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ABSTRACT 

A new generation in telecommunication technology has evolved into 5G. Due to 

its shorter wavelength compared to the previous generation, this technology requires a 

wide bandwidth and high gain antenna to compensate for the added losses at a higher 

frequency. Therefore, a phased array capable of steering the direction of beam with high 

gain can be used to recover any additional losses. A dielectric resonator (DR) with a 

dielectric constant of 10 is used in the phased array antenna design and integrated on 

Rogers/RT Duroid 5880 with a conductor coating of 17.5 µm, a thickness of 0.254 mm, 

dielectric constant,    of 2.2 and loss tangent,      of 0.001. All designs are simulated 

using Ansoft High Frequency Structural Simulator (HFSS) and the numerical analysis 

involved is done by using MATLAB. The performance of the reflection coefficient and 

the bandwidth of the fabricated antenna are verified using Vector Network Analyzer 

(VNA) while the radiation pattern and the antenna gain are tested in an anechoic 

chamber. The proposed switchable dielectric resonator antenna (DRA) array at 15 GHz 

is formed through three design stages. The first stage is formed by a single element DRA 

placed on the ground plane and fed through a narrow aperture. The impedance 

bandwidth achievable is 2.5 GHz for DRA excited in      
 

 mode compared to 1.8 GHz 

for DRA excited in      
 

 mode. Besides, the gain of the antenna has improved 

approximately by 10 dBi in comparison to 5.6 dBi when it was excited in      
 

 mode. 

Then, a design is formed using three elements of DR named as DRA sub-array design. 

The driven DR at port 1 is fed by radio frequency (RF) source and the parasitic DRs at 

port 2 and 3 are excited by the driven DR through mutual coupling effect. A steerable 

beam is achieved by switching the termination capacitor on the parasitic elements. Then, 

two DRA sub-array configurations are designed and named as configuration A and 

configuration B, respectively. Both configurations are excited by a driven DR in      
 

 

mode while the parasitic DRs for configurations A and B are excited in the      
 

 mode 

and      
 

 mode, respectively. From the observation, configuration B demonstrates 

improved performance with      steering angle and maximum gain of 9.63 dBi. 

Furthermore, configuration B has a narrower beamwidth compared to configuration A. 

The final stage design is formed by incorporating configuration B with a combination of 

two driven DRs using power divider and phase switching. The switchable DRA array 

achieved a maximum gain and bandwidth of 12.8 dBi and 3.1 GHz, respectively. 

Moreover, the switchable DRA array is able to steer at three various steering angles 

which are 0 , -30   and +30  with 3 dB beamwidth around 24  by using only 2 ports. 

Hence, the switchable DRA array is capable to cover 60  sector which is considered 

suitable for 5G applications.  
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ABSTRAK 

Generasi baharu teknologi telekomunikasi telah berkembang kepada 5G. 

Disebabkan panjang gelombang yang lebih pendek berbanding generasi sebelumnya, 

teknologi ini memerlukan lebar jalur yang luas dan gandaan antena yang tinggi untuk 

mengimbangi penambahan kehilangan kuasa pada frekuensi tinggi. Oleh itu, tatasusunan 

berfasa yang berkebolehan untuk memandu arah alur dengan gandaan yang tinggi boleh 

digunakan untuk memulih sebarang kehilangan kuasa tambahan. Dielektrik resonator (DR) 

dengan pemalar dielektrik bernilai 10 digunakan di dalam rekabentuk tatasusunan antena 

berfasa dan disepadukan pada Rogers/RT Duroid 5880 dengan salutan pengalir 17.5 µm, 

ketebalan 0.254 mm, pemalar dielektrik,    2.2 dan tangen kehilangan,      0.001. Kesemua 

rekabentuk disimulasi dengan menggunakan Ansoft High Frequency Structural Simulator 

(HFSS) dan analisis berangka yang terlibat dilaksanakan menggunakan MATLAB. Prestasi 

pekali pantulan dan lebar jalur fabrikasi antena ditentusahkan menggunakan Penganalisis 

