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This thesis reports a surface entrapment of chitosan on 3D printed PLA scaffold 

which has the potential use in promoting bone regeneration. The 3D scaffold was 

designed using SolidWorks and printed by Up Plus 3D printer and then incorporated 

with chitosan. The entrapped scaffold time was varied from 5 to 90 s. The scaffold was 

characterized in respect of its mechanical and surface properties. Compressive test 

showed a higher compressive modulus properties in neat 3D printed PLA scaffolds 

and an optimum value of 22248 MPa at 15 s of chitosan immersion. The Fourier-

transform infrared spectroscopy peak revealed an existence of biomacromolecule and 

new absorption peaks at 3357 and 1618 cm-1 compared to neat PLA on the scaffold 

while water contact angle showed an increase in hydrophilicity as entrapment time 

increased. The confocal laser scanning microscopy revealed the existence of 

entrapment areas approximately 8𝜇m in depth. The scanning electron microscopy 

showed clearly 3D scaffold with high porosity, uniform distribution chitosan and a 

controlled and repetitive architecture on entrapped 3D printed scaffold. Immersion of 

neat and entrapped 3D printed PLA scaffold in simulated body fluid for 14 days 

resulted the formation of fully covered apatite layers on the surface of entrapped PLA 

scaffold whereas no change was observed in neat PLA scaffold. Overall, the 

mechanical and surface properties results showed the suitability of the combination of 

method and materials to develop 3D porous scaffold and their initial biocompatibility, 

both being valuable characteristic for tissue engineering applications.  
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Tesis ini melaporkan tindakbalas pemerangkapan permukaan kitosan pada 

perancah PLA bercetak tiga dimensi (3D) yang mempunyai keupayaan untuk 

digunakan bagi menggalakkan pertumbuhan semula tulang. Perancah 3D direka 

menggunakan SolidWorks dan dicetak oleh pencetak 3D Up Plus yang 

mengandungi kitosan. Masa pemerangkapan adalah dari 5 saat ke 90 saat. Perancah 

dicirikan terhadap sifat mekanik dan sifat permukaannya. Ujian mampatan 

menunjukkan sifat modulus mampatan yang lebih tinggi dalam perancah PLA 

dicetak 3D dengan nilai optima 2248 MPa pada 15 s rendaman kitosan. Puncak 

spektroskopi inframerah transformasi Fourier menunjukkan kewujudan puncak 

biomakromolekul dan puncak penyerapan baharu pada 3357 dan 1618 cm-1 

berbanding dengan PLA tanpa pemerangkapan manakala sudut sentuhan air 

menunjukkan peningkatan  hidrofilik bila meningkatnya masa pemerangkapan. 

Mikroskop imbasan laser konfokal menunjukkan kewujudan kawasan 

pemerangkapan sedalam kira-kira 8 μm. Mikroskop elektron imbasan bagi 

perancah 3D yang memerangkap kitosan jelas menunjukkan permukaan berliang 

yang saling berkait, penyebaran kitosan yang seragam dan seni bina yang terkawal 

dan berulang. Hasil rendaman  kedua - dua perancah di dalam cecair badan simulasi 

selama 14 hari menghasilkan pembentukan lapisan mineral di permukaan perancah 

PLA yang melalui proses pemerangkapan manakala tiada pembentukan yang dapat 

dilihat berlaku pada perancah 3D biasa. Secara keseluruhan, hasil keputusan ujikaji 

sifat mekanik dan sifat permukaan menunjukkan kesesuaian di antara kombinasi 

kaedah dan bahan di dalam pembentukan perancah berpori 3D dan biokeserasian 

awal, di mana kedua-duanya menjadi ciri-ciri penting untuk aplikasi kejuruteraan 

tisu.  

ABSTRAK 
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INTRODUCTION 

 Overview 

Rapid prototyping (RP), is an attractive tool in fabrication of scaffold in tissue 

engineering (Shirazi et al., 2015). This technique can produce a complicated design 

with well-defined structures and reproducible architectures (Gross et al. 2014). It has 

open the possibility in making scaffold considering biomedical diagnostic from 

individual patient and needs (Ventola, 2014).  

 

 

Modern 3D printing with the aid of computer design and automatic printing 

technology can tailor made the fabrication of scaffold (Guvendiren et al., 2016). Most 

other techniques fails to produce this desired properties due to lack the capability of 

computer design. This includes the effects of geometry/architecture on cell response, 

and for computer modeling of the scaffold’s behavior (Sears et al., 2016).  By using 

3D printer, an improved mechanical performance of three-dimensional (3D) structures 

also can be obtained (Serra et al., 2013). 
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 Polylactic acid (PLA) are one of the popular biomaterial reported to be used 

in 3D printing specified in Fused Deposition Modeling (FDM) technologies due to its 

low cost, nontoxicity and ease of processability (Guvendiren et al., 2016) . Though 

there are few reports on the use of PLA biomaterial for production of 3D printed 

scaffolds, serious concerns are on PLA long-term biocompitability due to production 

of acidic by product, its hydrophilicity (Dong et al., 2010) and lack of functional group 

for covalent cell-recognition signal molecules in the PLA to promote cell adhesion 

(Zhu, 2002). Those drawbacks can lead to tissue inflammation and cell death. To 

remedy this, PLA often combined with other bioactive fillers such as calcium 

phosphate glass (Serra et al., 2013), 45S5 bioactive glass (Estrada et al., 2017), 

nanocellulose (Wang et al., 2017) and hydroapatite (Corcione et al., 2017). However, 

since both material have a distinct physical, chemical and biological properties 

(Barbosa et al., 2010), and the 3D fabrications used are costly since it requires 

preliminary processing compatibility with the 3D printer setup. 

