addition, the shear stress shear rate relation given by Casson also

satisfactorily describes the properties of many polymers over a wide range of shear

rates (Vinogradov et al., 1980).

The study of nanofluid flow along stretching surfaces is also attractive for many

practical applications such as the production of sheeting materials (which includes both

metal and polymer sheets) in industrial manufacturing processes. These investigations

are helpful to enhance the quality of resulting sheeting materials, as well as to lower

the cost of production, which is clearly affected by the speed of collection and heat

transfer rate. The pioneering study was carried out by Crane (1970), who presented an

exact analytical solution for a steady two-dimensional stretching surface in a quiescent

fluid. Since then, many authors have considered this problem from various aspects.

Recently, problems involving boundary layer flow due to a stretching surface in the
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inclined direction in a steady or unsteady, viscous and incompressible nanofluid, when

the buoyancy force is taken into account, have been considered by many researchers,

such as Rana et al. (2012), Rasekh and Ganji (2013), Devi and Suriyakumar (2013),

Rudraswamy and Gireesha (2014), Rudraswamy et al. (2015), Srinivasacharya and

Vijay Kumar (2015) and Gupta et al. (2018).

Heat transfer can be described as the transport of the thermal energy,

driven by thermal nonequilibrium within a medium or among neighboring

media (Kaviany, 2002), and can be grouped into three broad categories, namely

conduction, convection and radiation. The convective mode of heat transfer can

generally be divided into three types, which are free (natural), forced and mixed

convections. Free convection happens when the flow arises naturally, simply due to the

effect of a density difference resulting from temperature or concentration difference.

Meanwhile, forced convection happens if the fluid motion is caused by an external

agent, such as the externally-imposed flow of a fluid stream over a heated object.

However, in any forced convection situation, free convection effects are also present

under the influence of gravitational body forces. This process is called as mixed

convection, in which flow occurs when both forced and free convection effects are

significant and contribute to the heat transfer. Mixed convection flow is applied in

many technological and industrial applications, such as solar central receivers exposed

to wind currents, electronic devices cooled by fans, nuclear reactors cooled during

emergency shutdown, and heat exchangers placed in a low velocity environment

(Abbas et al. (2010); Makinde (2011); Hayat et al. (2015b)).

In the study of fluid flow over heated surfaces specifically for vertical or

inclined surfaces, the buoyancy forces exert strong influence on the flow field, which

makes it impossible to neglect the effect of buoyancy forces for vertical or inclined

surfaces (Chamkha et al., 2004). The theoretical procedure for obtaining heat transfer

rate from an inclined surface was suggested by Rich (1953). According to the

procedure, the problem of free convection on an inclined surface is identical to that

of flow over a vertical surface except the addition of term cosα, where α is the
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inclination angle. Meanwhile, Kierkus (1968) carried out the first order approximation

and obtained a perturbation solution for an inclined plate of finite length. Results

showed that, the upper and lower sides of the inclined surface were different in terms

of heat transfer due to the difference in orientation, with respect to the two sides of

the component of the buoyancy force being normal to the surface (Jaluria, 1980). The

importance of buoyancy force on an inclined, continuously moving sheet, depends not

only on the angle of orientation, but also on the mixed convection parameter which

indicates the strength of free (natural) and forced convection flow effects.

Generally, the presence of a temperature gradient and a gravitational field

can generate buoyancy convective flows in many situations. In low-gravity or

microgravity environments, it can be expected that the reduction or elimination of free

(natural) convection may enhance the properties and performance of materials such as

crystals. For example, low gravity situation, in which the effects of gravity is greatly

reduced, offers an environment conductive to growing crystals with more uniform

solute distribution and in a diffusion controlled regime. However, aboard orbiting

spacecraft, all objects will experience low-amplitude perturbed accelerations, or so

called as g-jitter, caused by crew activities, orbiter maneuvers, equipment vibrations,

solar drag and other sources (Antar and Nuotio-Antar (1993); Hirata et al. (2001))

which makes it difficult to achieve diffusion controlled single crystal growth in space.