Rangkaian Vektor (VNA) manakala corak radiasi dan gandaan antena diuji di dalam kebuk 

tak bergema. Tatasusunan dielektrik resonator antena (DRA) bolehubah yang dicadangkan 

pada 15 GHz terbentuk melalui  tiga peringkat rekabentuk. Peringkat pertama dibentuk 

daripada elemen tunggal DRA yang diletakkan disisi satah bumi dan disuap melalui bukaan 

sempit. Galangan lebar jalur boleh capai ialah 2.5 GHz untuk DRA yang diuja dalam mod 

     
 

 berbanding 1.8 GHz untuk DRA yang diuja dalam mod      
 

. Selain itu, gandaan 

antena telah diperbaiki lebih kurang 10 dBi berbanding 5.6 dBi apabila diuja dalam mod 

     
 

. Kemudian, rekabentuk  dibentuk menggunakan tiga elemen DR yang dinamakan 

rekabentuk subtatasusunan DRA. Pemacu DR di terminal 1 disuap oleh sumber frekuensi 

radio (RF) dan parasit-parasit DR di terminal 2 dan 3 diuja oleh pemacu DR melalui kesan 

gandingan bersama. Bolehpandu alur tercapai dengan mengubah kapasitor penamatan pada 

elemen-elemen parasit. Setelah itu, dua konfigurasi subtatasusunan antena direkabentuk dan 

dinamakan sebagai konfigurasi A dan konfigurasi B. Kedua-dua konfigurasi diuja oleh 

pemacu DR dalam mod      
 

 manakala parasit DR untuk konfigurasi A dan konfigurasi B 

diuja dalam mod      
 

 dan mod      
 

, masing-masing. Daripada pemerhatian, konfigurasi 

B menunjukkan prestasi yang lebih baik dengan sudut pandu      dan gandaan maksimum 

9.63 dBi. Tambahan pula, konfigurasi B mempunyai lebar alur yang lebih sempit 

berbanding konfigurasi A. Peringkat rekabentuk terakhir dibentuk dengan menggunakan 

konfigurasi B yang menggabungkan dua pemacu DR dan digunakan bersama kuasa 

pembahagi dan fasa bolehubah. Tatasusunan DRA bolehubah telah mencapai gandaan 

maksimum dan lebar jalur masing-masing pada 12.8 dBi dan 3.1 GHz. Selain itu, 

tatasususunan DRA bolehubah mampu untuk memandu pada tiga sudut pandu iaitu 0 , -30   
dan +30  dengan lebar alur 3 dB sekitar 24  dengan menggunakan hanya 2 terminal. Oleh 

itu, tatasusunan DRA bolehubah mampu untuk meliputi sektor 60  yang dianggap sesuai 

untuk aplikasi 5G.  
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Telecommunication innovation has advanced quickly from the original (1G) to
the fifth generation (5G). The 1st generation (1G) was pioneered for voice service in
early 1980’s, where almost all of them were using analog systems in the frequency
band 824-894 MHz. It was based on a technology known as Advance Mobile Phone
Service (AMPS) [1]. Then, the 2nd generation (2G) was accomplished in 1990’s in
the frequency band 850-1900 MHz intended for Global System for Mobile (GSM)
technology. In the frequency band 1.8 - 2.5 GHz, 3rd generation (3G) based on
Wideband Code Division Multiple Access (WCDMA) technologies was introduced
to offer high speed wireless internet access in addition to the conventional voice
service. Although the 3G technologies deliver significantly higher bit rates than 2G
technologies, consumers and business professionals keep demanding for the high
quality services, low latency, and the improved system capacity and coverage. Hence,
the solution is Long Term Evolution (LTE) that was standardized by the 3rd Generation
Partnership Project (3GPP), the next generation network beyond 3G. The LTE operates
over different frequency bands from 400 MHz up to 4 GHz with bandwidth from 1.4 to
20 MHz [2]. The 4th generation (4G) usually refers to the successor of the 3G and 2G
standards. The LTE release 10, also known to as LTE-Advanced (LTE-A), is claimed
to be the true 4G evolution step with the frequency band from 2 GHz to 8 GHz [3].

