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ABSTRACT

This thesis proposes methods to improve the performance of a Direct Torque
Control (DTC) of induction motor drives. The basic principle and theoretical aspects
of the DTC using a conventional inverter (DTC-Conv) and the DTC using a 5-level
Cascaded H-Bridge Multilevel Inverter (DTC-CHMI) are reviewed with emphasis on
two major problems: high torque and flux ripple and variable switching frequency.
Based on the basic principle of the DTC, torque and flux are directly controlled by
selecting appropriate voltage vectors. A DTC-Conv offers eight voltage vectors to
increase (or decrease) both torque and flux. Regardless of the torque’s demand, for the
DTC-Conv, the application of voltage vector is limited to these eight voltage vectors.
This will give a high torque and flux ripple because of the possible voltage vector
selected is not optimal for the condition. Based on the investigation, by proposing the
DTC-CHMI, a smaller torque and flux ripple can be achieved. Moreover this method
offers a good torque response. This is due to the capability of the DTC-CHMI to offer
61 voltage vectors which give more options to choose the most optimum vector for
any circumstances. In addition, less switching burden on the switching devices for
the DTC-CHMI compared to DTC-Conv, which results in a lower power rating device
to be used. It is well known that the implementation of the DTC-Conv consists of
a hysteresis-based controller which results in a variable switching frequency in the
switching devices. This undesirable condition will affect the inverter design since
it is related to the rate of change of the torque which varies with various operating
conditions. Therefore, this thesis proposes the proportional-integral controller constant
switching frequency together with the DTC-CHMI to replace the DTC-Conv with a
hysteresis-based controller. The proposed torque controller consists of three pairs
of triangular carrier signals with three pairs of comparators. With this proposed
controller, the variation of switching frequency can be narrowed and fixed at the carrier
frequency. Furthermore, it minimizes the torque ripples. Design of the proposed
controller is thoroughly discussed in this thesis. To verify the enhancement made by
the proposed method, simulation and experiment, as well as the comparison with the
DTC-Conv were carried out. Results prove that by using the proposed system, torque
and flux ripple are reduced by 38.5% and 7.76% respectively. Apart from that, the
switching frequency is fixed at 1.667 kHz and a less distorted sinusoidal phase current
is obtained.
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ABSTRAK

Tesis ini mencadangkan kaedah untuk meningkatkan prestasi bagi sebuah
Kawalan Daya kilas Terus (DTC) untuk motor aruhan. Prinsip asas dan teori bagi
DTC konvensional (DTC-Conv) dan DTC menggunakan penyongsang 5 aras berbilang
tingkat terlata secara titian H (DTC-CHMI) diulangkaji dengan menekankan kepada
dua masalah utama: riak daya kilas dan fluks yang tinggi dan frekuensi pensuisan
yang berubah. Berdasarkan prinsip asas DTC, daya kilas dan fluks dikawal secara
terus dengan memilih vektor voltan yang sesuai. DTC-Conv menawarkan lapan
vektor voltan untuk menaikkan (atau menurunkan) daya kilas dan fluks. Tanpa
mengira permintaan daya kilas, bagi DTC-Conv, penggunaan vektor voltan adalah
terhad kepada lapan vektor voltan ini. Ini menghasilkan riak daya kilas dan fluks
yang besar disebabkan kemungkinan vektor voltan yang dipilih tidak optimum
bagi keadaan tersebut. Berdasarkan kajian ini, dengan mencadangkan DTC-CHMI,
riak daya kilas dan fluks yang kecil dapat diperolehi. Tambahan pula kaedah ini
menawarkan sambutan daya kilas yang pantas. Ini disebabkan oleh kemampuan DTC-
CHMI menawarkan 61 vektor voltan yang memberi banyak pilihan vektor paling
optimum dibuat bagi setiap keadaan. Ini ditambah dengan kurangnya bebanan ke atas
peranti suis pada DTC-CHMI berbanding DTC-Conv, yang membolehkan penggunaan
kadaran kuasa peranti yang rendah. Sudah diketahui bahawa perlaksanaan DTC-Conv
menggunakan pengawal histeresis mengakibatkan frekuensi pensuisan yang berubah.
Keadaan yang tidak diingini ini akan mempengaruhi reka bentuk penyongsang oleh
kerana ia berkaitan dengan kadar perubahan daya kilas yang berubah mengikut
keadaan operasi. Oleh itu, tesis ini mencadangkan pengawal kamiran berkadaran
frekuensi pensuisan malar bersama dengan DTC-CHMI bagi menggantikan DTC-
Conv dengan pengawal histeresis. Pengawal daya kilas yang dicadangkan ini
mengandungi tiga pasang isyarat pembawa segitiga dan tiga pasang pembanding.
Dengan pengawal ini, variasi frekuensi pensuisan akan malar pada frekuensi isyarat
pembawa. Tambahan pula, ia meminimumkan riak daya kilas. Reka bentuk pengawal
ini diterangkan secara mendalam di dalam tesis ini. Untuk menentusahkan peningkatan
prestasi kaedah yang dicadangkan, simulasi dan ujikaji, dan juga perbandingan dengan
DTC-Conv telah dijalankan. Keputusan membuktikan bahawa dengan menggunakan
sistem yang dicadangkan, riak daya kilas dan fluks masing-masing berkurang sebanyak
38.5% dan 7.76%. Selain dari itu, frekuensi pensuisan malar pada 1.667kHz dan arus
fasa sinus kurang herot diperolehi.
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īs, īr - Stator and rotor current space vector in stationary

