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ABSTRACT 
 
 
 
 

Palladium mediated catalysis has achieved an impressive place in numerous 
commercial chemical processes. In particular, due to its high surface area to volume 
ratio, palladium nanoparticles (PdNPs) show high reactivity that makes them a 
powerful catalyst for many organic transformations. Green synthesis of PdNPs 
employing plant extract has been suggested as eco-friendly alternatives to chemical 
and physical methods. In this research, the synthesis of PdNPs using Artocarpus altilis 
aqueous leaf extract was investigated. The biomolecules present in the Artocarpus 
altilis leaf extract are believed to act as reducing and as capping agent for the formation 
of PdNPs. Effect of reaction time, metal ion concentration, volume of leaf extract and 
pH of the extract on the formation of PdNPs were investigated and monitored using 
UV-vis spectroscopic analysis. The optimised conditions were used in the synthesis of 
PdNPs supported on the amine functionalised silica-coated magnetite nanoparticles. 
The use of magnetite as catalyst support is attractive since magnetic separation has 
emerged as a robust, highly efficient, and rapid catalyst separation tool. Meanwhile, 
ligand assisted method employing 3-(2-aminoethylamino)propyl trimethoxysilane 
(AEAPTS) covalently anchored the PdNPs thus controlled the PdNPs size and 
prevented agglomeration. The bio-stabilised PdNPs supported on the amine 
functionalised silica-coated magnetite (Fe3O4-SiO2-AEAPTS-PdNPs) catalyst was 
characterised using Fourier transform infrared spectroscopy (FTIR), CHN analysis, X-
ray diffraction (XRD), flame atomic absorption spectrophotometry (FAAS), high 
resolution transmission electron microscopy-energy dispersive X-ray spectroscopy 
(HRTEM-EDX), vibrating-sample magnetometer (VSM), zeta potential and X-ray 
photoelectron spectroscopy (XPS) analyses. The Fe3O4-SiO2-AEAPTS-PdNPs 
catalyst was then tested in the copper-free Sonogashira reaction under aerobic 
condition in water. Effect of base, catalyst amount, and temperature on the reaction 
conversion was investigated and monitored using gas chromatography-flame 
ionisation detection (GC-FID). The optimisation reaction between phenylacetylene 
and iodobenzene to yield diphenylacetylene successfully gave 90% conversion using 
0.2 mol% of Fe3O4-SiO2-AEAPTS-PdNPs catalyst with triethylamine as base at 60oC 
for 24 h. Fe3O4-SiO2-AEAPTS-PdNPs showed an impressive catalytic performance 
with turnover number of 450 and turnover frequency of 18.8 h-1. In addition, the 
recycle test result showed that the catalyst can be used up to four cycles without 
significant loss of catalytic activity. Fe3O4-SiO2-AEAPTS-PdNPs catalyst was further 
examined in the reaction between phenylacetylene and less reactive aryl halides which 
reacted well at 80oC and gave desired products with good yields. The coupling of 
bromobenzene and phenylacetylene gave good conversion of 49% while activated 
bromobenzene such as 4-bromoacetophenone and 1-bromo-4-nitrobenzene, bearing 
electron-withdrawing group at their para-positions gave better conversion of 53% and 
56%, respectively. All crude products were isolated and purified using column 
chromatography and were characterised using gas chromatography-mass spectrometry 
(GC-MS) and FTIR, 1H nuclear magnetic resonance (1H-NMR) and 13C nuclear 
magnetic resonance (13C-NMR) spectroscopic analyses. 
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ABSTRAK 
 
 
 
 

