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ABSTRACT

The detection of nitrite (N 0 2 ) and nitrate (N 03 ) ions is important since these ions 
are closely related to environmental remediation and human health. Rapid, sensitive, and yet 
reusable sensors are o f great importance for such applications. In the present study, novel 
materials were developed as fluorescence sensors for detection o f N 0 2 and N 0 3 . Metal- 
free carbon nitride (CN) was modified with several different polymers, namely polyvinyl 
pyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG) and polyaniline 
(PANI). The series of polymer(x%)-CN composites (x = 1, 3 and 5 w/w%) were prepared by 
a simple impregnation method using two types o f CN, namely bulk CN (BCN) and 
mesoporous CN (MCN). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) 
spectroscopy results revealed that the chemical structures o f the BCN and the MCN did not 
change with the addition of polymers. In contrast, the specific surface area of the BCN and 
the MCN decreased with the addition o f the polymers, suggesting the presence o f the 
polymers in the composites. Fluorescence spectroscopy of both BCN and the MCN revealed 
three absorption and excitation peaks, which corresponded to N=C, C=0, and terminal C-N 
sensing sites. Depending on the type o f added polymer, the emission intensities of BCN and 
MCN were found to either decrease or increase, suggesting the occurrence o f interactions 
between the emission sites and the added polymers. The fluorescence sensor capabilities of 
the prepared samples were investigated using the quenching test for the detection o f N 0 2 
and N 0 3 in the range o f 5-40 and 3-18 x 103 mol, respectively. All polymer(x%)-CN 
composites gave almost linear Stem-Volmer plots for quenching of N 0 2 and N 0 3 . 
suggesting their potential ability as fluorescence sensors for detection of both N 0 2 and 
N 0 3~. Interestingly, all composites showed superior sensitivity towards N 0 2 than N 0 3 . 
While specific surface area might not be the direct crucial factor, porosity and larger surface 
area o f MCN than BCN might provide better dispersion of polymers, which in turn resulted 
in better sensing performance. Among the composites, the PVP(3)-MCN showed the highest 
sensitivity towards both N 0 2 and N 0 3 . As for the detection o f N 0 2 . PVP(3)-MCN gave 
the highest quenching efficiency with Stem-Volmer quenching constant (Ksi ) values o f 13.5 
x 1CT3 m o l1, 12.5 x 1CT3 m o l1, and 10.5 x 10~3 m o l1 at N=C, C=0, and terminal C-N 
sensing sites, respectively. As for the detection of N 0 3~, PVP(3)-MCN gave the highest KSr 
values of 21.3 x 10~6 m o l1, 23.9 x 10~6 m o l1, and 24.2 x 10~6 m o l1 at N=C, C=0 and 
terminal C-N sensing sites, respectively. Since the KSr value for N 0 2 detection was much 
higher than that for N0 3 detection, this study showed that the composite was more sensitive 
for the detection o f N 0 2~. These could be due to the smaller size and higher polarity o f N 0 2 
compared to N 0 3~. Reproducibility, limit o f detection (LOD), reusability, and selectivity 
studies were carried out on the best sensor (PVP(3)-MCN) for the detection o f N 0 2 . It was 
revealed that PVP(3)-MCN composite showed good reproducibility with LODs o f 2.9, 4.6 
and 5.2 mol at N=C, C=0 and terminal C-N sensing sites, respectively. The reusability test 
showed that the quenching efficiency o f the PVP(3)-MCN did not change much after four 
cycles o f quenching test for N 0 2 detection. PVP(3)-MCN also showed great selectivity for 
the detection of N 0 2~ in the presence o f Cl . P04 or S 042 . These results demonstrated the 
potential capability o f PVP(3)-MCN as a fluorescence sensor for N 0 2 .
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ABSTRAK

