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ABSTRACT 

 

 

 

 

Chiral separation has been an important issue as stereochemistry significantly 

influences the biological activity. In some cases, one stereoisomer may show 

effectiveness in pharmacology activities while the other may appear toxic. Therefore, 

it is crucial to develop technology for chiral separation. With the aid of 

computational tools, a better understanding of the interactions between both drug and 

fungicide stereoisomers with teicoplanin aglycone (TAG) chiral selector can be 

achieved before the experiment is conducted. To date, no complexation study of 

vinpocetine (VP), ketoconazole (KTZ), bromuconazole (BMZ) and propiconazole 

(PPZ) stereoisomers with TAG chiral selector has been reported. In this study, 

computational tools were used in the complexation study of drug and fungicide 

stereoisomers with TAG. This study aimed to give a better understanding of 

intermolecular interactions such as hydrogen bonding, π-π interaction and 

hydrophobic interaction between stereoisomers and chiral selector which can assist 

in chiral separation analysis. Docking simulation was used to find the best 

conformation of stereoisomers with TAG chiral selector followed by quantum-

mechanic calculation representing the second phase of this study at B3LYP/6-31G(d) 

density functional theory (DFT) level of theory. All the theoretical calculations were 

performed using GAUSSIAN09 suite. The lower the binding energy, the more stable 

the interactions of complexes are. The results showed that the stability of inclusion 

complexes based on binding energy differences obtained from B3LYP/6-31G(d) 

calculations for VP, KTZ, BMZ and PPZ stereoisomers with TAG chiral selector 

were in the order of: (3S16R)VP-TAG (|∆∆E|= 0.00 kcal mol-1) > (3R16R)VP-TAG 

(|∆∆E|= 5.94 kcal mol-1) > (3R16S)VP–TAG (|∆∆E|= 8.27 kcal mol-1) > 

(3S16S)VP-TAG (|∆∆E|= 10.59 kcal mol-1); (2R4R)KTZ-TAG (|∆∆E|= 0.00 kcal 

mol-1) > (2R4S)KTZ-TAG (|∆∆E|= 1.43 kcal mol-1) > (2S4R)KTZ–TAG (|∆∆E|= 

6.18 kcal mol-1) > (2S4S)KTZ-TAG (|∆∆E|= 10.20 kcal mol-1); (2S4S)BMZ-TAG 

(|∆∆E|= 0.00 kcal mol-1) > (2S4R)BMZ-TAG (|∆∆E|= 3.07 kcal mol-1) > 

(2R4S)BMZ-TAG (|∆∆E|= 6.71 kcal mol-1) > (2R4R)BMZ-TAG (|∆∆E|= 10.62 kcal 

mol-1); (2R4S)PPZ-TAG (|∆∆E|= 0.00 kcal mol-1) > (2S4S)PPZ-TAG (|∆∆E|= 2.66 

kcal mol-1) > (2S4R)PPZ-TAG (|∆∆E|= 4.15 kcal mol-1) > (2R4R)PPZ-TAG 

(|∆∆E|= 5.92 kcal mol-1), respectively. Results of all binding energy differences of 

the inclusion complexes between these four drug and fungicide stereoisomers (VP, 

KTZ, BMZ, PPZ) with TAG chiral selector were considered a measurement of the 

chiral discrimination together with their interactions such as hydrogen bond, π-π 

interaction and others. All complexation showed that chiral separation can be 

achieved using TAG chiral selector. It is expected that the final results from the 

quantum-mechanic calculation will be useful to further explain the chiral separation 

analysis at experimental level.  
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ABSTRAK 

 

 

 

 