- reference frame

isd, isq - d and q component of stator current in stationary reference

- frame

ird, irq - d and q component of rotor current in stationary reference

- frame

J - Moment of inertia

B - Viscous Friction

Kp - Proportional gain of the PI controller

Ki - Integral gain of the PI controller

Lm - Mutual inductance



xix

Ls - Stator self-inductance

Lr - Rotor self-inductance

p - Number of pole

Rs, Rr - Stator and rotor resistance

Ψ∗ - Stator flux reference

Ψerr - Stator flux error

Ψstatus - Stator flux error status

Ψest - Estimated stator flux

T ∗ - Torque reference

Terr - Torque error

Tstatus - Torque error status

Test - Estimated torque

Tc - PI controller output

v̄s - Stator voltage space vector in stationary reference frame

Vsd, Vsq - d and q component of stator voltage in stationary reference

- frame

VaN , VbN , VcN - Output phase voltage of CHMI for phase a, b and c

θsr - Difference angle between stator flux linkage and rotor flux

- linkage

Ψ̄s, Ψ̄r - Stator and rotor flux linkage space vector in stationary

- reference frame

Ψsd,Ψsq - d and q component of stator flux linkage in stationary

- reference frame

ωr - Rotor electrical speed in Rad/s

ωm - Rotor mechanical speed in Rad/s

ωe - Steady state synchronous frequency in Rad/s

ωslip - Steady state slip frequency in Rad/s

σ - Total flux leakage factor

τr - Rotor time constant



xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A List of Publication 147
B Derivation Of Torque 148
C Derivation of d(s)

Tc(s)
150

D Gate Driver Schematic 154
E MATLAB Embedded C Code 155
F VHDL Code For FPGA 161



CHAPTER 1

INTRODUCTION

1.1 Introduction

Electrical machines play an important role in the industry as well as in our
daily life. It has been employed in almost every industrial and manufacturing process
of various types and sizes. For example electrical machines can be used to provide
electricity in a power plant or to provide mechanical work such as in steel mills, textiles
mills, and similar industries.

There are three types of basic electrical machines; DC machines, induction
machines and synchronous machines. These basic electrical machines can either be
generators or motors. Owing to the fact that induction machines are maintenance free
with a simple construction, reliable and rugged, they have been widely used in various
industrial and manufacturing processes. This type of motor was initially constructed at
the end of the 19th century and improvements were made to its performance during the
20th century, reaching maturity in the late 1930’s [1]. In contrast to the DC machine,
an induction machine can be used in an explosive, corrosive or any harsh environment
since the latter has no problems with spark and corrosion due to the commutator and
the brushes as experienced in the former.