Recent technological implications have given rise to increasing interest in oscillating

natural or mixed convection driven by g-jitter force associated with microgravity

environment. Therefore, the effect of g-jitter on convection flow is interesting to study,

especially when involving g-jitter induced flow in different types of Newtonian and

non-Newtonian fluids.

g-Jitter or periodical gravity modulation can be defined as the inertia effects

due to quasi-steady, oscillatory or transient accelerations arising from crew motions

and machinery vibrations in parabolic aircrafts, space shuttles or other microgravity

environments. Antar and Nuotio-Antar (1993) showed that, the specific amplitude

and frequency of the g-jitter accelerations depend on the dynamic behaviour of the
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spacecraft structure, location of the body, and type and location of the sources

generating contributing forces. Other studies on g-jitter effects also indicate that,

convection in microgravity is related to the magnitude and frequency of g-jitter and

to the alignment of the gravity field, with respect to the growth direction or the

direction of the temperature gradient (Shu et al. (2001); Pan et al. (2002)). Recently,

Uddin et al. (2014) investigated the effects of g-jitter on two-dimensional mixed

convection boundary layer flow of water-based nanofluid past a permeable stretching

sheet. Later, Uddin et al. (2015) extended their work by using Buongiorno-Darcy

porous medium model, by taking into account the effect of constant convective

thermal and mass boundary conditions. Both studies considered viscous fluids

to investigate the flow behaviour past over a vertical stretching sheet. Besides

vertical plate, the flow behaviour along an inclined stretching sheet also needs to

be explored. Convection flow along inclined surfaces has received much attention

due to its frequent encounter in engineering devices and many industrial applications

such as electroplating, chemical processing of heavy metals, ash or scrubber waste

treatment (Devi and Suriyakumar, 2017). At present, this matter has yet to be studied.

Therefore, this study aims to make such an attempt.

1.2 Problem Statement

Interest in studying nanofluid flow has increased substantially over the past

decades due to attribution of heat transfer. It is well known that conventional heat

transfer fluids are unable to meet the growing challenges of modern world due to

their low thermal conductivity. To overcome this limitation, nanoscale solid particles

have been proposed for suspension in conventional heat transfer fluid to change

the thermophysical characteristic of the fluid, aiming to enhance the heat transfer

dramatically. Some researchers have successfully shown that presence of nanoparticles

in water cooled nuclear system can improve the safety margins and produce substantial

economic gains (Buongiorno et al., 2008). Although extensive research works have
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been devoted to heat transfer in viscous (Newtonian) fluids, recently, research in

non-Newtonian fluids has gained considerable attention among researchers as well.

Nevertheless, theoretical study on these fluids is more challenging and interesting due

to the complexity of their constitutive equations.

Based on the aforementioned matters, this research has been conducted to study

the effects of inducing g-jitter on mixed convection flow of nanofluid past an inclined

stretching sheet of Newtonian and non-Newtonian fluids, which are second grade,

Jeffrey and Casson fluids. This study explores the following research questions:

1. How does the mathematical model of g-jitter mixed convection model describe

the nature of mixed convection boundary layer flow of nanofluid past an inclined

stretching sheet for different types of fluid model?

2. How would the skin friction and Nusselt number be affected due to the presence

of amplitude of modulation, frequency of oscillation, nanoparticles volume

fraction and inclination angle parameters for assisting and opposing flows?

3. How would the skin friction and Nusselt number be affected due to the presence

of physical parameters which are second grade parameter, Deborah number, ratio

of relaxation to retardation times, and Casson parameter with or without the

presence of nanoparticles?

4. How does the presence of nanoparticles volume fraction, inclination angle,

second grade parameter, Deborah number, ratio of relaxation to retardation time,

and Casson parameter affect the fluid flow characteristics of the g-jitter mixed

convection flow of Newtonian and non-Newtonian nanofluids?
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1.3 Research Objectives

This study numerically investigates the effect of inducing g-jitter on two-

dimensional boundary layer flow of nanofluid past an inclined stretching sheet in

Newtonian viscous, second grade, Jeffrey and Casson fluids. Specifically, the main

objectives of this research are:

1. to derive mathematical models of the problems, consisting of continuity,

momentum and energy equations,

2. to carry out mathematical formulation and develop numerical algorithms for

computation in order to analyze the problems,

3. to obtain the numerical results of the velocity and temperature profiles, as well

as the skin friction and heat transfer coefficients, and

4. to investigate the behaviour of flow and heat transfer characteristics influenced

by the amplitude of modulation, frequency of oscillation, inclination angle,

nanoparticle volume fraction, Deborah number, second grade parameter, ratio

of relaxation to retardation time, mixed convection, and Casson parameter.

1.4 Scope of Research

This thesis is focused on the mixed convection flow in the Newtonian viscous,

second grade, Jeffrey and Casson nanofluids driven by g-jitter forces over an inclined

stretching sheet. Boussinesq and boundary layer approximations have been considered

to simplify the governing equations. The governing partial differential equations have

been transformed into a set of coupled dimensionless nonlinear partial differential

equations by using appropriate similarity transformation. In this study, water (H2O) has

been selected to represent the Newtonian fluid model, while carboxymethyl cellulose

(CMC) water has been used to represent the non-Newtonian fluid model, as proposed

by Lin et al. (2014). Copper (Cu) has been chosen as the dispersing nanoparticle.
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Characteristics of fluid flow such as velocity and temperature profiles, the surface shear

stress in terms of skin friction coefficient, and heat transfer coefficient in terms of

Nusselt number, have been thoroughly analysed according to each proposed problem.