Pemisahan kiral merupakan isu penting kerana stereokimia mempengaruhi 

dengan ketara aktiviti biologi. Dalam beberapa kes, satu stereoisomer boleh 

menunjukkan keberkesanan dalam aktiviti farmakologi manakala yang satu lagi 

mungkin toksik. Oleh itu, adalah penting untuk membangunkan teknologi dalam 

pemisahan kiral. Dengan bantuan alat pengkomputeran, pemahaman yang lebih baik 

mengenai interaksi antara kedua-dua stereoisomer ubat-ubatan dan racun kulat 

dengan pemilih kiral teikoplanin aglikon (TAG) boleh dicapai sebelum eksperimen 

dijalankan. Sehingga kini, tiada kajian kompleks mengenai stereoisomer vinposetin 

(VP), ketokonazol (KTZ), bromukonazol (BMZ) dan propikonazol (PPZ) dengan 

pemilih kiral TAG telah dilaporkan. Dalam kajian ini, alat pengkomputeran telah 

digunakan dalam kajian pengkompleksan stereoisomer ubat-ubatan dan racun kulat 

dengan TAG. Kajian ini bertujuan untuk memberi pemahaman yang lebih baik 

mengenai interaksi antara molekul misalnya ikatan hidrogen, interaksi π-π dan 

interaksi hidrofobik antara stereoisomer dan pemilih kiral yang boleh membantu 

dalam analisis pemisahan kiral. Simulasi dok telah digunakan untuk mendapatkan 

konformasi terbaik stereoisomer dengan pemilih kiral TAG diikuti dengan pengiraan 

mekanik kuantum yang mewakili fasa kedua kajian ini di peringkat teori fungsi 

kepadatan (DFT) B3LYP/6-31G(d). Semua pengiraan teori telah dilakukan 

menggunakan suite GAUSSIAN09. Lebih rendah tenaga pengikat, semakin stabil 

interaksi kompleks. Keputusan menunjukkan bahwa kestabilan kompleks rangkuman 

berdasarkan keputusan perbezaan tenaga pengikat yang diperoleh daripada pengiraan 

B3LYP/6-31G(d) bagi stereoisomer VP, KTZ, BMZ dan PPZ dengan pemilih kiral 

TAG adalah masing-masing dalam urutan: (3S16R)VP-TAG (|∆∆E|= 0.00 kcal    

mol-1) > (3R16R)VP-TAG (|∆∆E|= 5.94 kcal mol-1) > (3R16S)VP–TAG (|∆∆E|= 

8.27 kcal mol-1) > (3S16S)VP-TAG (|∆∆E|= 10.59 kcal mol-1); (2R4R)KTZ-TAG 

(|∆∆E|= 0.00 kcal mol-1) > (2R4S)KTZ-TAG (|∆∆E|= 1.43 kcal mol-1) > 

(2S4R)KTZ–TAG (|∆∆E|= 6.18 kcal mol-1) > (2S4S)KTZ-TAG (|∆∆E|= 10.20 kcal 

mol-1); (2S4S)BMZ-TAG (|∆∆E|= 0.00 kcal mol-1) > (2S4R)BMZ-TAG (|∆∆E|= 3.07 

kcal mol-1) > (2R4S)BMZ-TAG (|∆∆E|= 6.71 kcal mol-1) > (2R4R)BMZ-TAG 

(|∆∆E|= 10.62 kcal mol-1); (2R4S)PPZ-TAG (|∆∆E|= 0.00 kcal mol-1) > (2S4S)PPZ-

TAG (|∆∆E|= 2.66 kcal mol-1) > (2S4R)PPZ-TAG (|∆∆E|= 4.15 kcal mol-1) > 

(2R4R)PPZ-TAG (|∆∆E|= 5.92 kcal mol-1). Keputusan daripada perbezaan semua 

tenaga pengikat kompleks rangkuman antara keempat-empat stereoisomer ubat-

ubatan dan racun kulat (VP, KTZ, BMZ, PPZ) dengan pemilih kiral TAG telah 

dijadikan pengukur diskriminasi kiral bersama dengan interaksinya misalnya ikatan 

hidrogen, interaksi π-π dan lain-lain. Semua kompleks menunjukkan bahawa 

pemisahan kiral boleh dicapai menggunakan pemilih kiral TAG. Dijangkakan 

bahawa keputusan akhir daripada pengiraan mekanik kuantum akan berguna untuk 

menerangkan lebih lanjut analisis pemisahan kiral di peringkat eksperimen. 
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INTRODUCTION 