Pengesanan ion nitrit (N 02 ) dan nitrat (N 03 ) adalah sangat penting kerana ion-ion ini 
berkaitan rapat dengan pemulihan alam sekitar dan kesihatan manusia. Pengesan yang pantas, 
sensitif, dan boleh diguna semula adalah sangat penting bagi aplikasi seperti ini. Dalam kajian 
ini, bahan baharu telah dibangunkan sebagai pengesan pendarfluor untuk pengesanan N 0 2 dan 
N 0 3 . Karbon nitrida bebas-logam (CN) telah diubahsuai dengan beberapa polimer yang 
berlainan, iaitu polivinilpirolidon (PVP), polivinil alkohol (PVA), polietilena glikol (PEG) dan 
polianilin (PANI). Siri komposit polimer(x%)-CN (x = 1, 3 dan 5 w/w%) telah disediakan 
melalui kaedah pengisitepuan mudah menggunakan dua jenis CN, iaitu CN pukal (BCN) dan CN 
mesoliang (MCN). Keputusan spektroskopi pembelauan sinar-X (XRD) dan spektroskopi 
inframerah transformasi Fourier (FTIR) telah mendedahkan bahawa struktur kimia BCN dan 
MCN tidak berubah dengan penambahan polimer. Sebaliknya, kawasan permukaan tertentu BCN 
dan MCN berkurangan dengan penambahan polimer, mencadangkan kehadiran polimer di dalam 
komposit. Spektroskopi pendarfluor bagi kedua-dua BCN dan MCN menunjukkan tiga puncak 
penyerapan dan pengujaan, yang sepadan dengan tapak pengesan N=C, C=0, dan C-N terminal. 
Bergantung kepada jenis polimer yang ditambah, keamatan pancaran BCN dan MCN didapati 
sama ada menurun atau meningkat, mencadangkan berlakunya interaksi antara tapak pancaran 
dan polimer yang ditambah. Keupayaan pengesan pendarfluor sampel yang disediakan telah 
dikaji menggunakan ujian pelindapan untuk pengesanan N 0 2 dan N 0 3 masing-masing dalam 
julat 5-40 dan 3-18 x 103 mol. Semua komposit polimer(x%)-CN memberikan plot Stem-Volmer 
yang hampir lums untuk pelindapan N 0 2 dan N 0 3 , mencadangkan potensi keupayaan mereka 
sebagai pengesan pendarfluor untuk mengesan kedua-dua N 0 2 dan N 0 3 . Menariknya, semua 
komposit menunjukkan kepekaan yang unggul terhadap N 0 2 daripada N 0 3 . Manakala 
permukaan tertentu mungkin bukan menjadi faktor penting secara langsung, keliangan dan 
kawasan permukaan MCN yang lebih besar daripada BCN mungkin memberikan penyebaran 
polimer yang lebih baik, seterusnya menghasilkan prestasi mengesan yang lebih baik. Antara 
semua komposit, PVP(3)-MCN menunjukkan sensitiviti tertinggi terhadap kedua-dua N 0 2 dan 
NO3 . Bagi pengesanan N 0 2 , PVP(3)-MCN memberikan kecekapan pelindapan tertinggi dengan 
nilai pemalar pelindapan Stem-Volmer (K Sr) masing-masing 13.5 x 10'3 mol"1, 12.5 x 10'3 mol"1, 
dan 10.5 x 10'3 mol"1 pada tapak pengesan N=C, C=0, dan terminal C-N. Bagi pengesanan N 0 3 , 
PVP(3)-MCN memberikan nilai K sv  tertinggi masing-masing 21.3 x 10"6 mol"1, 23.9 x 10"6 mol"1, 
dan 24.2 x 10'6 mol"1 pada tapak pengesan N=C, C=0 dan terminal C-N. Oleh kerana nilai K Sr  
untuk pengesanan N 0 2 adalah lebih tinggi daripada pengesanan N 0 3 , kajian ini menunjukkan 
bahawa komposit adalah lebih sensitif bagi pengesanan N 0 2 . Ini berkemungkinan disebabkan 
oleh saiz yang lebih kecil dan nilai kekutuban N 0 2 yang lebih tinggi berbanding dengan N 0 3 . 
Kajian kebolehulangan, had pengesanan (LOD), kebolehgunaan semula, dan kepilihan telah 
dilakukan ke atas pengesan terbaik (PVP(3)-MCN) untuk pengesanan N 0 2 . Kajian ini 
mendedahkan bahawa komposit PVP(3)-MCN menunjukkan kebolehulangan yang baik dengan 
LOD masing-masing 2.9, 4.6 dan 5.2 mol pada tapak pengesan N=C, C=0 dan terminal C-N. 
Ujian kebolehgunaan semula menunjukkan bahawa kecekapan pelindapan PVP(3)-MCN tidak 
banyak berubah selepas empat kitaran ujian pelindapan bagi pengesanan N 0 2 . PVP(3)-MCN 
juga menunjukkan kepilihan yang hebat bagi pengesanan N 0 2 dengan kehadiran Cl , P 043 atau 
S042 . Hasil ini menunjukkan potensi kemampuan PVP(3)-MCN sebagai pengesan pendarfluor 
bagiN0 2 .
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Nitrite (NO2 ) and nitrate (NCb-) ions have been widely used in industrial and 

agricultural production and are ubiquitous in water and food, thus, they can be easily 

consumed by human. They have been classified as inorganic nitrogenous compounds 

that cause disease and hazardous to human health (Kroupova et al., 2008; Li et ah, 