Pemangkinan pengantara palladium telah mencapai status yang mengkagumkan 
dalam pelbagai proses kimia komersial. Khususnya, disebabkan nisbah luas permukaan 
kepada isipadunya yang tinggi, nanopartikel palladium (PdNPs) menunjukkan kereaktifan 
yang tinggi yang menjadikannya sebagai mangkin yang berkuasa bagi kebanyakan 
transformasi organik. Sintesis hijau PdNPs yang menggunakan ekstrak tumbuhan telah 
dicadangkan sebagai alternatif yang mesra alam berbanding kaedah kimia dan fizikal. 
Dalam penyelidikan ini, sintesis PdNPs menggunakan ekstrak akueus daun Artocarpus 
altilis telah dikaji. Biomolekul yang terdapat di dalam ekstrak daun Artocarpus altilis 
dipercayai berfungsi sebagai agen penurun dan penukup untuk pembentukan PdNPs. 
Kesan masa tindak balas, kepekatan ion logam, isipadu ekstrak daun dan pH ekstrak 
terhadap pembentukan PdNPs telah disiasat dan dipantau menggunakan teknik 
spektroskopi ultra lembayung-nampak (UV-vis). Keadaan optimum telah diguna dalam 
sintesis PdNPs yang disokong pada nanopartikel magnetit bersalut silika berkefungsian 
amina. Penggunaan magnetit sebagai penyokong mangkin adalah menarik kerana 
pengasingan magnetik telah muncul sebagai alat pengasingan mangkin yang teguh, sangat 
cekap dan cepat. Sementara itu, kaedah berbantukan ligan menggunakan 3-(2-
aminaetilamina)propil trimetoksisilan (AEAPTS) telah memegang PdNPs secara kovalen, 
dengan itu dapat mengawal saiz PdNPs dan menghalang aglomerasi. Mangkin bio-stabil 
PdNPs yang disokong pada magnetit bersalut silika berkefungsian amina (Fe3O4-SiO2-
AEAPTS-PdNPs) telah dicirikan menggunakan analisis spektroskopi inframerah 
transformasi Fourier (FTIR), analisis CHN, pembelauan sinar-X (XRD), spektrofotometri 
penyerapan atom nyala (FAAS), mikroskopi elektron penghantaran resolusi tinggi 
spektroskopi serakan tenaga sinar-X (HRTEM-EDX), magnetometer sampel bergetar 
(VSM), potensi zeta dan spektroskopi fotoelektron sinar-X (XPS). Mangkin Fe3O4-SiO2-
AEAPTS-PdNPs kemudian telah diuji dalam tindak balas Sonogashira bebas-tembaga di 
bawah keadaan aerobik di dalam air. Kesan bes, jumlah mangkin, dan suhu terhadap 
penukaran tindak balas telah dikaji dan dipantau menggunakan kromatografi gas-
pengesanan pengionan nyala (GC-FID). Pengoptimuman tindak balas antara fenilasetilena 
dan iodobenzena untuk menghasilkan difenilasetilena telah berjaya memberikan 90% 
penukaran menggunakan 0.2 mol% mangkin Fe3O4-SiO2-AEAPTS-PdNPs dengan 
trietilamina sebagai bes pada 60°C selama 24 jam. Fe3O4-SiO2-AEAPTS-PdNPs 
menunjukkan prestasi mengkagumkan dengan jumlah perolehan 450 dan kekerapan 
perolehan 18.8 h-1. Tambahan lagi, hasil ujian kitar semula menunjukkan bahawa mangkin 
itu boleh digunakan sehingga empat kitaran tanpa kehilangan aktiviti pemangkinan yang 
ketara. Mangkin Fe3O4-SiO2-AEAPTS-PdNPs selanjutnya diuji dalam tindak balas antara 
fenilasetilena dan aril halida yang kurang reaktif bertindak balas pada 80°C dan 
memberikan produk dikehendaki dengan hasil yang baik. Gabungan bromobenzena dan 
fenilasetilena memberikan penukaran yang baik iaitu 49% sementara bromobenzena 
diaktifkan misalnya 4-bromoasetofenon dan 1-bromo-4-nitrobenzena, yang mengandungi 
kumpulan penarik elektron pada kedudukan-para memberikan penukaran yang lebih baik, 
iaitu masing-masing 53% dan 56%. Semua produk mentah telah diasingkan dan 
ditulenkan menggunakan kromatografi turus dan dicirikan menggunakan analisis 
kromatografi gas-spektrometri jisim (GC-MS) dan spektroskopi FTIR, resonans magnet 
nucleus 1H (1H-NMR) dan resonans magnet nucleus 13C (13C-NMR).  
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CHAPTER 1 

 

 

INTRODUCTION 

 
 
 
 
1.1 Background of Research 

 
 

Sonogashira cross-coupling reaction is one of the earliest discovery of organic 

synthesis to form carbon-carbon bonds (Figure 1.1) (Sonogashira, Tohda, & Hagihara, 

1975). Due to its mild reaction conditions, Sonogashira cross-coupling reaction 

become highly useful in the synthesis of various compounds (Chinchilla & Najera, 

2011; Kniess & Wust, 2003), including heterocycles (Aronica, Albano, Giannotti, & 

Meucci, 2017) and pharmaceuticals (Biajoli, Schwalm, Limberger, Claudino, & 

Monteiro, 2014; Leyva-pe, Cabrero-antonino, Rubio-marque, & Al-resayes, 2014). 