Other method to combat this drawback are by modifying PLA scaffold using 

surface modification technique either by physio sorption, covalent bonding (Serra et 

al., 2013) or by creating surface interpenetrating networks (Quirk et al., 2001). 

Chitosan are one of the biomacromolecules that have been successfully modifies the 

surface of PLA (Cui et al., 2003). Modifying PLA with chitosan can improve its 

osteoconductivity, biocompatibility and its suitable degradation rate (Dutta et al., 

2004). To date, this method still lack of reports especially on the mechanical integrity 

and surface properties of the modified scaffold.   

With the aid of this feasible method, degradable porous material scaffold were 

designed to integrate the cell proliferate and tissue regeneration. This is one way to 

deal with repair and recovery of cell and tissue by establish upon the utilization of 

polymer scaffold which serve to bolster, strengthen and at times sort out the removing 

tissue (Madihally, 1999). The mechanical expect for scaffold is also important as a 

mass transport biological delivery and tissue regeneration (Hollister, 2005). 
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Researchers had studied the experimental and clinical studies of 3D printed 

scaffold for biomimetic application in scaffold bioresorbable resource as well as its 

design.  This work describe the fabrication of PLA-based scaffold by 3D printer. 

Chitosan molecules were entrapped in PLA to obtain 3D scaffold with high mechanical 

and high bioactive properties. The structures obtained are characterized in terms of 

mechanical behavior, surface properties as well as in vitro biomineralization studies. 

 Problem Statement 

PLA is widely used in biomedical application and as biodegradable polymer 

that been approved by FDA (Almeida, 2013). Most studies focus on PLA mechanical 

and morphological improvement. Even PLA have been extensively studied especially 

in scaffold fabrication, the fabrication of PLA scaffold specifically through nozzle-

based system are scarcely reported. Plus the resulting printed PLA scaffold usually 

produced lack in biological moieties which require additional process to activate the 

biological sites (Zhu et al., 2002).  Thus making the study of the production of PLA 

scaffold via commercial 3D were limited to some extent. 

PLA is problematic for tissue and implant engineering application due to its 

absence of biologically active site. Production of a stable and biocompatible PLA 

scaffold are limited since it may modifies main polymer structure or may require a 

subsequent process solvent removal from its final structure (Serra et al., 2013). 

According to Zhu (2002), one of the strategies to render this properties is to design 

back the polymer backbone that have function  monomer unit by introducing 

functional group on the surface or the polymer backbones. 

It is reported, the most straight forward method is coating the surface of the 

biomaterial with bioactive molecules (Li et al., 2009). This method however it is 

problematic due to it instability of the layers (coat) thus restrict it further application 
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in biomedical field (Shen, 2007). Since the PLA printed scaffold are limited in its 

biocompatibility, this limitation can be overcome with incorporation of chitosan (Cui 

et al., 2003). Chitosan are one of bioactive molecules that have been proved to have 

great osteoconductivity, biocompatibility, suitable degradation rate and minimal 

foreign body reaction (Cui et al., 2003; Dutta et al., 2004; Collection et al., 2000; Shen 

et al., 2000). Incorporation of chitosan in PLA structure will lead a more biocompatible 

scaffold structure (Rogina et al., 2016). 

Porous structure of 3D printed can promote faster healing. Though the printed 

scaffold method can produce a uniform and repetitive porosity, various cumbersome 

factors should be taken into consideration to design a porous and stable structure such 

as pore size and the exposition of elevated temperature of the polymer which may lead 

to denaturation and toxic production of PLA scaffold (Pfister et al., 2003).  Therefore, 

it is important have suitable intrinsic material properties but also geometry of the 3D 

scaffolds to design the new surface and tailor macrophage activation toward 

regenerative pathway (Zhu, 2002). 

Being relatively new in the tissue engineering field, 3D printed PLA scaffold 

with incorporation of biomacromolecules has many unexplored features and 

characteristics. By combining 3D printing method together with suitable 

biodegradable polymers, fabrication of 3D scaffold it is possible with well-

distinguished geometric, different characteristics and allowing the study of the effect 

of surface entrapment to those cell responses. 

 Objectives of the Study 

There are three objectives to be achieved in this study.  There are as following: 

a) To design and prepare 3D printed PLA scaffold with surface entrapment of 

chitosan. 
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b) To study the effects of chitosan entrapment on the compressive strength 

and surface properties of the PLA modified scaffold 

c) To investigate the preliminary in vitro biomineralization of the scaffold. 

 Scope of Study 

In order to satisfy all the outlined objectives, the scopes of this research are 

undertaken according to the following. 

 

 

Initially, PLA scaffold were designed and fabricated using 3D printer. The 

scaffold were first design using SolidWork drawing before converted to suitable 

format for the 3D printer system. The produced scaffold are characterized for its 

morphology and appearance.  

 

 

Next step is to produce a bioactive scaffold by entrapment of chitosan in the 

surface of the 3D printed scaffold. The scaffolds were immersed in chitosan solution 

for period of 5, 10, 15, 30, 60 and 90s. The resulting entrapped scaffold were evaluated 

in terms of its mechanical and morphological properties. Mechanical test conducted 

were compressive strength of the scaffold. Other than that, surface properties such as 

FTIR, WCA and SEM were also being evaluated.  

Consequently, the scaffold were tested for in-vitro bio mineralization to test its 

bioactivity. This was done through immersion in simulated body fluid solution (SBF) 

and followed by evaluation of hydroxyl apatite growth on the sample. 
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