 

 

 

 

1.1 Background of Study 

Many chiral compounds exist in two enantiomeric forms, which have same 

molecular formula but different in structural arrangement (Sekhon, 2010). Chiral 

compounds are molecules with one or more stereogenic centers. The enantiomers of 

a chiral compound have same chemical structures, but different in their spatial 

arrangements of the atoms around the stereogenic center (Sanganyado et al., 2017). 

 

The enantiomeric separation has become a great interest of the most 

important task in analytical chemistry especially in the clinical, pharmaceutical and 

agrochemical fields. This has been an issue since the stereochemistry has a 

significant effect on biological activities (Wan Ibrahim et al., 2007). One enantiomer 

of a racemic compound may have effective biological activities, while the other can 

be toxic. This has been a considerable interest in both pharmacological and 

toxicological evaluations of the enantiomers of chiral drugs (Zhang et al., 2005; Wu 

et al., 2013). In addition, all conazole fungicides are chiral, which can be an issue in 

their environmental behavior and toxicity (Garrison et al., 2011). Hence, 

enantioselective chromatography has become essentially important in analytical tool 

for chiral analyses to gain pure enantiomers from a wide range of chiral compounds 

(Zhang et al., 2005). 

In view of pharmaceutical drug industries, almost more than half percent of 

the drugs currently in use are chiral products and 88% of these chiral synthetic drugs 

are still marketed as racemates with their side-effects (Rentsch, 2002; Nguyen et al.,  
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2006). This problem is raised probably due not only to the high production costs but 

also the difficulty in chiral separation technique. Hence, the enantioseparation 

analysis of racemic drugs is essential in order to eliminate unwanted isomer from the 

preparation so that the right treatment will be given to the patient (Nguyen et al., 

2006). On the other hand, chiral fungicides are used in agriculture field for control of 

many fungal disease of variety crops such as rice, fruits, cereals and others. Thus, 

there is a concern to potential human and wildlife exposure from its metabolites and 

residues in the environment, including sediment, water receiving soil runoff and soil 

(Garrison et al., 2011). 

As the production of pure enantiomeric compound and separation of chiral 

compounds have gained much interest nowadays, enantioselective separation has 

become one of the most important analytical task (Al-Majed, 2009). Various 

techniques have been developed for enantioselective separation, which consist of 

membrane separation, enzyme resolution, chemical recognition and chromatography. 

All methods vary in term of their abilities for chiral recognition, but are generally 

time-consuming, involve complicated separation processes and high-cost may limit 

their use in racemic separation. Hence, it is crucial to develop a simple and effective 

method for chiral separation (Wu et al., 2013). 

Enantioselective separation compounds can be achieved by chiral recognition 

known as chiral selector. Back then, many chiral selectors have been used in 

enantioselective recognition which include macrocyclic antibiotics, cellulose and 

cyclodextrin (Wu et al., 2013). Among these, macrocyclic antibiotics chiral selectors 

(vancomycin, teicoplanin, teicoplanin aglycone, etc) had proven to be tremendously 

suitable for enantioresolution of racemic compounds (Al-Majed, 2009).  