Since it was first reported in the year 1975, a tremendous development has taken place 

especially in terms of reaction conditions (Liang, Dai, Chen, & Yang, 2005; 

Strappaveccia et al., 2015; Zhong, Wang, Li, & Wang, 2014). Traditional reaction 

condition for Sonogashira reaction requires copper as co-catalyst to the palladium 

catalyst. Today, the reaction can even be carried out without copper as co-catalyst. 

This copper-free sonogashira reaction is the result of wise modification as copper can 

cause unwanted side products from the copper acetylide homocoupling. 

 
 

 
Figure 1.1 Original reaction scheme of Sonogashira cross-coupling reaction 

(Sonogashira et al., 1975) 

 
 
 
 

 

PhI    +    HC≡CH                                                   PhC≡CPh 
CuI-(Ph3P)2PdCl2 

Et2NH 
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In earlier development of Sonogashira cross-coupling reaction, variety of 

Palladium (Pd) complexes have been used as catalyst (Chinchilla & Najera, 2007). 

Example of such Pd catalyst include, most commonly used Pd-phosphorus complexes, 

Pd-nitrogen complexes, N-heterocyclic carbene (NHC) Pd complexes as well as 

palladacycle. However, these catalysts have some drawbacks especially in terms of 

reaction conditions, catalyst separation and environmental concerns. To overcome 

these issues, many attempts have been done to modify and enhance the catalyst to 

afford wide range of potentials for the best catalytic performance. One of the major 

works was the immobilisation of homogenous palladium catalyst onto various solid 

supports such as silica (Polshettiwar, Len, & Fihri, 2009), polymers (Qi, Longfeng, 

Zhenhua, Xiangju, & Feng-shou, 2012), and magnetic iron oxides (Sydnes, 2017). On 

the other hand, interest on the development of Pd nanoparticles (PdNPs) as catalyst 

was also growing (Cuenya, 2010; Mandali & Chand, 2014). These two efforts received 

significant attentions which lead to the evolution of much better and versatile catalyst 

for cross-coupling reactions such as Sonogashira. 

 
 

In recent years, the use of magnetic supported metal nanoparticles to replace 

the conventional metal complexes as catalyst in any C-C coupling reaction has 

becomes prominent (Salemi, Kaboudin, Kazemi, & Yokomatsu, 2016; Sydnes, 2017). 

This type of catalyst system exhibits unique properties as it can bridge the gap between 

homogenous and heterogenous system. Metal nanoparticles provide larger surface area 

to volume ratio compared to bulk metal. Since the catalyst particles are in the nano-

sized scale, more exposed surface area of the active components become readily and 

easily available to come into contact with the reactants, resulting in higher selectivity 

and catalytic activity. While the magnetic support such as well-known magnetite 

(Fe3O4) behave as a robust, highly efficient, and rapid catalyst separation tool. Energy 

such as heat is not required throughout the separation process while the mass of 

catalyst loss can be prevented, and operation time will also be reduced. By using 

magnetite (Fe3O4) as the main support, the catalyst can be separated from reaction 

mixture easily with the aid of an external magnet. As compared to other conventional 

separation techniques such as filtration and centrifugation, magnetic separation is often 

the best choice in terms of high efficiency and specificity. 
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Among all type of available iron oxides, magnetite (Fe3O4) is much favorable 

as magnetic support for catalysts due to its superparamagnetic properties which is 

strongly attracted to an applied magnetic field and instantaneously become non-

magnetic material in the absence of an applied magnetic field. This is one of the 

important features that a support must have for efficient handling and application. The 

synthesis of Fe3O4 is also relatively easy as compared to other magnetic iron oxides. 

In addition, Fe3O4 is stable under most reaction condition such as temperature, 

pressure, solvents, reagents, substrates, and products. Fe3O4 can also be surface coated 

with silica which then can be functionalised with suitable ligands such as aminosilanes 

or alkoxysilanes. Moreover, coating with silica will stabilised Fe3O4 from attack by 

strong acids and protects Fe3O4 from oxidation to form maghemite.  