Presently, telecommunication technology has significantly changed everyday
life of individuals with expanding interest in boundless access to data and information
sharing [4]. Considering the path ahead, there are a few patterns that will debilitate the
abilities of existing media transmission, for example, explosive development of data
traffic, a massive increase in the number of interconnected devices and the consistent
rise of new services and application scenarios. To coordinate the patterns, 5G is
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expected to penetrate into every aspect of the future society to create a user-centric
information ecosystem. The 5G technology is expected to complete the 4G technology
and provide solutions to the shortage arising from 4G technologies. It includes all
kinds of advanced features which make it most forceful and immense request in the
near future. Consequently, the increase in usage and the demand for simultaneous
communication between devices cause interference, especially at higher frequencies
in 5G. Therefore, as a 5G requirements, a smart device embedded with a bandwidth
more than 1 GHz [5] and the antenna gain more than 12 dBi [6] is required to encounter
the increasing traffic demands and to address the interference problems [7][8].

Subsequently, this technology has drawn attention to millimeter-wave bands
in a frequency spectrum from 3-300 GHz with reduced wavelengths ranging from
100 mm to 1 mm [5]. Meanwhile, the Federal Communications Commission (FCC)
has allocated the entire spectrum for different services and auctioned the spectrum
for Local Multipoint Distribution Services (LMDS) [9]. The LMDS operating on
frequencies from 28 to 30 GHz was conceived as a broadband, fixed wireless and
point-to-multipoint technology. Apart from that, Ofcom has stated that the spectrum
above 6 GHz has gained so much attention for future networks and 15 GHz is one of the
potential 5G spectrum bands as mentioned by Ericsson [10]. Hence, this frequency has
been attracted the interest of researchers to conduct research towards 5G applications
[11][12][13][14].

Based on Friss formula, it is often assumed that higher frequencies propagate
poorly in free space compared to the lower frequencies. The reason for this
misconception is the underlying assumption often used in equation (1.1) that the path
loss is calculated at a specific frequency between two isotropic antennas [9]

LFSL = 92.4 + 20 log10 f + 20 log10R (1.1)

where f = frequency (GHz) and R = distance between two isotropic antennas (km).
The 20 log10 f indicates that the loss is frequency dependent due to losses exist in the
spreading beam from point to point at the speed of light.

Consequently, the antenna gain needs to be increased to compensate the
anticipated incremental loss. In addition, a directional antenna is also indispensable
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to satisfy the necessities of a long distance communication [15]. Therefore, the case
of directional transmit antenna with transmission gain, Gt are considered as stated in
equation (1.2) [16][17] .

Gt =
4πAeff
λ2

(1.2)

For the same antenna aperture areas (Aeff ), shorter wavelengths (higher frequencies),
λ should not have any inherent disadvantage compared to longer wavelengths (lower
frequencies) in terms of free space loss. However, with shorter wavelengths more
antennas can be packed into the same area [18].

Accordingly, in order to fulfill the 5G requirements as stated previously,
multiple antennas in the phased array that is capable of steering the direction beam
with the gain more than 12 dBi [6] can be used to recover the additional loss as well as
to support the required access and the reconfigurable backhaul link [19]. Backhaul can
be reconfigured to allow transmission between point to point and point to multipoint
applications. In addition, more than 1 GHz of the antenna bandwidth is needed to meet
the requirements [5]. Thereby, in this thesis, antenna array designed with phased shift
capability is presented. The following section highlights the motivation towards this
research study.

1.2 Problem Statement

The complex phased array design that incorporates power distribution network,
phase shifter and bias component has produced a larger overall dimension [20][21].
Meanwhile, phase shifters are expensive and require intricate feeding networks that
will introduce more losses at higher frequencies [20][22]. Thus, to solve the problem,
new phased arrays need to be developed by using different techniques. The switchable
antenna array can be constructed by using a linear array which consists of only one
driven element and the remaining are of parasitic elements. In this light, the phase
shift between elements is adjustable by switching the capacitive loading of the parasitic
elements. In the interest to have the switchable antenna array that fulfills the 5G
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requirements, there are crucial issues need to be concerned starting with the single
element design.