Despite these advantages, the induction machines (IM) however, suffer from
control problems when used in high-performance adjustable speed drive (ASD)
applications. Controlling IM is considerably more complex than controlling DC
machines. There are several ways to control an IM. It can be classified into two general
control methods: scalar control and vector control. In scalar control, the variations
in the control variables are only concerned with the magnitude and frequency of the
voltage, current and flux linkage space vectors. Whereas, in the vector control, the
variations in the control variables include the instantaneous position together with the
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magnitude and frequency of the voltage, current and flux linkage space vectors.

For IM, vector control is the most suitable control method when it is used
in high-performance ASD applications. Based on the early works of F. Blaschke
[2] and K. Hasse [3, 4], the Field Oriented Control (FOC) has been proposed as a
high-performance control method for IM. This type of control is based on the rotor-
flux oriented which means that the rotor-flux vector is the orienting vector of the
controller. This method enables induction machines to emulate the separately excited
DC machines and gives the induction machines high dynamic performance. Other than
that, FOC also can be controlled based on the stator-flux orientation which is known
as Stator Flux Oriented Control (SFOC) [5, 6]. In contrast to the rotor-flux FOC,
SFOC does not require the knowledge of rotor speed. Therefore it is more robust to
parameter variations and easier to implement [7]. However there is literatures that has
reported drawbacks of using FOC as a control method such as poor dynamic response,
high torque and flux ripples and the complexity of the system configuration due to the
employment of a position sensor for coordinate transformation of the IM parameters.

1.2 Background of Direct Torque Control

In the early 1980s, an innovation of FOC has been created by I. Takahashi and
T. Noguchi [8] and M. Depenbrock [9] by omitting the coordinate transformation block
and replacing it with the hysteresis controller for the developed torque and stator flux.
In addition, the approach for the inverter control is clearly different from that FOC.
This control strategy is referred to as Direct Torque Control (DTC). This controller has
continuously been improved and developed by many researchers since it was proposed
in the early 1980s. As a result, in 1996, the first speed-sensorless DTC induction
motor drive was introduced by ABB [10, 11]. This simple control scheme which
offers a better high-performance torque control for the induction machine and it has
gained popularity and continue expanding as a main vector control drives in industry
applications.

The basic DTC configuration that was proposed by I. Takahashi and T. Noguchi
is illustrated in Figure 1.1. It consists of a pair of hysteresis comparators, voltage
model torque and flux estimator, look-up table for voltage vector selection and 3-phase
voltage source inverter (VSI).
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Inverter
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Hysteresis 
Controller
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F*

T*
+

-

+

-
θ

Figure 1.1: Basic DTC configuration

In the DTC scheme, the torque and stator flux are separately controlled using
3-level and 2-level hysteresis controllers, respectively. This control structure is also
known as the decouple control. The main objective of this control method is to
reduce the torque and stator flux errors to zero by using the hysteresis comparators.
An appropriate voltage vector will be selected based on the stator flux orientation
together with the torque and stator flux error status that is generated by the hysteresis
controllers. In order to select an appropriate voltage vector, it is vital to have
an accurate estimation of the flux and torque. Inaccurate estimation will result in
irrelevant voltage vector selection.

Voltage model is the basic method for estimating the stator flux which does
not require rotor speed parameter, i.e. only the stator resistance and terminal value
(stator voltage and stator currents) are required. Hence, it provides a robust control of
the DTC. However, this method is associated with noise in the voltage measurement,
integration drift, and initial conditions’ problem especially at low speed [12]. In the
year 2002, an improvement in terms of the technique in the voltage model based on the
stator flux estimation was introduced in [13]. This method has improved the stator flux
estimation under steady state conditions which lead to a quite significant improvement
in the DTC’s performance. The current model is another method for the stator flux
estimation which can solve the low speed problem. Nevertheless it needs an additional
speed sensor or observer since this method requires the knowledge of rotor speed.
In [8], a combination of voltage model and current model flux estimation using a
simple first-order lag network have been applied in order to obtain an appropriate flux
estimator for the entire speed range.