Prior to this, teicoplanin appears to be the latest chiral selector used in 

enantioselective separation analysis. Teicoplanin chiral selector is a macrocyclic 

glycopeptide antibiotic that is produced from actinoplanes and is proven to be an 

excellent chiral selector for enantioselective recognition mechanism. It is easily 

dissolved in aqueous solutions within a broad pH range because of the excellent 

structural properties of aglycones that can form a hydrophobic semi-rigid basket-
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shaped cleft with a single acidic carboxylic acid group (COOH) and the only basic 

primary amine. Besides, it promotes chiral selectivity towards the chiral analytes 

through several interactions. Other than aglycone, it also contains many stereogenic 

centers, aromatic rings and macrocyclic rings. In addition, teicoplanin offers more 

hydrophobic interactions compared to other chiral selectors since it has a long fatty 

acid chain in the D-glucosamines group. Various interactions can be formed between 

racemates and teicoplanin as a result from these unique structures of teicoplanin, for 

instance hydrogen bonding, hydrophobic, steric repulsion, dipole–dipole and ionic π-

π interaction. Hence, teicoplanin can excellently be used for chiral recognition of 

many racemic compounds (Wu et al., 2013). The difference between teicoplanin 

aglycone (TAG) and teicoplanin is that TAG does not contain the sugar chains      

(Al-Majed, 2009).  

TAG is the most promising chiral selector in the world to date. It has been 

effectively used for enantioseparation of carboxylic acids, underivatised amino acids 

and many other compounds. Its superb capabilities as chiral selector is due to its 

semi-rigid basket-like aglycone that is formed from four fused macrocyclic rings 

with hydroxyl and phenolic-group together with two potentially charged groups, a 

carboxylic acid group and a primary amine (Bechtold et al., 2007). 

In this study, the interactions of drugs (vinpocetine and ketoconazole) and 

fungicides (bromuconazole and propiconazole) with TAG chiral selector were 

investigated using molecular docking and quantum chemical calculation. 

Computational study is expected to give a better understanding about the molecular 

interactions (i.e hydrogen bonding and π-π interactions) between the chiral selector 

with both drug and fungicide stereoisomers before conducting any experiments.  

1.2      Problem Statement 

The separation of enantiomers has become a great interest especially in both 

the pharmaceutical and agrochemical science fields. This has been an issue since 

stereochemistry has significant effects on biological activities such as toxicology, 
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pharmacokinetics, pharmacology and metabolism (Wan Ibrahim et al., 2007). One 

enantiomer of a racemic compound may have effective biological activities, while 

the other can be toxic. Therefore it is vital to have safe enantioseparation techniques 

in order to eliminate the undesirable isomer from the preparation and to find the 

accurate therapeutic mechanism for the pharmaceutical drug industry and also 

agrochemical used (Nguyen et al., 2006). 

Enantiomer drugs have become increasingly significant over the past 20 to 30 

years. About more than half of the drugs currently in use are chiral compounds. For 

this purpose, the U.S Food and Drug Administration (FDA) has also recommended 

an assessment on the development of synthesis and analysis methods on 

enantioseparation when synthesizing a new drug (Bernal et al., 2002; Zhang et al., 

2005). Meanwhile, chiral fungicides are used in agriculture field for control of many 

fungal diseases of various crops such as rice, fruits and cereals. Chirality is expected 

to play an essential role in the triazole fungicide bioactivities. Therefore, there is a 

concern related to potential human and wildlife exposure from its metabolites and 

residues in the environment, including sediment and water receiving soil runoff 

(Garrison et al., 2011). 

All chiral recognition methods vary in term of their abilities, but are generally 

time-consuming, involving complicated separation processes, using big volumes of 

solvents and high-costing, thus limiting their use in racemic separation. Hence, it is 

crucial to develop a simple, effective and cost-saving method for chiral separation 

(Wu et al., 2013). In this study, molecular docking and theoretical quantum chemical 

calculation were used to investigate the inclusion of drug and fungicide 

stereoisomers with TAG. This microcyclic antibiotics teicoplanin compound with 

semi-rigid aglycone basket shaped provide hydrophobic sites, hydrogen bonding site, 

dipolar sites and π-interaction sites in which offer a broad enantioselectivity. They 

can be used in all chromatographic modes. However, to the best of our knowledge, 

studies concerning this type of molecule as compared to other chiral selector such as 

cyclodextrin is still scarce. Our work therefore, extended the computational study of 

vinpocetine, ketoconazole, bromuconazole and propiconazole with TAG as chiral 

selector. 
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This molecular level investigation will give a better understanding of the 

intermolecular interactions (hydrogen bonding, π-π interaction, hydrophobic and 

ionic interactions) between drug and fungicide stereoisomers with TAG chiral 

selector, which later can assist in chiral separation analysis at the experimental level. 