Microstrip patch antennas built on printed circuit board (PCB) substrate, are
attractive due to their various features such as, light weight, low cost and easy
fabrication. However, the microstrip element is affected by the inherent limitation
of narrow impedance bandwidth causing poor performance due to high substrate loses
and low radiation efficiency at mm-wave frequencies [23][24][25][26]. Recent studies
also indicated that DRAs have an intriguing advantages as a promising candidate to
replace traditional radiating elements at high frequencies, especially at millimeter
waves and beyond [27][28][29][30][31]. This is mainly attributed to the fact that
DRAs do not suffer from conduction losses and are characterized by high radiation
efficiency when excited properly [24][32][33]. In addition, single element DRAs are
normally excited in the fundamental mode with an ordinary gain of about 5 dBi, when
employed on a large ground plane [34]. Several approaches in [35], [36], [37], [38]
and [39] are suggested to increase the gain of the DRAs. In some of these cases, it can
also improve the impedance bandwidth of the antenna. Nevertheless, most of these
methods caused a significant increase in surface area, complexity and costs. Altering
the single element DRA by utilizing higher-order radiation modes is another technique
to increase the gain [40]. However, the impedance bandwidth decreases as the height
of the dielectric resonator (DR) is increased. This is due to the larger ratio of volume
(V ) to surface (S) in the higher-order mode compared to the fundamental mode that
can also cause the Q-factor to increase.

Past researchers had conducted electronically steerable passive array radiator
(ESPAR) investigations on patch elements [41] and wire [42] to steer the antenna beam
without using any phase shifters. However, the microstrip ESPAR had a limited steer
angle at the boresight direction, while the steerable beam in [22] just achieved the
angle of ±20° and in [43], it achieved ±15°. Besides that, the microstrip ESPAR has
produced a narrow impedance bandwidth and the performance of antenna gain was
less than 8.0 dBi [44][45][46]. Thus, in comparison to the microstrip antennas, the
DRA have shown various benefits, such as wider bandwidth and low loss. In recent
years, the dielectric resonator antenna (DRA) ESPAR was fed through the microstrip
line [47], which is typically excited in the fundamental mode without considering the
effect of mutual impedance by the different distance between the DR and the effect
of H-field distribution inside the DR. Despite that, the impedance bandwidth between
DRA ESPAR in [47] and microstrip ESPAR in [43] was more or less the same. Thus,
this research proposes a new concept of DRA ESPAR by using higher-order mode
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excitation that have never been studied in ESPAR design. This will significantly result
in a higher gain, wider bandwidth and better of steering capability.

By taking the 5G’s specification requirements into consideration, the antenna
design should achieve the gain of more than 12 dBi [6]. With that, related work has
been done in [48], [49] , and [50] in determining potential frequency of 5G and meet
the specifications. Consequently, it has increased the antenna elements and the number
of phase controls, resulted in increase of cost and complexity of the design.

Based on these concerns, to secure a high-gain DRA array that is capable
of switching the direction beam, new high-gain DRA array design will be proposed
with a goal to steer the direction beam without using any external phase shifter. The
implementation of a new concept DRA ESPAR resulted in reducing the number of
antenna elements and phase controls.

1.3 Objective of the Research

This research is based on the following accompanying objectives:

1. To design and analyze a single element DRA by improving the gain (more than
5 dBi) and bandwidth (more than 1 GHz) that will be used to form a DRA
subarray.

2. To apply the selected most practicable design of single element DRA in
constructing the DRA subarray with switchable beam capability operating at
15 GHz.

