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ABSTRACT 

 

 

 

 

Electromembrane extraction (EME) has become an effective method in the 

development of sample preparation technique. In this study, a novel microextraction 

method based on the EME and employed with hollow polymer inclusion membrane 

(HPIM) was developed in order to get better stability and reproducibility compared 

to the conventional EME. HPIM was prepared by dipping the glass capillary tubes 

into a solution of the desired proportions of cellulose triacetate (CTA), tris(2-

ethylhexyl)phosphate (TEHP) and di-(2-ethylhexyl)phosphoric acid (D2EHPA) or 

Aliquat 336 in dichloromethane. Three basic drugs, namely amphethamine, 

methamphetamine and 3,4-methylenedioxy-N-methylamphethamine (MDMA) were 

selected as the target analytes to evaluate the extraction efficiency of the new 

approach. Parameters affecting the extraction efficiency, including the composition 

of HPIM, pH of sample, extraction voltage and extraction time were investigated in 

detail. Under the optimized conditions, enrichment factors in the range of 97-103 

fold were obtained from 3 mL sample solution with a 10 min extraction time and an 

applied voltage of 300 V across the HPIM. A comparison was also made between the 

newly developed approach and the conventional EME as well as standard sample 

preparation methods (liquid-liquid extraction) used by the Toxicology Unit, 

Department of Chemistry, Malaysia. The applied voltage in EME is an important 

parameter for efficient extraction of the analyte, however, when dealing with 

extremely high voltage, instability occurs due to the formation of bubbles. This 

limitation has stimulated the development of the exhaustive simultaneous EME 

across HPIM with the aim of employing a bubbleless electrode for the determination 

of selected cationic and anionic pesticides present in the environmental water 

samples. Bubbleless electrode was prepared to solve the bubble formation problem 

during the extraction process. Cationic herbicides namely paraquat (PQ) and diquat 

(DQ) as well as anionic herbicides namely (4-chlorophenoxy)acetic acid (4-CPA) 

and 2-(2, 4-dichlorophenoxy)acetic acid (2,4-D) were selected as the model analytes 

to evaluate the extraction performance of this new approach. Under the optimized 

conditions, the enrichment factors in the range of 152–185-fold were obtained from 4 

mL of river water sample with a 20 min extraction time and an applied voltage of 

3000 V. The proposed method provided good linearity with the correlation 

coefficients ranging from 0.9982 to 0.9997 over a concentration range of 1–1000 

ng/mL. The detection limits of the method for the herbicides were in the range of 

0.3–0.4 ng/mL, with the relative standard deviations ranged between 4.8% and 8.5%. 

A comparison was also made between the newly developed method with that of 

conventional EME setup using normal electrode.  
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ABSTRAK 

 

 

 

 

Kaedah pengekstrakan elektromembran (EME) telah menjadi satu kaedah 

yang berkesan dalam perkembangan teknik penyediaan sampel. Dalam kajian ini, 

satu kaedah pengekstrakan mikro baru yang berlandaskan kepada EME dan 

menggunakan membran terkandung polimer berongga (HPIM) telah dibangunkan 

untuk memperoleh kestabilan dan kebolehulangan yang lebih baik berbanding 

dengan EME konvensional. HPIM telah disediakan dengan mencelup tiub kaca 

kapilari ke dalam larutan selulosa asetat (CTA), tris(2-etilheksil)fosfat (TEHP) dan 

asid di-(2-etilheksil)fosforik (D2EHPA) atau Aliquat 336 di dalam diklorometana 

pada perkadaran yang diinginkan. Tiga dadah berbes iaitu amfetamin, metamfetamin 

dan 3,4-metilenadioksi-N-metilamfetamin (MDMA) telah dipilih sebagai analit 

sasaran untuk menilai kecekapan pengekstrakan bagi pendekatan baharu. Parameter 

yang mempengaruhi kecekapan pengekstrakan, termasuk komposisi HPIM, pH 

sampel, voltan pengekstrakan dan masa pengekstrakan telah dikaji dengan 

mendalam. Di bawah keadaan optimum, faktor pengayaan dalam julat 97-103 kali 

telah diperoleh daripada 3 mL sampel larutan dengan 10 min masa pengekstrakan 

dan voltan 300 V dikenakan merentasi HPIM. Satu perbandingan telah dibuat antara 

pendekatan baharu yang dibangunkan dengan EME konvensional serta kaedah 

penyediaan sampel piawai (pengekstrakan cecair-cecair) yang digunakan oleh Unit 

Toksikologi, Jabatan Kimia, Malaysia. Penggunaan voltan dalam EME adalah satu 

parameter yang penting untuk pengekstrakan analit yang cekap, namun, apabila 

berurusan dengan voltan yang sangat tinggi, ketidakstabilan berlaku disebabkan oleh 