4

The device switching frequency in hysteresis-based DTC scheme is totally
produced by the switching of the torque and flux hysteresis controller. According
to the [14], it is clearly shown that the device switching frequency vary with the motor
operating conditions (i.e. stator and rotor fluxes, rotor speed and DC link voltage). The
variable device switching frequency is undesirable since it will create an unpredictable
harmonics in the current flow. Furthermore the inverter maximum switching capability
is not fully utilized since the selection of the hysteresis band’s width is based on the
system’s extreme condition which is limited by the thermal ratings of the switching
devices. As a result, the operation other than in extreme conditions is not optimized.

1.2.1 Variation of The DTC Implementation

Since DTC was introduced in mid 1986 [8], it has been experiencing
continuous improvement and further development by many researchers throughout the
years. Most of the research’s major areas of concern on reducing the torque and flux
ripple, achieving fast torque response and obtaining constant switching frequency. In
order to achieve this, various methods have been proposed. The DTC with the Space
Vector Modulation (SVM) [15, 16], the predictive control method [17, 18, 19] and
the artificial intelligence (AI) control [20, 21, 22] are the popular non-hysteresis based
techniques. It shows a great improvements to the DTC’s performance and produce a
constant switching frequency. However, these types of method will diminish the simple
structure inherent in the DTC. In addition, these methods have increased the drive
complexity which needs a faster processor to run it. Variable hysteresis band technique
is another method that had been proposed to overcome the inherent drawbacks of the
hysteresis-based DTC[14, 23, 24]. By adjusting the hysteresis controller’s band-width
according to the operating conditions, a constant switching frequency can be achieved.
However this method does not guarantee the reduction of the flux and torque ripple,
especially in discrete implementation due to the sample time selection [25].

The evolutions and improvements of the DTC scheme continue to emerge until
now. Due to the rapid development on the high-power-medium-voltage in AC drive
applications, the use of multilevel inverter in the AC drive has become more popular
recently. As in the DTC scheme, a conventional 3-phase inverter has been replaced
by a multilevel inverter. There are numerous technical papers that have shown the
improved performance of the DTC using multilevel inverter.
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By employing the multilevel inverter in the DTC scheme, it gives more options
in choosing a voltage vector to control flux and torque. Several approaches of the
torque and flux control and switching strategies have been proposed for the DTC using
a multilevel inverter; hysteresis-based controller and non-hysteresis-based controller
such as the space vector modulation (SVM) [26, 27, 28, 29, 30, 31, 32, 33], the
predictive control strategy [34, 35, 36] and the fuzzy logic controller [37, 38, 39, 40].
The implementation of the hysteresis-based control strategy still faces a problem with
the torque ripple especially in discrete implementation even with a small hysteresis
band. This is due to the delay in the sampling time. On top of that, the variable
switching frequency of the switching devices which leads to unpredictable harmonics
current is also produced by implementing the hysteresis-based control strategy. As for
the non-hysteresis-based control strategies, significant improvements in terms of flux
and torque ripple and switching frequency are accomplished by using these control
strategies. However, the use of complex mathematical equations and algorithms has
led to the computational burden and complexity of the DTC using a multilevel inverter
scheme especially when the level of voltage is increased. A detailed discussion of the
DTC using a multilevel inverter will be given in Chapter 2.