In this research, the inclination angle has been considered up to a maximum angle of

60◦ (Jaluria, 1980) and the range of nanoparticles volume fraction has been considered

to be in range 0 ≤ φ ≤ 0.2 (Uddin et al., 2014). The following problems are discussed

in Chapters 4 to 7 of this thesis:

1. the effect of inducing g-jitter on mixed convection flow of nanofluid past an

inclined stretching sheet,

2. the effect of inducing g-jitter on mixed convection flow of second grade nanofluid

past an inclined stretching sheet,

3. the effect of inducing g-jitter on mixed convection flow of Jeffrey nanofluid past

an inclined stretching sheet, and

4. the effect of inducing g-jitter on mixed convection flow of Casson nanofluid past

an inclined stretching sheet.

Consequently, the obtained dimensionless nonlinear partial differential equation (PDE)

have been solved numerically using the implicit finite-difference method known

as Keller-box method, with the help of FORTRAN 77 software for the iterated

computational program, and then continued using MATLAB to plot the graphs. The

research framework of this study is shown in Figure 1.1.
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Figure 1.1 Research framework
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1.5 Significance of Research

Conventional heat transfer fluids such as water, ethylene glycol, and engine

oil have limited heat transfer capabilities due to their low heat transfer properties.

In contrast, metals have thermal conductivities up to three times higher than these

fluids, so it is naturally desirable to combine the two substances to produce a

heat transfer medium that behaves like a fluid, but has the thermal properties

of a metal. Innovative class of heat transfer fluids, namely nanofluid, has the

potential to significantly increase the heat transfer rates in a variety of areas such as

industrial cooling applications, nuclear reactors, transportation industry (automobiles,

trucks and airplanes), micro-electromechanical systems (MEMS), electronics and

instrumentation, as well as biomedical applications such as nano-drug delivery, cancer

therapeutics and cryopreservation (Wong and De Leon, 2010).

Furthermore, mechanics of non-linear fluids are unable to be described by

the classical Navier-Stokes model, therefore study of boundary layer flow using non-

Newtonian models will present a special challenge to researchers due to its many

practical applications. Therefore, the study on convective boundary layer flow of non-

Newtonian fluid problems, particularly in nanofluid, is important due to its imperative

applications in real life. The results or output of this research shall enhance the

understanding on the fluids flow phenomenon and improve the development of related

industries, for example the manufacturing industries. Besides that, the generation of

efficient algorithm of the non-Newtonian problem shall help in solving the problem of

computational fluid dynamics in the future.

In low gravity environment such as space environment, where heat transfer in

the fluid medium is expected to be only affected by pure diffusion, the existence of

perturbation accelerations or called as g-jitter caused by mechanical vibration, orbiter

maneuvers and crew activities will affect the heat and mass transfer, which can lead

to detrimental effects on the microgravity experimentation, for example space-based
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crystal growth. Carotenuto (2004) stated that, data on mass transport in microgravity

could give insights on gravity-independent effects, like the second order transport

mechanisms or kinetic effects, which on the ground could be superimposed on gravity-

driven convection. Such knowledge is a prerequisite for optimizing crystal quality and

growth rates in terrestrial production, thus more information regarding the effect of g-

jitter on fluid behaviour specifically in low gravity environment is needed, so that the

better engineering design for low gravity condition could be made in the future.

1.6 Thesis Organization

This thesis consists of eight chapters, focusing on the problem of g-jitter

induced mixed convection flow of nanofluid past an inclined stretching sheet using

different types of fluid model. In the first chapter, the introduction is given, followed

by the statement of problem, objectives of research, scope of research and significance

of research. Literature review for the proposed problems is presented in Chapter 2.

In Chapter 3, the mathematical formulations involving the derivation of the governing

equations, which consist of continuity, momentum and energy equations for each

problem, together with the Boussinesq and boundary layer approximations, are

discussed in detail.

Chapter 4 discusses the first problem in this study; about the effect of g-jitter

induced mixed convection flow of nanofluid past an inclined stretching sheet. Chapter 5

discusses the second problem of this study, which is the effect of inducing g-jitter on

mixed convection flow of second grade nanofluid past an inclined stretching sheet.

Next, the problem of g-jitter induced mixed convection flow of Jeffrey nanofluid past an

inclined stretching sheet is discussed in Chapter 6. Meanwhile, Chapter 7 encloses the

final problem of this study; about the effects of inducing g-jitter on mixed convection

flow of nanofluid past an inclined stretching sheet by taking the Casson fluid model into

account. In each chapter, the obtained numerical results which include the velocity and
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