2013; Wang et ah, 2009). Previous studies revealed that the healthy range for N 0 2 ~ 

and N 0 3'  in adult urine is in the range of 0.5 to 4 |jM and 300 to 1800 |jM, 

respectively (Tsikas et ah , 2007). High level of N 0 2 ~ and NCb” in the human urine 

represents a significant risk to health since it is directly responsible for 

methemoglobinemia or “blue baby syndrome” (Almeida et ah, 2010; Dutt et ah , 

2002; Hord et ah , 2009; Yeh et ah, 2012), carcinogenic nitrosamines (Li et ah ,

2012), gastric cancer (Ensafi 2010; Palanisamy et ah, 2014; Yang et ah , 2014), 

spontaneous intrauterine growth restriction (Kyrtopoulos et ah , 1989) and neural 

tube defects (NTDs) (Brender et ah, 2004). In the body, N 0 3 ~ can be converted to 

the N 0 2" that can further oxidize haemoglobin to form methemoglobin, which reduce 

the capability of the carrying oxygen to the whole body (Ensafi et ah, 2004).

Since the excess of the N 0 2 ~ and N 0 3 ~ in human may create health problems, 

a preventive way by monitoring the content of these ions in human body is very 

important. One of the established conventional methods is detection of N 0 2 ~ and 

N 0 3'  based on a spectrophotometry technique using a Griess reagent. The Griess 

reaction is specific for determination of N 0 2 ~ quantification, but it also can be used
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for determination of total N 0 2 ~ and NCb”. Therefore, when using the Griess reagent, 

the quantification of NCb” has to be determined separately (Thikas et al., 2007). 

Moreover, the spectrophotometric Griess reaction has numerous meddling factors 

since they are mostly inaccurate. Besides, the Griess reagent is also difficult to be 

reused due to the formation of complex compound during reaction with the analyte 

(Vahid et al., 2012). Therefore, development of a reusable and sensitive sensor to 

detect the presence of N 0 2 ~ and N O r is still highly required.

In this study, metal-free carbon nitride (CN) is proposed for the first time as a 

potential material for the N 0 2 ~ and NCb” detection. The CN is a stable allotrope of 

graphitic compound under ambient conditions. It is made up of nitrogen and carbon 

atoms as a building block in the structure to formed tri-s-triazine units (Huang et al., 

2014; Lee et al., 2010; Lee et al., 2012; Liu et al., 2011; Sam, et al., 2014; Xu et al.,

2014). Recently, the CN has attracted a great deal of scientific interest because some 

investigations have revealed its high photoluminescence (PL) intensity. These unique 

characteristics make the CN an ideal platform for bioimaging (Zhang et al., 2013), 

drug delivery (Lin et al., 2014) and sensing (Huang et al., 2014; Lee et al., 2010; Lee 

et al., 2012; Liu et al., 2011; Sam et al., 2014; Xu et al., 2014). The cubic 

mesoporous-ordered graphitic CN was reported as a selective optical sensor for the 

detection of trace amount of metal ions, such as copper ions (Lee et al., 2010). 

Besides, it was also reported to give high sensitive detection to cyanide with low 

limit of detection of 80 nM in aqueous solution and yet in human blood serum (Lee 

et al., 2012). The CN also showed good interactions with the A'-ni trosopyrrolidine 

(Sam et al., 2014). Therefore, it is expected that the CN can also interact with other 

nitrogen-containing compounds and the function of the CN as a fluorescence sensor 

for both N 0 2" and N O r detection is investigated in this study.

Although the CN is expected to be sensitive to N0 2 ~ and NCb” detection, but 

the modification of CN is still required for further improve its sensing performance. 

One of the approaches would be by increasing the amount of the active sites that able 

to improve the interactions between the CN and the N 0 2 ~ and N O r ions. In this 

study, some polymers, which are polyvinylpyrrolidone (PVP), polyvinyl alcohol 

(PVA), polyethylene glycol (PEG) and polyaniline (PANI), were used as the
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modifiers for the CN. These polymers can act as modifiers due to the presence of 

oxygen and nitrogen functional groups on the structure, which is expected to increase 

the possible sites for interactions with the analytes. Recently, it was reported that 

PVP solution showed good interaction with the N O r (Tang et al., 2015), while PVA 

composites were demonstrated as superior polymer matrix materials for 

photoluminescence due to the presence of OH functional groups in the backbone 

(Guan et al., 2006). As for PEG, it was reported that PEG could be used as a solid 

matrix on the surface membrane sensor that enhanced the sensing performance for 

the detection of copper ions (Zheng et al., 2003). On the other hand, PANI composite 

was reported to give high sensitivity towards ammonia exposure at room temperature 

(Wu et al. 2013), as well as NO2 gas due to the conjugated properties of the PANI 

(Kumar et al., 2010). Since the effect of these polymers as modifiers to improve the 

sensing cabability of the CN has never been reported yet, it is worthy to investigate 

the properties and effect of different types of polymers on the polymer-modified CN 

for N 0 2" and N 0 3 ~ detection in sensing application.