3. To design high-gain (more than 12 dBi) switchable DRA array that consists of
the incorporated DRA subarray at 15 GHz.

By achieving the stated objectives with good performance results, the proposed high-
gain switchable DRA arrray can be a potential design solutions for 5G applications.
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1.4 Scope of the Research

This research focuses on the design of high-gain switchable DRA array that
is suitable for 5G applications requirement as stated in section 1.1. A high-gain
switchable DRA array, consists of switchable DRA subarray and power divider
network that is being integrated with switched-line phase shifter. In order to develop a
high-gain switchable DRA array, the scope of this research is divided into three parts,
which is single element DRA, switchable DRA subarray and high-gain switchable
DRA array. Prior to that, various investigation on different feeding techniques of
the single element DRA excited in the higher-order mode are studied at frequency
28 GHz. However, when the DRA is mounted on a ground plane, only odd mode can
exist in the z-direction of DR. Therefore, mode 5 (TEy

1δ5) in the z-direction is used
to investigate the different feeding technique for DRA after considering mode 3 is
nearly to the fundamental mode (TEy

1δ1) . Three techniques of the feeding structures,
which is microstrip line (ML), microstrip slot aperture (MSA) and open-end coplanar
waveguide (OECPW) are designed, simulated and optimized. The studies are carried
out in order to identify the best feeding technique that is most appropriate for 5G
requirements in terms of bandwidth, radiation pattern and gain of the single element
DRA especially those excited in the higher-order mode. The design, simulation and
optimization process are performed using Ansoft High Frequency Structural Simulator
(HFSS) ver. 16.0.

Next, based on the best feeding technique chosen, the single element DRA is
designed at 15 GHz for the realization of the fabrication and measurement process.
This is due to the limited range of the measurement facilities that up to 20 GHz.
According to research done in [51] and [52], there is not much difference in radiation
pattern behavior between the 28 GHz and 15 GHz antennas. However, the antenna
dimension at 15 GHz is slightly larger than 28 GHz due to its wavelength. The
analytical study of the single element which involved the DRA excited in the
fundamental mode (TEy

1δ1) and higher-order mode (TEy
1δ3) will be performed to

observe and compare the behavior in 5G performance. Then, the determining factors
of the coupling amount that can reduce the Q-factor and increased the bandwidth of
the antenna in the higher-order mode (TEy

1δ3) will be established. In this regard, the
higher-order mode is stipulated with an index numbers m = 1 and n = 3 at 15GHz.
With the excitation index number, n more than 3, it will increase the height of DRA
and resulted in very limited practical applications at 15 GHz.

Subsequently, the best performance of the single element DRA will be
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promoted as a driven element in the construction of DRA subarray. In order to steer
the beam, a phased array with analog beam steering capability will be designed. It will
conveniently be adjustable by changing the reactance of capacitors on the parasitic
elements. The investigation with regards to the beam steering in theory and based on
the simulation, as well as the six controlling ideal switches embedded in the feed line
of the parasitic elements are explained to manage the beam switching.

Lastly, the DRA subarray design is used and incorporated into a high-gain
DRA array by using power divider network. While, the phase shift between the DRA
subarray will be achieved by integrating the switched-line phase shifter at one of the
transmission line in the power divider network. The performance of high-gain DRA
array will be analyzed and investigated at 15 GHz. All fabricated design are verified
and experimentally tested by using a vector network analyzer (VNA) and measured
in an Anechoic Chamber. The simulated and measured results, including reflection
coefficients, bandwidth, gain and switching angle, are then analyzed and discussed.

1.5 Contribution of the Research

In this thesis, four major contributions are presented. The first contribution is
the determination of microstrip slot aperture (MSA) as the best feeding technique of the
single element DRA excited in the higher-order mode, TEy

1δ5 at 28 GHz compared to
microstrip line (ML) and open-end coplanar waveguide (OECPW). This investigation
neither being done nor reported by other researchers and publications.

The second contribution is a design of higher-order mode DRA with enhanced
bandwidth and gain at 15 GHz. The higher-order, TEy

1δ3 mode has been utilized by
increasing the dimension of DR in normal to ground plane directions with the spacing
between the short magnetic dipole corresponds to 0.46λ. It has achieved the antenna
gain at 9.76 dBi in comparison to 5.6 dBi for the fundamental mode. Then, the amount
of coupling involving the slot width (Ws), the stub lengths (S), and the microstrip
line widths (W ) is altered to reduce the Q-factor of the higher-order mode DRA. This
causes significant impact to the impedance bandwidth such that it achieved 2.5 GHz
for the single element DRA excited in the TEy

1δ3 mode compared to 1.8 GHz for DRA
excited in TEy

1δ1 mode.