1.3 Problem Statement

A major area of concern in the DTC scheme is reducing the torque and flux
ripple, achieving faster torque response and obtaining constant switching frequency
besides having a simpler control strategy. Traditionally, the DTC scheme is using a
3-phase inverter to supply the induction motor. In order to regulate the torque and
flux value within its desired value, an appropriate voltage vector needs to be selected
to correct the errors. However, this 3-phase inverter only can offer a limited voltage
vector (8 voltage vectors) whereby these voltage vectors are used either to increase or
decrease torque and/or flux regardless of the error size (large or small error). Hence,
this produces a slow torque response and a high torque and flux ripple which causes
an acoustic noise and vibration to the induction motor. Besides that, by having a high
ripple of flux and torque, it will lead to a high ripple of the stator phase current which
contains high harmonic components. This, in turn, causes high switching losses in
the inverter and needs a higher rating for the switching devices due to the high peak
current. Furthermore, the use of the hysteresis controller in the DTC using a 3-phase
inverter will cause a variable device’s switching frequency. This uncertain variations
of switching frequency is undesirable since it will create an unpredictable harmonics
in the current flow. Moreover, it will cause an inverter switching capability not to be
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fully utilized since the selection of the hysteresis band’s width will be based on the
system’s extreme condition which is limited by the switching device’s thermal ratings.
As a results, the operation other than in the extreme conditions is not optimized.

1.4 Thesis Objective

The objective of this thesis is to study, implement and improve the performance
of the DTC using a multilevel inverter for induction machines. The thesis proposes a
method of improvements in terms of stator flux and torque ripple reduction, constant
switching frequency, good dynamic response and less distortion in the stator phase
current.

1.5 Thesis Contributions

While conducting the research, the thesis makes the following contributions:

• It proposes a multilevel hysteresis torque and flux controller for the DTC using
a 5-level cascaded H-bridge multilevel inverter, which has further minimized the
torque and flux ripple, faster torque response and smoother stator phase current
compared to the conventional DTC scheme.

• It proposes a constant frequency torque controller to replace a multilevel
hysteresis torque controller in [41], which results in constant torque switching
frequency as well as the switching devices switching frequency, reduced torque
ripple, enhanced torque and flux responses and smoother stator phase current.

• It develops a model for the proposed torque controller as a guide in selecting
appropriate parameters for the controller. It includes averaging and linearizing
the torque equations, and constructing the torque loop transfer function in the
frequency domain.

• It develops a simulation and experimental set-up to verify the proposed controller
schemes to DTC drive. The simulations are based on MATLAB and Simulink
program from Mathworks, Inc. and the experimental set-up consist of dSpace
DS1104 hardware platform as the main controller board and Altera DE2 FPGA.
The main purpose of incorporating these DS1104 and DE2 FPGA board in the
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experimental set-up is to minimize a sampling period of main controller board
(DS1104) while operating the proposed controller schemes.

1.6 Scope of Research

This research focuses on implementing a 3-phase 5-level cascaded H-bridge
multilevel inverter to a DTC scheme for a 3-phase induction motor. This study
focuses on evaluating the enhancement of the DTC scheme with a 5-level cascaded
H-bridge multilevel inverter performance in terms of reducing torque and flux ripple,
achieving faster torque response and constant switching frequency compared to the
DTC-conventional (DTC using 3-phase inverter). It will include a simulation study on
the developed system through MATLAB/Simulink, followed by the experimental work
to verify and evaluate the feasibility of the developed system. Both results are used to
analyse the performance of the proposed system.

1.7 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 describes the mathematical modelling of induction machines and the
basic principles of DTC. Problems associated with the DTC in discrete implementation
such as high torque ripple and flux ripple and variable switching frequency are
discussed. This chapter also briefly reviews research development in DTC using a
multilevel inverter for induction motors.

Chapter 3 discusses a methodology of the proposed DTC drives using a 5-level
cascaded multilevel inverter for induction motors. There are two methods of DTC
drives using 5-level cascaded multilevel inverter; a multilevel hysteresis torque and
flux controller and a constant frequency torque controller. The procedure in developing
both methods are discussed in this chapter.

Chapter 4 discusses a simulation and experimental set-up for a DTC using a 5-
level cascaded multilevel inverter with a multilevel hysteresis torque and flux controller
and DTC using 5-level cascaded multilevel inverter with constant frequency torque
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