pembentukan buih. Pembatasan ini telah merangsang pembangunan EME selari 

merentasi HPIM yang lengkap dengan tujuan untuk menggunakan elektrod tanpa 

buih untuk penentuan pestisid kationik dan anionik terpilih yang hadir dalam sampel 

air persekitaran. Elektrod tanpa buih telah disediakan untuk menyelesaikan masalah 

pembentukan buih semasa proses pengekstrakan. Herbisid kationik iaitu parakuat 

(PQ) dan dikuat (DQ) serta herbisid anionik iaitu asid (4-klorofenoksi)asetik (4-

CPA) dan asid 2-(2,4-diklorofenoksi)asetik (2,4-D) telah dipilih sebagai model analit 

untuk menilai prestasi pengekstrakan bagi pendekatan baharu ini. Di bawah keadaan 

optimum, faktor pengayaan dalam julat 152-185 kali telah diperoleh daripada 4 mL 

sampel air sungai dengan 20 min masa pengekstrakan dan menggunakan 3000 V. 

Kaedah yang dicadangkan telah memberikan kelinearan yang baik dengan pekali 

korelasi antara 0.9982 hingga 0.9997 dalam julat kepekatan 1-1000 ng/mL. Had 

pengesanan kaedah ini untuk herbisid adalah dalam julat 0.3-0.4 ng/mL, dengan 

sisihan piawai antara 4.8% dan 8.5%. Satu perbandingan telah dibuat antara kaedah 

baharu yang telah dibangunkan dengan EME konvensional yang menggunakan 

elektrod biasa.  
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

The target analytes (e.g. drugs, pesticides and herbicides) in environmental or 

biological samples usually occur in complex matrices, which are able to disturb the 

separation and analysis steps. Therefore, a series of procedures called sample 

preparation is needed to remove the interference substances, pre-concentrate the 

target analyte and increase the sensitivity. In addition, the sample preparation 

method can help to solve the limitations of the sensitivity of the analytical instrument 

detector.  

 

 

As a consequence, many sample preparation methods have been developed 

for various applications in analytical methods. Most of the developed methods are 

aimed at searching for more cost effective analyses, higher sample preparation 

throughput, faster procedures and low consumption of solvents (1). These innovative 

techniques are derived from traditional sample preparation methods, namely liquid-

liquid extraction (LLE) and solid phase extraction (SPE). The major drawbacks of 

the LLE method are that it is time consuming and not environmentally friendly (2). 

SPE is relatively easy and it consumes low amounts of organic solvent. 

Nevertheless, the SPE cartridges are costly and evaporation of the eluent and 

reconstituents is normally required prior to analysis (3).  

 

To address the problems such as large solvent needs and cost, new research 

committed towards the development of convenient, efficient, economical and 
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miniaturized sample preparation methods is required. A miniaturized version of 

solid-phase extraction (SPE), termed solid-phase microextraction (SPME) (4) and 

liquid phase microextraction (LPME) (1, 2, 5) were introduced.  

 

 

Hollow fibre liquid phase microextraction (HF-LPME) is one of the most 

promising techniques among LPME. In this method, a transport mechanism based on 

passive diffusion is applied, by adjusting a pH gradient established across the 

supported liquid membrane (SLM). In this technique, the target analytes are 

extracted from the sample solution through SLM which is held by capillary forces in 

the pores of a hollow fibre membrane (support) into the acceptor solution. The SLM 

is in direct contact with both the aqueous sample and the acceptor solution. Although 

this method can give good clean-up and also good selectivity by the proper organic 

solvents (SLM), the extraction time of 20-60 min was considered a major drawback 

(6). 