1.3      Objectives of Study 

The aim of this study is to investigate the interactions of vinpocetine, 

ketoconazole, bromuconazole and propiconazole with macrocyclic antibiotic chiral 

selector TAG using computational tools via docking studies and quantum chemical 

calculations.  

The objectives of this study are:  

i. To investigate the best active site positions in the receptor binding pockets of 

TAG chiral selector. 

ii. To predict the preferable complex interactions and their best orientation 

formed by using docking studies. 

iii. To compare the effectiveness of TAG as a chiral selector for vinpocetine, 

ketoconazole, bromuconazole and propiconazole enantioseparation. 

1.4      Scope of Study 

In this study, investigation of the best active site interactions formed among 

the drug and fungicide stereoisomers based on hydrogen bonding and binding energy 

formation were performed using docking simulation, and quantum chemical 

calculation involving density functional theory (DFT) method.  

The structures of the drugs (vinpocetine and ketoconazole) and fungicides 

(bromuconazole and propiconazole), and TAG chiral selector crystal structures were 

extracted from PubChem database and Protein Data Bank (PDB) website, 

respectively, and modified using Discovery Studio Client 3.5 (Accelrys, BIOVIA, 
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San Diego CA). Vinpocetine is a drug compound that has been used worldwide to 

facilitate cerebral metabolism by enhancing oxygen and glucose uptake, while 

ketoconazole is a drug compound that has been commonly used in fungal infection 

associated with the increase use of cancer chemotherapy, AIDS and organ transplant. 

On the other hand, bromuconazole and propiconazole is a chiral triazole fungicide, 

one of the major classes of pesticides used to protect against fungal decay which are 

frequently used in the agriculture and lumber industry and extensively used in 

agriculture as an antiseptic sprayed on the foliar appearance, respectively. 

The prediction of preferable interactions between these stereoisomers with 

TAG chiral selector and their best orientation of inclusion complexes formed with 

overall minimum binding energy were accomplished by docking studies simulation 

involving blind and fixed docking. At blind docking step, one hundred (100) possible 

random binding interactions were generated and results were saved in docking log 

file (dlg file). The best conformations of two clusters from dlg file were selected to 

perform fixed docking and all docking procedure was done using Autodock 4.2 

software (Morris et al., 2009). Next, the accuracy and stabilization of some 

complexes from docking results were calculated using quantum-mechanic 

calculation at B3LYP/6-31G(d) level of theory. All the theoretical calculations were 

performed using GAUSSIAN09 suite.  

1.5      Significance of Study 

Chirality has gained much interest in many analytical chemistry tasks 

especially in the field of agrochemical sciences and pharmaceutical drug 

development. Most chiral compounds display differently in their biological activities 

even though they have the same chemical structures. In some cases, one enantiomer 

may show effectiveness in pharmacological activities while the other may appear 

toxic. Thus, it is very crucial to develop more advanced method in chiral separation. 

Here, with the aid of computational tools, a better understanding of the interactions 

between drug and fungicide stereoisomers and TAG chiral selectors can be achieved 

before conducting an experiment. The advantages are time and cost-saving and no 
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complicated separation processes involved. Finally, improvement on the separation 

of the stereoisomers is expected to enhance the efficacy in therapeutic use of drugs 

and the safety exposure of these fungicides to human and wildlife. 
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