 
 
 
 
1.2 Problem Statement 

 
 

Conventionally, most synthesis of PdNPs is achieved via chemical reduction 

of Pd(II) ions by phosphine compounds. Phosphine has strong reducing properties and 

it can also be used as one of efficient activators and stabilisers especially for palladium 

species. However, despite all these great advantages, this toxicant gas is worrisome to 

handle. On the other hand, it is not only toxic and highly flammable, but also much 

expensive than palladium metal. Hence, synthesis of PdNPs in a greener procedure is 

highly desirable. Plant extract with high antioxidant content such as Artocarpus altilis 

leaf extract promises a safer, environmental friendly and cheaper procedure for the 

reduction of Pd(II) to synthesis PdNPs. 

 
 

One of the major challenges in synthesising transition-metal nanoparticles is to 

make sure that they are kinetically stabilised to avoid agglomeration as well as 

regeneration. This is typically achieved by using a protective stabiliser such as 

surfactants, dendrimers, polymers, and organic ligands. Sulfur-based ligand is 

frequently used as stabiliser for PdNPs. However, the poisoning effect of sulfur may 

somehow restrict the catalytic potential of PdNPs. Hence, nitrogen-based ligand such 

as 3-(2-aminoethylamino)propyl trimethoxysilane (AEAPTS) is much more 



4 
 

advantageous. The nitrogen lone pair from the two amines group will chemically 

adsorb onto the surface of the metal and the alkyl group preventing agglomeration via 

steric stabilisation. 

 
 

Homogenous catalyst such as Pd complexes has known to perform a very 

excellent job in many catalytic reactions. However, no matter how effective 

homogenous catalyst can be, major problem arises when it comes to the recovery part. 

Not only products or catalyst itself are difficult to be collected and separated from the 

reaction mixture, but homogenous catalyst also seems impossible to be recycled and 

reused for several times. Thus, PdNPs immobilised onto magnetic support would be 

the best alternative solution since recovery of the catalyst can be simply done by using 

external magnetic field. In addition, PdNPs has very high surface area to volume ratio, 

hence it provides good catalytic activity mimicking the homogenous catalyst. 

 
 
 
 
1.3 Objectives 

 
 
The objectives of this study are: 

 
 

1. To synthesise and characterise silica-coated magnetite functionalised with 

aminosilane derivatives. 

2. To immobilise Pd(II) ions onto the modified surface of the silica-coated 

magnetite nanoparticles. 

3. To reduce the supported Pd(II) ions to Pd(0) nanoparticles (PdNPs) via green 

approach using Artocarpus altilis aqueous leaf extract as the reducing and 

stabilising agent. 

4. To evaluate the catalytic performance of the supported PdNPs catalyst in the 

copper-free Sonogashira cross-coupling reaction. 

 
 
 
 



5 
 

1.4 Scope of Research 

 
 

This research focused on the synthesis of magnetic supported PdNPs which is 

useful for the catalytic application. Fe3O4 was first synthesised and used as the main 

support for the catalyst. The synthesised Fe3O4 was coated with a layer of silica using 

tetraethyl orthosilicate (TEOS). The silica surface was then modified with an 

aminosilane ligand of 3-(2-aminoethylamino)propyl trimethoxysilane (AEAPTS) 

which contained two amines group per molecule. The supported Pd(II) ions was then 

reduced to form PdNPs via biosynthetic method employing aqueous leaf extract of 

Artocarpus altilis. Effect of reaction time, metal ion concentration, the volume of leaf 

extract and pH of the extract on the formation of PdNPs were investigated and 

monitored by using UV-vis spectroscopic analysis. Bio-reduction approach was 

chosen because it is safe, environmentally friendly and cheaper as compared to 

chemically toxic approach. The synthesised supported PdNPs catalyst was then tested 

in the copper-free Sonogashira cross-coupling reaction between phenylacetylene and 

aryl halide derivatives with triethylamine base in water for 24 h.  

 
 
 
 
1.5 Significance of Research 

 
 

The supported palladium nanoparticles (PdNPs) prepared in this research could 

be a promising catalyst in providing excellent and impressive catalytic efficiency for 

C-C cross-coupling reaction such as Sonogashira reaction. Thus, it has the potential to 

supersede other catalysts which were conventionally used in the chemical industry. 

Also, supported PdNPs provide magnetic nanocatalyst recovery method which can be 

simply done with the aid of an external magnet. Hence, this ideal method will take off 

the tedious separation method such as distillation and crystallisation which require 

high temperature and cause the catalyst to be decomposed. In addition, Supported 

PdNPs can be recycled for several times and the preparation employing plant extract 

instead of toxic and hazardous chemicals open the new path toward more sustainable 

and green technology. 
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