 

 

For this reason, electro-assisted extraction was investigated based on the 

hypothesis that charged molecules can be transferred faster across SLM by an 

electric force than passive diffusion. Hence, in 2006, a new extraction principle 

termed electromembrane extraction (EME) was introduced (7). The equipment for 

EME was exactly the same as HF-LPME, except for the addition of two electrodes 

and a D/C power supply. The application of an electrical potential difference as the 

driving force successfully shortened the extraction time to within the range of 5-20 

min (8). In the early development stages of the EME, most of the research focused 

on the screening and selection of differently composed SLMs. Significant efforts 

have been made over the course of the past year to expand the EME to a new 

application area and to improve its performance. The simultaneous electromembrane 

extraction of cationic and anionic analytes was reported by Safari et al. (2013) (9) 

along with the correlation between the EME and other extraction methods (10). EME 

has been widely employed in the analysis of drugs (11-14), the extraction of metals 

(15, 16) and the extraction of ions (17). This technique offered faster extraction time, 

lower consumption of organic solvent and also high pre-concentrations.  
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Most EMEs reported the use of water immiscible organic solvents such as 2-

nitrophenyl octyl ether (NPOE), 1-octanol, tris (2-ethylhexyl) phosphate (TEHP), 

and di-hexyl ether (18) immobilized in the pores in the wall of hollow fibre 

membranes such as SLMs. Unfortunately, SLM was reported to have low 

mechanical stability, leading to membrane breakdown and leaching of the membrane 

liquid phase (19, 20). Kim et al. (2000) (21) have investigated the stability of 

polymer inclusion membrane (PIM) and SLM under similar conditions. They 

reported no flux decline or evidence of material losses within 15 days of continuous 

transport experiment in PIM. In contrast, leakage of the organic material in SLM 

after 48 h agitation in aqueous solution was clearly observed.  

 

 

Consequently, the use of PIM as an alternative for electromembrane 

extraction has recently been investigated and was reported to be successful for the 

extraction of inorganic ions and pesticides (19, 22-25). PIM are self-supporting 

membranes, where a base polymer, plasticizer and carrier are incorporated into 

homogenous membrane. Therefore, for the first time, in this study, a new variation 

of the EME approach was created in which a hollow polymer inclusion membrane 

(HPIM) was developed for the extraction of selected drugs in human plasma. In 

addition, for the first time, the direct comparison of PIM and SLM for EME was 

undertaken in this study. The performance of the proposed method was also 

compared with the standard method (liquid-liquid extraction) used by the Toxicology 

Unit, Department of Chemistry, Malaysia (26). 

 

 

  The basis of EME is the electromigration of a targeted charged analyte under 

an electric field. Therefore, electric strength plays a crucial role in EME and depends 

on the applied voltage. Although it is anticipated that the extraction efficiency will 

increase as the applied voltage increases, there are some limitations to increasing the 

voltage; for example, instability of the system due to the formation of bubbles. In 

addition, the EME also suffered from an increase in the current level when high 

voltage was applied, especially in the analysis of real samples containing large 

amounts of ionic components. Therefore, there are several recent publications 

seeking to overcome the instability problem in the EME, including the application of 
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a stabiliser circuit in order to prevent the occurrence of an increasing current (27) 

and pulsed voltage (28).  It was shown that the pulsed voltage increased the system 

stability by decreasing the thickness of the double layer at the interface (29).  

 

 

For this reason, in this study, a stable EME was achieved by employing 

bubbleless electrodes to solve the problem of bubble formation during the extraction 

process. The bubbleless electrode was introduced by Gu et al. (2012) (30) and was 

employed in the electroosmotic pump for the purpose of solution delivery within a 

microfluidic device. The bubbleless setup facilitated the use of high voltage on the 

pump without the formation of the bubble in the pump channel.  

 

A new way of thinking about the bubbleless electode in order for it to be 

employed in the EME so as to eliminate the bubble formation when high voltage is 

applied during the extraction process was carried out in this study.  A conventional 

EME approach using platinum electrodes was performed as a comparison. 

 

 

 

  

1.2 Problem statement 

 

 

Various sample preparation methods have been used in the analysis of drugs 

and pesticides/herbicides. A conventional extraction method like LLE and SPE was 

used for the analysis of drugs and pesticides. However, these methods are more time-

consuming and use large volumes of organic solvents. On the other hand, HF-LPME 

was introduced to overcome the large consumption of organic solvents. This method 

offers several advantages, like good enrichment and sample clean-up, thereby 

reducing potential problems from matrix components (31). However, this method 

suffered a major drawback of long extraction times 

 

 

By taking advantage of the electric field to enhance the extraction efficiency, 

a new extraction, namely EME, was introduced in 2006. In this method, a potential 



5 
 

difference is applied across the SLM which acts as the driving force. This method 

promises to be fast, simple, selective and rapid. Nevertheless, EME has problems 

with the mechanical instability of SLM, which can lead to a loss of the SLM under 

agitation and an electric field (19). Moreover, EME also suffers instability of the 

system due to the formation of bubbles when high voltages are applied (32). To 

address these issues, a PIM was introduced as it exhibits excellent stability and 

versatility compared to SLM. 