1.2 Statement of Problem

The Griess reagent has been widely used in medical purpose to N 0 2 ~ and 

N 0 3'  detection in human body fluid such as urine, sweat and blood serum. In the 

Griess reaction, N 0 2 ~ reacts with the sulphanilic acid which made up of aromatic 

amine in order to form a diazonium salt, which then reacts with 

tetrahydrobenzoquinoline to produce pink azo dye. Despite that this conventional 

method is only for single use due to the formation of complex compound between 

N 0 2" and the Griess reagent, which is difficult to be separated. Therefore, in the 

point of view of green chemistry, the development of a new reusable sensor material 

for detection of N 0 2 ~ and N 0 3 ~ would be a great benefit in this study.

In the previous studies, the CN has been reported to exhibit good sensing 

capability for detection of nitrogen containing compounds such as N- 

nitrosopyrrolidine (Sam et al., 2014) and cyanide (Lee et al., 2012). Unfortunately,
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no study has been conducted to use the CN as a fluorescence sensor for the detection 

of N 0 2 ~ and N 0 3“. Besides, the effect of CN properties, such as specific surface area 

that might affect the efficiency on the sensing performance for the detection of N 0 2 ~ 

and N 0 3'  is still unclear. In this study, since the surface area of the CN can be 

controlled via generation of mesoporosity (Lee et al., 2012), both bulk carbon nitride 

(BCN) and mesoporous carbon nitride (MCN) were investigated in this study to 

clarify the influence of specific surface area, porosity and functional group on the 

sensing performance for the detection of N 0 2 ~ and N O r.

Nonetheless, the modification of CN with polymers is one important 

parameter to further enhance the sensing performance of CN by increasing the 

sensing sites and promoting better interactions with N 0 2 ~ and N 0 3“. Previous study 

reported that four types of polymers, which are PVP, PVA, PEG and PANI act as 

good modifiers for sensing application (Burgess et al., 2008; Du et al., 2007; Huang 

et al., 2014; Inverson et al., 2013; Mirmohseni et al., 2003; Sidek et al., 2013; Wang 

et al., 2007; Wu et al., 2013). These polymers have different functional groups that 

would give different effects on the properties and the sensing performance of the CN, 

which however, have never been addressed previously. Therefore, this study 

investigated the effect of different types of polymers on the formation and properties 

of the polymer-modified CN as fluorescence sensor for the detection of N 0 2 ~ and 

N 0 3“

1.3 Objectives

In this study, there are several objectives need to be accomplished in order to 

investigate the sensing performance of the CN (BCN and MCN) and the polymer- 

modified CN as sensor materials for the detection of the N 0 2 ~ and N 0 3“. The 

objectives of this research are:

1) To synthesize the CN and the polymer-modified CN with various loading 

amounts of different polymers (PVP, PVA, PEG and PANI).
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2) To determine the properties of the synthesized CN and polymer-modified CN 

materials.

3) To investigate the sensitivity, reproducibility, limit of detection (LOD), 

reusability, and selectivity of the CN and the polymer-modified CN for 

detection of the N 0 2 ~ and NCb”.

1.4 Scope of Study

In this study, the BCN was synthesized only from urea precursor via thermal 

polymerization approach. The nanocolloidal silica (7 nm) was used as the only hard 

template for the preparation of the MCN. Meanwhile, four different types of 

polymers (PVP, PVA, PEG and PANI) were used as modifiers to prepare the series 

of polymer-modified CN with different loadings of polymers (1, 3 and 5 wt%) by 

using an impregnation method. The prepared materials were characterized using X- 

ray diffraction (XRD) diffractometry, Fourier transform infrared (FTIR) 

spectroscopy, nitrogen adsorption-desorption analysis, and fluorescence 

spectroscopy.

The comparison study on the sensing performance over BCN and MCN was 

conducted in order to point out the importance of specific surface area for the 

detection of N 0 2 ~ and N O r. On the other hand, the performance of the polymer- 

modified CN was compared to reveal the most suitable polymer as the modifier of 

the CN. The sensing performance was carried out via quenching tests at room 

temperature using the fluorescence spectroscopy. The ranges of the N 0 2 ~ and N 0 3 ~ 

amounts were fixed to 5-40 mol and 3-18x10 mol, respectively. The reproducibility 

and reusability tests were conducted only on the best fluorescence sensor for the 

detection of N 0 2 ~. In addition, the effect of interference ions, which were sulfate
2_ 3_ _

(SO4 ), phosphate (PO4 ), and chloride (Cl ) were also examined using the best 

sensor.
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