The third contribution is a new design and analysis of DRA subarray that
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consists of one driven DR and two parasitic DRs. The implementation of higher-order
mode (TEy

1δ3) DR as a driven element while fundamental mode (TEy
1δ1) DR as the

parasitic element has successfully achieved a strong mutual impedance between the
elements that improved the switching angle. In addition, the design has produced a
narrower half-power beamwidth (HPBW) particularly when the beam is switched due
to no degeneration occurs between the driven DR (TEy

1δ3 mode) and the parasitic DRs
(TEy

1δ1 mode).

Then, the last contribution is concerning the new design of high-gain
switchable DRA array. The design is formed by incorporating two switchable DRA
subarray with power divider network. Meanwhile, the phase shift between the DRA
subarray is achieved by integrating the switched-line phase shifter at one of the
transmission line in the power divider network. Apart from using external phase
shifter, the design contributes in reducing the number of antenna and control elements
with the best switching angle at ±30 degrees that is capable in covering 60° sector.
Accordingly, with specifications accomplished from the proposed design, it can be
considered as a great potential for 5G applications.

1.6 Thesis Outline

This section discusses the thesis outline which is divided into seven chapters.
Chapter 1, which discusses the overview of the whole project, comprises research
background, problem statement, objectives of the research, scope of the research,
contributions of the research, and lastly, thesis outline.

Meanwhile in Chapter 2, it focuses on the literature reviews, where the basic
concept of dielectric resonator antenna with bandwidth and gain enhancement, antenna
array and beam steering techniques are elaborated. Furthermore, previous works are
reviewed, which mainly focus on beam steering techniques by using parasitic elements
and related work for 5G applications.

In Chapter 3, the methodology of this research is discussed. The research
work flows of the whole research are presented, which includes design specifications,
research method framework, selection of substrate and the process of antenna
fabrication, testing and measurement.
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Next, in Chapter 4, design of single element DRA with different excitation
mode are presented and described. Initially, the performance of single element DRA
excited in the TEy

1δ5 mode with three different feeding techniques which are ML feed,
MSA feed and OECPW feed are investigated at 28 GHz. Then, the best feeding
technique is selected and used to determine the best thickness of the RT/Duroid 5880
substrate for the optimum antenna performance. Subsequently, the single element
DRA excited in the fundamental mode, TEy

1δ1 with the best feeding technique is
designed at 15 GHz for realization of the fabrication and measurement process.
Correspondingly, the higher-order, TEy

1δ3 mode DRA is designed and analyzed to
enhance the gain and bandwidth. The Q-factor is further reduced by controlling the
amount of coupling that involves the slot width (Ws), the stub lengths (S), and the
microstrip line widths(W ).

In Chapter 5, two types of switchable DRA subarray configuration designs
are proposed by utilizing the higher-order, TEy

1δ3 mode DR as a driven element.
Performance of the both configuration are observed and compared especially in terms
of gain, bandwidth, angle of switching and HPBW. The analysis and performance of
the designed switchable DRA subarray are described and discussed thoroughly in this
chapter. The best configuration is selected to be incorporated in the construction of the
high-gain switchable DRA array in Chapter 6.

In Chapter 6, the high-gain switchable DRA array are designed and presented.
The design consist of the DRA subarray integrated with the power divider network and
switched-line phase shifter. The results of the power divider network and switched-
line phase shifter are elaborated and analyzed. Also, comparison of various designs’
performances with the other related work is further explained in this chapter.

Lastly, in Chapter 7, the conclusion is drawn. The findings of the research,
contributions and recommendations for future works are proposed and described.
Additionally, the list of references and appendices are provided at the end of this thesis.
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