 

 

In this study, a new variation of EME employing a hollow polymer inclusion 

membrane (HPIM) was developed. In order to get a better understanding, the 

comparison EME based on SLM was performed. Furthermore, this is the first time 

that a direct comparison between PIM and SLM was done. The developed methods 

were applied for the determination of amphetamine, methamphetamine and MDMA 

abuse in human plasma. In addition, the simultaneous EME of cationic and anionic 

herbicides was investigated by employing bubbleless electrodes to overcome a 

bubble formation problem when high voltages are applied during the extraction 

process. There have been no reports on the use of bubbleless electrodes as an 

alternative for stable EME.   

 

 

 

1.3 Research Aim and Objectives 

 

 

The aim of this research is to develop simple, miniaturised sample 

preparation method based on EME for the analysis of drugs and herbicides. The 

objectives of the study are as follows: 

 

1. To evaluate conventional EME across SLM for the analysis of amphetamine, 

methamphetamine and MDMA in human plasma 

 

2. To design and characterize new membrane materials, namely HPIM, for the 

purpose of a highly stable EME approach 
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3. To develop and evaluate new methods based on EME across the HPIM for 

the analysis of amphetamine, methamphetamine and MDMA in human 

plasma 

 

4. To prepare a bubbleless electrode for the simultaneous ultra-high voltage 

EME of cationic and anionic herbicides across the HPIM 

 

 

 

 

1.4 Scopes of the Research 

 

 

In this study, an innovative development of EME with capillary 

electrophoresis (CE) was developed for the analysis of drugs and herbicides in 

human plasma and river water samples. The potential to employ HPIM as an 

alternative to SLM was investigated for the analysis of amphetamine, 

methamphetamine and MDMA in human plasma in order to achieve greater 

membrane stability. In this work, the HPIMs were prepared, characterized and 

applied in EME. The HPIMs were characterized using field emission scanning 

electron microscopy (FESEM) and contact angle analysis. In order to get a good 

extraction efficiency, a series of optimizations was done, including optimization of 

the amount of plasticizer, the amount of carrier, sample pH, extraction voltage and 

extraction time. Analytical performances of the developed methods were evaluated, 

validated and applied to the analysis of drug of abuse in human plasma. The study 

was expanded by introducing a bubbleless electrode to overcome bubble formation 

during extraction when using a high voltage. The preparation of bubbleless 

electrodes was characterized in detail. The simultaneous electromembrane extraction 

of cationic and anionic herbicides employing the bubbleless electrode was 

developed. Parameters affecting EME were optimized comprehensively and applied 

to determine cationic and anionic herbicides in river water samples. A conventional 

EME using normal electrodes was performed as a comparison. 
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1.5 Significance of Research 

 

 

In this study, EME across HPIM was developed for the first time. HPIMs 

were prepared as alternatives to SLM. It is expected that HPIM can give better 

stability compared to SLM due to its physical and chemical features. This proposed 

method was subsequently employed for the analysis of amphetamine, 

methamphetamine and MDMA in human plasma. This particular application is 

important to demonstrate the sample clean-up capability of the new proposed 

membrane materials against complex matrices present in human biological fluid. 

 

 

Meanwhile, the introduction of bubbleless electrodes in EME could improve 

the stability of EME systems when a high voltage was applied. In addition, a 

simultaneous EME approach was introduced and this unique setup enabled the 

extraction of positively and negatively charged analytes at the same time. Therefore, 

it is expected that the extraction process could be achieved in a simple setup without 

any tedious procedures. In addition, the developed methods are expected to be 

simple, fast, efficient, sensitive and environmentally friendly, potentially being 

adopted as established methods for the monitoring of other drugs and organic 

pollutants such as pesticides. 

 

 

 

 

1.6 Outline of the Thesis 

 

 

This thesis consists of seven chapters. Chapter 1 describes in detail the 

research background, problem statement, objective, scope and significance of the 

study. Chapter 2 compiles the literature review on the details of conventional sample 

preparation method and microextraction of derivative sample preparation methods 

and focusses on EME and the development of PIM. 

 

 

Chapter 3 discusses the microextraction of EME across SLM combined with 

capillary electrophoresis with a C
4
D detector for the analysis of three selected drugs 

in human plasma. The parameter affecting the extraction efficiency was investigated 
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